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1 Introduction

Covariance matrix estimation has been an active research topic, partly because covariance matrices

appear naturally in many stochastic models as a statistical measure of the interdependence of

variables. Inference about covariance can be complicated when its dimension is high, implying

a large number of unknown parameters which may make the positive definite condition of the

covariance matrix difficult to satisfy in the estimation process. To alleviate the high dimensionality

problem, there are three major classes of methods for covariance estimation. The first one is based

on spectral decomposition using eigenvalues and orthogonal eigenvectors (Daniel and Kass, 1999).

Another method follows from the Cholesky decomposition of covariance matrices. Daniels and

Pourahmadi (2002) modeled covariance matrices and studied the relationship between a prior

they proposed and the inverse Wishart prior. Smith and Kohn (2002) proposed parsimonious

specifications based on Cholesky decomposition. Also falling into this category of methods is that

of Pourahmadi (2000, 2007). The third method is to analyze the covariance matrix via variances

and covariances. Barnard, McCulloch and Meng (2000) called this the separation strategy. Using

this idea, Liechty, Liechty and Muller (2004) proposed priors for Bayesian correlation modeling.

Other methods include the matrix logarithmic transformation prior formulation of Leonard and

Hsu (1992) and the use of an inverse covariance matrix prior in Wong, Carter and Kohn (2003)

and Pitt, Chan and Kohn (2006) for covariance selection. Rather than assuming homogenous

covariances as in the above-mentioned procedures, this study develops a modeling framework for

time-varying covariance matrices.

The study of time-dependent covariance or multivariate stochastic volatility (MSV) models

has been an active area of research in the past decade, primarily because of the need to capture

the dependence of high-dimensional financial returns. The first MSV model introduced by Harvey,
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Ruiz and Shephard (1994) was considered to be an alternative to the multivariate GARCH models

proposed by Bollerslev (1990). Both types of models assume constant correlations. With respect

to the multivariate GARCH, Engle and Kroner (1995) and Ding and Engle (2001) developed new

models which guarantee the positive definiteness of the covariance matrices, allowing conditional

correlations to be time-varying. Later, Engle (2002) and Tse and Tsui (2002) proposed the dy-

namic conditional correlation (DCC) models which specify the process of conditional correlations

directly. The DCC specification reduces the number of parameters dramatically. See McAleer

(2005) for the survey of multivariate GARCH models.

Turning back to the MSV model, there have been two streams of research. One has worked with

the factor model, while the other is based on the Wishart distribution (see Wishart, 1928). Among

several factor models, Pitt and Shephard (1999a) introduced mean factors which have stochastic

variances, in addition to the original specification of Harvey, Ruiz and Shephard (1994). One of the

byproducts of this specification is to enable the correlation matrix to vary over time. Chib, Nardari

and Shephard (2006) developed a further generalization, allowing jumps and heavy tails in the

conditional distributions. Regarding the Wishart distribution, several scholars employ it in order

to guarantee the positive definiteness of the covariance matrix. Philipov and Glickman (2006a,b)

proposed a high-dimensional MSV model in which the covariance matrices are driven by Wishart

random processes. Philipov and Glickman (2006a) specified that the log of the determinant of

the covariance matrix follows an AR(1) process, while Philipov and Glickman (2006b) extended

it to a factor MSV model for the purpose of reducing the number of the parameters. Asai and

McAleer (2009) suggested a dynamic correlation model, which is an extension of the dynamic

conditional correlation (DCC) model of Engle (2002). Gourieroux (2006) and Gourieroux et al.

(2009) proposed the Wishart autoregressive (WAR) multivariate process of stochastic positive
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definite matrices. Intuitively, the WAR model is based on the sum of the outer-products of the

vector autoregressive processes. Among these MSV models, Asai and McAleer (2009) assumed a

process with dynamic correlations, while all the other have considered dynamic covariance which

produces dynamic correlation as a byproduct. Asai, McAleer and Yu (2006) and Chib, Omori and

Asai (2009) give surveys of the various MSV models.

The purpose of the paper is to introduce a new class of stochastic covariance models us-

ing Wishart distribution. Our specification clarifies the relationship between the stochastic and

conditional covariance matrices. There are four ways we contribute to the covariance modeling

literature. First, we propose three categories of dynamic correlation models depending on how

we formulate the time-varying covariance matrix and whether it is a latent variable. Second,

we develop a stochastic covariance filter, a matrix analog of the Kalman filter, for filtering and

prediction of covariances. Third, extensions of the basic models enable us to study long memory

properties in the dynamic correlations, threshold correlation effects and to do portfolio analysis.

Finally, suitable parameterization in our dynamic correlation models and the stochastic covari-

ance filter facilitate efficient calculation of the likelihood function in high-dimensional problems,

no matter whether the covariance matrix is observable or latent. The organization of the paper

is as follows. Section 2 proposes the new multivariate process with the stochastic covariance,

and also introduces the stochastic covariance filter. Section 3 suggests the three categories of

dynamic correlation models. Section 4 extends the models to accommodate the long memory,

asymmetry and portfolio analysis. Section 5 discusses likelihood inference procedures for parame-

ter estimation, and Section 6 conducts Monte Carlo experiments to study finite-sample properties

of estimators. Section 7 shows two empirical examples; one is for the bivariate exchange rates

using high frequency data, while the other deals with the trivariate daily returns for stock indices.
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Section 8 gives conclusions.

2 Multivariate Processes with Stochastic Covariance

2.1 A new stochastic covariance model

Let yt be an m-dimensional random vector with the stochastic covariance matrix Ct (m×m). Let

=t be the information set up to t. Assume that yt is observable, while Ct can be either observable

or unobservable. We define the conditional mean and covariance matrix as

µt ≡ E[yt|=t−1],

Ct|t−1 ≡ E[Ct|=t−1].

(1)

In order to avoid the problem of the simultaneous equation bias, we exclude the exogenous variables

for period t from the conditional covariance matrix. On the other hand, the conditional mean can

be extended to include such exogenous variables1. It is also possible to extend µt to depend on

Ct, as in the stochastic volatility in mean model suggested by Koopman and Uspensky (2002).

Now, we introduce the new stochastic covariance model as

yt = µt + C
1/2
t zt, zt ∼ N(0, Im), (2)

Ct = C
1/2
t|t−1 {(ν −m− 1)Et}C1/2

t|t−1, E−1t ∼W (Im, ν), (3)

where W (A, p) denotes the Wishart distribution with the scale matrix A and the degrees-of-

freedom parameter p. The new model has an alternative form as,

yt|=t−1, Ct ∼ N(µt, Ct),

Ct|=t−1 ∼ IW
(
(ν −m− 1)Ct|t−1, ν

)
,

(4)

where IW (B, p) denotes the inverse Wishart distribution with the scale matrix B and the degrees-

of-freedom parameter p. By the properties of the inverse Wishart distribution, E[Ct|=t−1] =

1Ren and Polasek (2000) considered the VAR-GARCH in mean model. Although we do not deal with such
models here, our new specification includes conditional covariance models with feedback effects in the mean as a
special case.
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(ν −m − 1)−1 × (ν −m − 1)Ct|t−1 = Ct|t−1, which matches the definition in (1). Our stochastic

covariance model is developed by defining suitable structures in the conditional mean of Ct given

previous information. We specify the dynamic structure of both the time-varying variances and

the correlations explicitly in (4). This is unlike the classical methods of Harvey, Ruiz and Shephard

(1994) and Chib, Nardari and Shephard (2006) which implicitly captured stochastic correlation

by innovation correlations or by defining correlations using the variances of latent factors and

factor loadings. The model in (4) does not belong to the class of Wishart process as discussed

by Philipov and Glickman (2006a) or Gourieroux, Jasiak and Sufana (2009), as Ct|t−1 is not

necessarily a function of C1, ..., Ct. One novelty of this new model is that Ct|t−1 is formulated

by observations up to time t − 1. This enables us to derive useful statistical properties based

on the model in (4), namely (i) the connection between yt and the conditional covariance, (ii)

multi-step-ahead forecasts of Ct and the variance of yt, and (iii) the filtered estimate of Ct.

First of all, define θ = (θ′1, θ
′
2)
′ as the parameter vector, where θ2 includes ν. Denote the

density functions of yt and Ct as f(yt|=t−1, Ct, θ1) and f(Ct|=t−1, θ2), respectively. Integrating

out Ct, we have the distribution of yt|=t−1 as

f(yt|=t−1, θ) =

∫
f(yt|=t−1, Ct, θ1)f(Ct|=t−1, θ2)dCt

= (πk)−
m
2

Γ(k+m
2 )

Γ(k2 )
|Ht|−

1
2

[
1 +

(yt − µt)′H−1t (yt − µt)
k

]− k+m
2

, (5)

where k = ν −m + 1 and Ht = k−1(ν −m − 1)Ct|t−1. This defines yt|=t−1 ∼ MT (µt, Ht, k), a

multivariate t distribution with the location parameter µt, scale parameter Ht and k degrees of

freedom. Since each component of yt follows a univariate conditional t distribution with k degrees

of freedom, it has a finite 4th moment only when k > 4 or ν > m+3. The higher the dimension of

m, the more fat-tailed is the conditional distribution of yt induced by Ct. The conditional mean

6



and variance of yt are

E(yt|=t−1) = µt,

V ar(yt|=t−1) =
k

k − 2
Ht = Ct|t−1.

Hence, the specification in (4) makes the conditional mean of stochastic covariance, Ct, to be the

conditional covariance matrix of yt.

Secondly, we consider multi-step-ahead prediction given =t, i.e., E[Ct+h|=t] and V ar(yt+h|=t)

for h ≥ 1. By definition, Ct+1|t is the one-step-ahead forecast of Ct+1 given =t. Hence, we turn

to the prediction of Ct+h (h > 1) given =t. We can obtain f(yt+1, ..., yt+h|=t) as a product of

multivariate t distributions:

f(yt+1, ..., yt+h|=t) =
h∏

i=1

f(yt+i|=t+i−1) =
h∏

i=1

MT (µt+i, Ht+i, k).

For multiple-step prediction, we can then use

E[Ct+h|=t] = E[E[Ct+h|=t+h−1]|=t]] = E[Ct+h|t+h−1|=t], h ≥ 1.

From this, we can estimate E[Ct+h|=t] (for h > 1) by simulating yt+1, ..., yt+h−1 from the product

of the multivariate t distributions and approximate it by the Monte Carlo average

E[Ct+h|=t] ≈
1

N

N∑
j=1

C
(j)
t+h|t+h−1, (6)

where C
(j)
t+h|t+h−1 is computed by the jth draw from f(yt+1, ..., yt+h−1|=t). Similarly, we can

estimate V ar(µt+h|=t) by

V ar(µt+h|=t) ≈
1

N

N∑
j=1

µ
(j)
t+h µ

(j)
t+h

′
−

 1

N

N∑
j=1

µ
(j)
t+h

 1

N

N∑
j=1

µ
(j)
t+h

′ , (7)

where µ
(j)
t+h is determined by the jth draw from f(yt+1, ..., yt+h−1|=t). Adding the Monte Carlo

estimators in (6) and (7) gives an estimator of the h-step-ahead predictive variance of yt+h, i.e.
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V ar(yt+h|=t), by using the result

V ar(yt+h|=t) = E[Ct+h|=t] + V ar(µt+h|=t). (8)

To prove (8), note that E[yt+h|=t] = E[E[yt+h|=t+h−1, Ct+h]|=t] = E[µt+h|=t], and

E[yt+h yt+h
′ |=t] = E[E[yt+h yt+h

′ |=t+h−1, Ct+h]|=t]

= E[V ar(yt+h|=t+h−1, Ct+h) + E[yt+h|=t+h−1, Ct+h] E[yt+h|=t+h−1, Ct+h] ′]

= E[Ct+h + µt+h µt+h
′ |=t].

Equation (8) is especially important when we are interested in the multiple-step forecasting of the

variance of yt.

Thirdly, we also suggest an approach for updating Ct analogous to the updating step in

Kalman filter. While the prediction of Ct can be accomplished using the conditional distribution

of Ct|=t−1, we can also filter Ct based on the information up to time t. This can be done by

noting that

f(Ct|=t) = f(Ct|yt,=t−1)

∝ f(yt|Ct,=t−1)f(Ct|=t−1)

∝ |Ct|−
(ν+1)+m+1

2 exp

{
−1

2
tr
(
ΦtC

−1
t

)}
,

where Φt = (ν −m− 1)Ct|t−1 + (yt − µt)(yt − µt)′. Then we have

Ct|=t ∼ IW (Φt, ν + 1), or C−1t |=t ∼W (Φ−1t , ν + 1), (9)

giving

E[Ct|=t] = (ν −m)−1Φt = (ν −m)−1[(ν −m− 1)Ct|t−1 + (yt − µt)(yt − µt)′]. (10)

Such updating is especially important when Ct is unobservable.

8



2.2 A stochastic covariance filter

Classical signal extraction approaches help predict and filter latent state variables under state

space models. The usual technique involved is the Kalman filter (Harvey, 1989; 1993) which

proceeds recursively to the calculation of predicted and filtered state values for statistical inference

of the unobservable signal. In this study, we develop a stochastic covariance filter (SCF), which

can be regarded as a matrix analog of the Kalman filter. Instead of having an unknown state

variable, in this section {Ct} is assumed to be a latent process so that =t only includes the history

of y1, ..., yt. Following the notation common in the signal extraction literature, denote the filtered

value of Ct, i.e. E[Ct|=t], by Ĉt. The prediction and filtering equations for the proposed SCF are

then

Prediction

Ct|t−1 = gt−1(Ct−1|t−2, Ĉt−1), (11)

Updating

Ĉt−1 =
ν −m− 1

ν −m
Ct−1|t−2 +

1

ν −m
(yt−1 − µt−1)(yt−1 − µt−1)′, (12)

where gt−1 is a function of Ct−1|t−2 and Ĉt−1 based on the information =t−1. While the prediction

equation takes a very general form in terms of the function gt, the updating equation follows from

(10). From the updating formula in (12), the parameter ν and the dimension m determine the

contribution of the information up to time t − 2, summarized in Ct−1|t−2, and yt−1, to form the

updated value Ĉt−1, which in turn governs the conditional variance of yt given =t−1. A greater

contribution is from yt, the information at time t, if the data is very fat-tailed or ν−m is small. So

the mixture Wishart representation in (4) induces weights in the construction of Ĉt, and iteratively

produces Ct|t−1 using our SCF. The time series evolution of Ct|t−1 in (11) will be used to define
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a new dynamic correlation model in the next section. The choice of the function g(·) is flexible,

but a special form is discussed in Section 4 which can help capture any long-range dependence in

stochastic covariance.

3 Dynamic Correlations

Returning to the stochastic covariance model in (4), consider three categories, depending on how

we formulate Ct and whether Ct is a latent variable.

1. The conditional covariance Ct|t−1 includes past information of Ct, which is observable.

2. The conditional covariance Ct|t−1 includes past information of Ct, which is a latent variable.

3. The conditional covariance Ct|t−1 excludes past information of Ct. In this case, past values

of Ct are replaced by their filtered estimates, Ĉt−s(s ≥ 1).

In the first category, we can define a time series model with realized covariance matrices, while the

second category deals with a class of multivariate stochastic volatility models. The final category

introduces a class of multivariate GARCH (MGARCH) models based on our stochastic covariance

filter.

3.1 A new modeling framework

In this section, we address specifications for the conditional covariance, Ct|t−1, in detail. In the

literature on multivariate GARCH models, there are two approaches to specifying Ct|t−1. The

first is to model Ct|t−1 itself, as in Engle and Kroner (1995) and Ding and Engle (2001). The

other is modeling the conditional correlations, Pt|t−1 = ∆
−1/2
t|t−1Ct|t−1∆

−1/2
t|t−1, rather than conditional

covariances, as Engle (2002) and Tse and Tsui (2002) have done, where ∆t|t−1 = diag(Ct|t−1)

contains the conditional variances of each component of yt given =t−1, and diag(A) is the diagonal

10



part of a matrix A. The latter approach allows the conditional correlation to vary parsimoniously.

Recently, Asai and McAleer (2009) have suggested a dynamic stochastic correlation model which

allows time-varying correlation in MSV models. In this paper, we develop a new parsimonious

specification for Pt|t−1 in multivariate covariance models to handle all three categories of problems.

Define the stochastic correlation matrix by Pt = ∆
−1/2
t Ct∆

−1/2
t , where ∆t = diag(Ct) is the

stochastic variance matrix. The corresponding updated estimates of Pt and ∆t obtained from Ĉt

in the updating step are denoted by P̂t=∆̂
−1/2
t Ĉt∆̂

−1/2
t and ∆̂t=diag(Ĉt), respectively. Now, we

propose a new dynamic correlation model, as follows.

Ct|t−1 = ∆
1/2
t|t−1Pt|t−1∆

1/2
t|t−1, (13)

with

Pt|t−1 = S ◦ (ιι′ −A−B) +A ◦ Pt−1 +B ◦ Pt−1|t−2,

vecd(∆t|t−1) = κ+ γ ◦ vecd(∆t−1) + δ ◦ vecd(∆t−1|t−2),

(14)

where ι is the vector of ones, ◦ is the Hadamard product (element-by-element multiplication), S

is the unconditional correlation matrix, A and B are (possibly) positive semi-definite matrices of

parameters, and κ, γ and δ are m× 1 vectors of parameters. Also, the operator vecd(A) creates a

vector from the diagonal elements of the square matrix A. An alternative formulation of (14) is to

replace Pt−1 by P̂t−1 and ∆t−1 by ∆̂t−1. This will be discussed in a later section. For convenience,

we call the model defined by (4), (13) and (14) the dynamic correlation, or ‘DC’ model.

In the DC model, the conditional variance and conditional correlations are specified separately.

The vector of conditional variance, vecd(∆t|t−1) has a structure similar to that of a GARCH

model. Instead of the squared residuals in GARCH models, we work with the realized variances,

∆t−1. With respect to the conditional correlation, Pt|t−1, note that its specification requires

no standardization, as S, Pt−1 and Pt−1|t−2, like the specification of Tse and Tsui (2002), are
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correlation matrices. The dynamic conditional correlation (DCC) model of Engle (2002) instead

employed an additional process of Qt to produce the correlation matrix by defining Pt|t−1 =

[diag(Qt)]
−1/2Qt [diag(Qt)]

−1/2. That approach accommodates zt−1z
′
t−1, where zt = ∆

−1/2
t|t−1(yt −

µt) rather than the Pt−1 in (14). Using the approach taken by Ding and Engle (2001), we can

show that Pt|t−1 is positive definite if (ιι′−A−B), A and B are positive definite. Note that Pt−1

is always positive definite, unlike the outer product of the standardized vector in the original DCC

model, and the positive definiteness of Pt−1 supports Pt|t−1 to be positive-definite. Each element

of vecd(∆t|t−1) follows a GARCH-type process, so κi > 0, γi > 0, δi > 0 and γi + δi < 1 for all

i = 1, 2, . . . ,m. As in Engle (2002), a parsimonious specification for Pt is given by

Pt|t−1 = S(1− α− β) + αPt−1 + βPt−1|t−2. (15)

We will use this specification in our empirical analysis. In this specification, we may consider

(1−α−β), α and β as the weights for the three kinds of correlation matrices, i.e. the unconditional,

the realized and the conditional.

Although the DC model starts from the specification of the process of the correlation matrices,

general multivariate covariance models yield time-varying correlations as well. For example, we

can use a BEKK-type model (named after Baba, Engle, Kraft and Kroner and introduced in

Engle and Kroner, 1995). The first order form is given by Ct|t−1 = C ′C+ACt−1A
′+BCt−1|t−2B

′,

where A and B are m×m matrices of parameters, and C is the upper triangular matrix. Another

possibility is a variant of the diagonal GARCH model (Bollerslev, Engle and Wooldridge, 1988)

given by Ct|t−1 = Ω◦ (ιι′−A−B)+A◦Ct−1 +B ◦Ct−1|t−2, where Ω is the positive definite matrix

of parameters, and A and B are (possibly) positive semi-definite matrices. These specifications

also introduce dynamic patterns in the correlation matrices. In the same manner, it is possible to

develop various kinds of stochastic covariance models by assuming Ct|t−1 = gt−1(Ct−1|t−2, Ct−1)
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as in the SCF. For instance, we may also use the matrix exponential model suggested by Chiu et

al. (1996) and its variants including that of Kawakatsu (2006). Before moving to the next topic,

we should emphasis that the SC model (14) is not in the class of multivariate GARCH models

because the right hand side involving Pt−1 and ∆t−1 is not deterministic given y1,..., yt−1. On

the other hand, the flexibility of using P̂t−1 and ∆̂t−1 generated from the updating step in place

of Pt−1 and ∆t−1 in (14) enables the modeling of stochastic covariance using observation-driven

models like the multivariate GARCH. This will be explored in Section 3.3.

3.2 Time series models with realized covariance

The three categories of scenarios can be used to examine the hierarchical structures of the DC

models. The first category assumes that the conditional covariance Ct|t−1 depends on past in-

formation of Ct, which is observable. In this case, the realized covariance (RC) matrix can be

considered as the observed value of Ct or the observed value with some measurement error2. With

a high-frequency time series (data collected with a less-than-one-day horizon), daily realized co-

variance can be obtained. Studies show that this realized covariance can help in various financial

applications (Bandi, Russell and Zhu, 2008) and thus there is theoretical and practical interest in

modeling realized covariance. Much of the prior work on this topic, including that of Andersen,

Bollerslev, Diebold and Labys (2003), Corsi (2004) and McAleer and Medeiros (2008) focused on

univariate modeling, i.e. developing time series models of realized variance. Some exceptions are

Voev (2007) and Gourieroux, Jasiak and Sufana (2009). In this paper, we work on multivariate

modeling where yt can be a financial return on day t which has the property var(yt|=t−1, Ct)

equals Ct, the realized covariance on day t. We call this DC model as the ‘DC-RC’ when re-

2For the realized volatility, Bandorff-Nielsen and Shephard (2002) called such measurement error as ‘realized
volatility error’. The error is also caused by the microstructure noise common in ultra high frequency data. See
also Andersen et al. (2003) and Asai, McAleer and Medeiros (2008).
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alized covariance is available for Ct. We model the conditional mean of Ct, i.e. Ct|t−1 using

(14). With the hierarchical structure in (4), the predictive distribution f(yt, Ct|=t−1) is written

as f(yt|Ct,=t−1)f(Ct|=t−1), where the first component is multivariate normal and the second part

is inverse Wishart, from which the likelihood function is formulated as

∏
t

f(yt, Ct|=t−1) =
∏
t

N(µt, Ct)× IW ((ν −m− 1)Ct|t−1, ν). (16)

Since in this case the information set =t includes past history of both yt and Ct, our stochastic

covariance model can help incorporate both the information of yt and Ct in forecasting future

realized covariance. For example, we can have

Pt|t−1 = S ◦ (ιι′ −A−B −D) +A ◦ Pt−1 +B ◦ Pt−1|t−2 +D ◦Rt−1,

where D is positive definite and Rt−1 is any correlation matrix constructed from y1,..., yt−1. The

information of yt enters into the distribution of Ct through Rt, but the likelihood decomposition

in (16) is still valid. For the case of unobservable Ct, (4), (13) and (14) define a new class of MSV

models, which is referred to as the ‘DC-MSV’ model.

3.3 A MGARCH model based on stochastic covariance filter

With respect to the Category 3, we propose to replace Ct by its filtered estimate Ĉt = E[Ct|=t]

in equation (10), which is the weighted average of Ct|t−1 and (yt − µt)(yt − µt)
′ with weights

(ν − m − 1)/(ν − m) and 1/(ν − m), respectively. We then have ∆̂t = diag(Ĉt) and P̂t =

∆̂
−1/2
t Ĉt∆̂

−1/2
t . Equation (4) gives a time series model in hierarchical form with the stochastic

variance Ct following a conditional Wishart distribution. Integrating out Ct to get the multivariate

t predictive distribution in (5) and with the prediction equation in (11), we can define a new
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MGARCH model as

yt|=t−1 ∼MT (µt,
k − 2

k
Ct|t−1), Ct|t−1 = ∆

1/2
t|t−1Pt|t−1∆

1/2
t|t−1,

Pt|t−1 = S ◦ (ιι′ −A−B) +A ◦ P̂t−1 +B ◦ Pt−1|t−2,

vecd(∆t|t−1) = κ+ γ ◦ vecd(∆̂t−1) + δ ◦ vecd(∆t−1|t−2),

(17)

where k = ν − m + 1. Intrinsically, the normal-Wishart mixture in (4) implies a conditional

multivariate t distribution for yt given =t−1 with degrees of freedom k = ν − m − 1. Ct|t−1 is

equivalent to var(yt|=t−1) as shown in section 2. Empirical data analyses in the literature show

that the fat-tailed characteristics of the t distribution are more suitable than a multivariate normal

distribution. The degrees of freedom also reveals higher conditional kurtosis in larger m if ν is

fixed. Equation (17) lies in the framework of our SCF, where gt−1 in this case is a nonlinear

function of Ct−1|t−2 and Ĉt−1.

A novelty of our MGARCH approach is to be able to filter out Ct using the SCF, whereas in tra-

ditional MGARCH models, no such step is possible because the conditional variance, var(yt|=t−1),

is ‘assumed’ rather than constructed by an underlying stochastic covariance process, which is the

source of the changing variance of yt. Even though filtering can be done under MSV models,

for examples in Kitagawa (1996) and Pitt and Shephard (1999b), the filtering can be very time

consuming and usually requires Monte Carlo simulations. In practice, Ĉt = E[Ct|=t] is the best

estimator of Ct in the mean square sense given the information up to time t. So from the signal

extraction point of view, it is more accurate statistically to use Ĉt, instead of Ct|t−1 to analyze

the unknown Ct. With respect to financial applications (where yt stands for a return at time t),

it makes more sense to use Ĉt than Ct|t−1 for portfolio analysis and risk calculations at time t.

By construction, Pt|t−1 and ∆t|t−1 are determined from the past information of yt, and they do

not depend on the past values of Ct. Hence, Ct|t−1 depends only on the past information of yt.

In this sense, the above model accommodating the filtered estimates can be interpreted as a new
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specification of the DCC model. Furthermore, yt|=t−1 follows a multivariate t distribution and so

we call the new DCC model as the ‘DCCt model with Filtered Covariance’ (DCCt-FC).

Let us examine some properties of the DCCt-FC model to show its similarities with and

differences from Engle’s (2002) DCC models. We may write the (i, i) element of ∆t in the DCCt-

FC model as

∆ii,t = κi + γiD̂ii,t−1 + δi∆ii,t−1,

where D̂ii,t = (ν −m)−1[(ν −m− 1)∆ii,t + (yit − µit)2]. This leads to

∆ii,t = κi + γ∗i (yit − µit)2 + δ∗i ∆ii,t−1,

where γ∗i = γi(ν −m)−1 and δ∗i = γi + δi − γ∗i . This is the same as the GARCH specification.

Therefore, there is no difference between the DCCt-FC and DCC models in terms of their con-

ditional variances. On the other hand, such a correspondence is unavailable with respect to the

correlation process, because of the differences between P̂t−1 in the DCCt-FC and zt−1z
′
t−1 in the

DCC. There is therefore a crucial difference between the DCCt-FC and DCC models in terms of

the correlation process.

4 Extensions

In this section, we propose several extensions of the new DC model. For convenience, we will refer

these variants using the abbreviations, DC-RC, DC-MSV and DCCt-FC.

4.1 A long memory model

We extend the DC model in the previous section to handle any long memory properties observed

in the realized volatility, and possibly also present in realized correlations. Baillie et al. (1996)

and Bollerslev and Mikkelsen (1996) have previously suggested long-memory conditional variance
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models, and Andersen et al. (2003) proposed a vector autoregressive approach (VAR) for the

realized variances. To reduce the number of parameters, assume that the degrees of long-run

dependency are common to all the variances (See Andersen et al., 2003). In this paper, we develop

a DC model which also captures any long memory property in the time-varying correlations.

Assume also a common long-run dependency in the correlations, though we may relax these

assumptions easily. A new multivariate long memory time series model in Ct is introduced by

separating it into Pt and ∆t for modeling

(1− φL)(1− L)dcvech(Pt − S) = (1− βL)et,

(Im − λL)(1− L)dvvecd(∆t) = κ+ (Im − δL)ut,

(18)

where L is the lag operator, et = vech(Pt − Pt|t−1) and ut = vecd(∆t − ∆t|t−1) play the role of

innovations, Im is the m×m identity matrix, κ is a m×1 vector, φ and β are scalar parameters, λ

and δ are the m×m diagonal parameter matrices diag{λ1, ..., λm} and diag{δ1, ..., δm} respectively,

and dc and dv are the common degrees of the long-run dependencies for variances and correlations,

respectively. Rewriting (18), we propose the Fractionally Integrated DC (FIDC) model, which is

given by equation (13) and

vech(Pt|t−1) =vech(S) + βvech(Pt−1|t−2 − S)

+
{

1− βL− (1− φL)(1− L)dc
}

vech(Pt − S),

vecd(∆t|t−1) =κ+ δ ◦ vecd(∆t−1|t−2)

+
{
Im − δL− (Im − λL)(1− L)dv

}
vecd(∆t).

(19)

The assumptions about the common degree of long-range dependency governed by dc and dv

can be relaxed easily. In equation (19) we encounter the lag operator, which takes the form

(1 − aL)(1 − L)d. It may be convenient to show its alternative representation given by Hosking

(1981),
∑∞

k=0 bkL
k, where

bk =

(
1− a− 1 + d

k

)
Γ(k − d− 1)

Γ(−d)Γ(k)
.
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As a special case, setting dc = dv = 0 in (19) leads to the DC model in (15) with the volatility

equation given in (14). In this case, the relationships between the parameters are given by φ = α+β

and λi = γi + δi (i = 1, 2, . . . ,m).

When Ct is taken as the realized covariance, the FIDC belongs to the first category of models

proposed in Section 3. In this case, we name (19) as the FIDC-RC model. Andersen et al. (2003)

constructed a fractionally integrated VAR model for the log of the realized variances with the

common parameter dv. Compared with that model, our model also includes the process for the

realized correlations, which is new in the literature. On the other hand, when Ct is a latent

variable, equation (19) gives a new specification for the long memory MSV model (see So and

Kwok, 2009, for an example). This case produces the FIDC-MSV model with the volatilities

and correlations following different long memory processes. Focusing on the volatility part, the

structure of each element of ∆t is similar to the fractionally integrated GARCH (FIGARCH)

model suggested by Baillie et al. (1996). While the FIGARCH is based on the squared residuals,

this new model works with the realized variance, which is the element of vecd(∆t). We can modify

the FIDC model to specify a new multivariate long memory GARCH model by replacing Pt and

∆t with the updated values P̂t and ∆̂t, respectively. Hence, by using our SCF, we can construct

a ‘FIDC with Filtered Covariance’ (FIDC-FC) model, where Pt|t−1 and ∆t|t−1 in (19) can be

calculated recursively using P̂t and ∆̂t to substitute for Pt and ∆t.

For the estimation of the FIDC models, we fix all the pre-sample values of ∆t and Pt for

t = 0,−1,−2, · · · at the vector of the unconditional variance and the unconditional correlation

matrix, as suggested by Baillie et al. (1996) and Bollerslev and Mikkelsen (1996). They also

truncated the infinite expansion of (1− aL)(1− L)d at k = 1000.
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4.2 A threshold model

Researchers have observed that market variability reacts differently to the rise and fall of financial

markets. This kind of asymmetry is likely to exist in correlations as well. Extending Tse and Tsui’s

(2002) varying-correlation multivariate GARCH model to have threshold nonlinearity (Tong, 1980;

Tong, 1983; Tong, 1990, p.116) in the first and second conditional moments, Kwan, Li and Ng

(2007) proposed a threshold model which incorporates (i) a threshold AR model for the conditional

mean, (ii) a threshold GARCH model for the conditional variance, and (iii) a threshold model for

the conditional correlation.

Let n be the delay parameter and rt−n be a real-valued threshold variable. Now, we purpose

the Threshold DC (TDC) model, given by equations (4), (13) with

µt =

{
τ
(1)
0 +

∑p1
k=1 τ

(1)
k ◦ yt−k, rt−n ≤ l,

τ
(2)
0 +

∑p2
k=1 τ

(2)
k ◦ yt−k, rt−n > l,

(20)

for the conditional mean, and

vecd(∆t|t−1) =

{
κ(1) + γ(1) ◦ vecd(∆t−1) + δ(1) ◦ vecd(∆t−1|t−2), rt−n ≤ l,
κ(2) + γ(2) ◦ vecd(∆t−1) + δ(2) ◦ vecd(∆t−1|t−2), rt−n > l,

(21)

with

Pt|t−1 =

{
S(1)(1− α(1) − β(1)) + α(1)Pt−1 + β(1)Pt−1|t−2, rt−n ≤ l,
S(2)(1− α(2) − β(2)) + α(2)Pt−1 + β(2)Pt−1|t−2, rt−n > l,

(22)

for the conditional covariance, Ct|t−1. Depending on the regime i (i = 1, 2), φ
(i)
k , κ(i), γ(i) and

δ(i) are m-dimensional vectors of parameters, S(i) is the unconditional correlation matrix, and

α(i) and β(i) are scalar parameters. Although this is a two-regime specification, it is possible to

extend it to multiple-regimes as in Kwan, Li and Ng (2007) and So and Yip (2009). Following

the categorization in Section 3, we also have three versions of such TDC models. Version one is

defined when the realized covariance is available and is taken as Ct. In this case, it is known as

the TDC-RC model and its likelihood function has the form given in (16). The second version
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is defined when Ct is a latent variable, where a new multivariate stochastic volatility model is

formed. The third category is obtained when Pt and ∆t in (21) and (22) are replaced by their

filtered estimates, P̂t and ∆̂t generated from the SCF. The likelihood function is then obtained

as a product of multivariate t densities. Based on our notational convention, it is called the

TDCCt-FC model. The setup in (21) and (22) differs from the formulation of Kwan, Li and Ng

(2007) in that instead of using the squared returns and the sample correlation matrices of recent

observations, ∆̂t−1 and P̂t−1 are used. We believe that our version is more reasonable because the

filtered estimates, ∆̂t−1 and P̂t−1, are generated from the the best estimator, Ĉt−1, of Ct−1.

Kwan, Li and Ng (2007) worked with the method of Tsay (1989) to estimate the delay pa-

rameter d, while they suggested a technique for estimating the threshold value l. Instead of their

approach, So, Li and Lam (2002) and So and Choi (2009) employed the convenience of setting

d = 1 and l = 0. Furthermore, So and Choi (2009) specified the threshold variable as the first

element of yt, i.e., rt = y1t. Knowing the estimation techniques for l and d, we may then employ

ML/QML methods for estimating the TDC-RC and TDCCt-FC models, as will be discussed in

the next section.

4.3 A portfolio index model

Let yt be the vector of returns of financial assets following the model in (2) and (3). The return

of the portfolio consisting of m assets is denoted by

ypt = w′tyt = w′tµt + w′tC
1/2
t zt, (23)

where zt ∼ N(0, Im) and wt = (w1t, . . . , wmt)
′ are the portfolio weights, such that

∑m
i=1wit = 1.

The weight vector wt is predetermined. For simplicity, assume that wt = w (constant) in this

section, though it is straightforward to consider time-varying weights, and we will do so in the
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empirical analysis. Note that the stochastic variance of the portfolio return is given by cpt =

V ar(ypt|=t−1, Ct) = w′Ctw. Deriving from (2) and (3), we have

ypt|Ct,=t−1 ∼ N(µpt, cpt),

where µpt = E(ypt|=t−1) = w′µt is the conditional mean of the portfolio return, assuming

E(ypt|Ct,=t−1) = E(ypt|=t−1) as in the original setting. According to (5), we also have the

conditional mean of cpt and the conditional variance of ypt given =t−1 as

ωpt = V ar(ypt|=t−1) = w′E(Ct|=t−1)w = w′Ct|t−1w.

When Ct is available, for example when Ct is the realized covariance at time t, we can state

that yt is normally distributed with mean µpt and variance cpt, conditional on the past information

and the stochastic variance cpt. Instead of specifying Ct|t−1 as before, we introduce an approach

which models the conditional variance of the portfolio, ωpt, as follows

ωpt = κp + w′(Γp ◦ Ct−1)w + δpωp,t−1, (24)

where κp and δp are scalar parameters, and Γp is the m×m matrix of parameters. This is obtained

using an idea similar to that suggested by Asai and McAleer (2008). Equation (24) models ωpt

explicitly using the information of Ct−1, and it is called the ‘Portfolio Index DC’ model. Since

Ct is available as the realized covariance, ωpt can be calculated by the recursion in (24) and the

likelihood function of the portfolio returns and covariance, ypt and cpt, follows (16).

By the property of the multivariate t distribution in equation (5), it is straightforward to show

that conditional on =t−1,

ypt = µpt + ω
1/2
pt ηpt,

where ηpt follows the standardized t distribution with k degrees of freedom. When Ct is un-

available, the conditional distribution of ypt given =t−1 is the t distribution with the conditional
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mean and variance given by µpt and ωpt, respectively. In this case, we may use 1
m

∑m
i=1(yt−1−i −

µt−1−i)(yt−1−i − µt−1−i)′ instead of Ct−1 in (24). When m = 1, our formulation reduces to the

Portfolio Index GARCH specification of Asai and McAleer (2008).

5 Estimation

In this section, we show parameter estimation methods for the three categories in Section 3. Define

θ = (θ1, θ2)
′ to be the vector of unknown parameters, where θ1 is the parameter vector for the mean

part, µt, and θ2 is the covariance parameter characterizing the evolution of the dynamic correlation

and variance in (14). Consider the first category where Ct|t−1 includes past information of an

observable Ct. A likely example is when Ct represents the realized covariance at time t as in Section

3.2, giving us the DC-RC model. In this case, the information set =t contains the history of both

yt and Ct. Following (16), the likelihood function can be written as L(θ) =
∏T

t=1 f(yt, Ct|=t−1, θ)

= L1(θ1)× L2(θ2), where L1(θ1) =
∏T

t=1 f(yt|=t−1, Ct; θ1), L2(θ2) =
∏T

t=1 f(Ct|=t−1; θ2),

lnL1(θ1) =

T∑
t=1

[
−m

2
ln(2π)− 1

2
ln |Ct| −

1

2
(yt − µt)′C−1t (yt − µt)

]
,

lnL2(θ2) =

T∑
t=1

[
−νm

2
ln 2 +

ν

2
ln |St| − ln Γm

(ν
2

)
− ν +m+ 1

2
ln |Ct| −

1

2
tr
(
StC

−1
t

)]
,

Γm(ν/2) = πm(m−1)/4∏m
j=1 Γ[(ν+1−j)/2], St = (ν−m−1)Ct|t−1 and Ct|t−1 is obtained from (14)

as a function of θ2. The log-likelihood function can be maximized over the parameters of the model

to obtain the maximum likelihood (ML) estimator. Without assuming a Wishart distribution, it

can be interpreted as the quasi-maximum likelihood (QML) estimator. The decomposition of

L(θ) into L1(θ1) and L2(θ2) means that we can estimate θ1 and θ2 separately, thus making

the estimation computationally feasible, especially in high dimension situations. If we further

generalize (14) to be a function of µt as well, we will have L(θ) =
∏T

t=1 f(yt, Ct|=t−1, θ) =

L1(θ1)× L2(θ1, θ2) because the density f(Ct|=t−1) will also depend on θ1. Since the first part of
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the likelihood is still a function of θ1 only, computing the ML estimates can also be done effectively

using the method of Song et al. (2005). As far as forecasting the covariance is concerned, Category

1 uses more information (both yt and Ct) for modeling Ct|t−1 compared to the other two categories.

This is one advantage of Category 1 that may produce a better one-step-ahead forecast for future

Ct given =t−1. This time, we do not need to use the estimate of Ct given =t in (12) because Ct

is available.

For Category 2, when Ct|t−1 is a function of an unobservable Ct, we may classify it as the

MSV models. In this case, the likelihood function is given by

L(θ) =
T∏
t=1

f(yt|=t−1; θ) =

∫
· · ·
∫ T∏

t=1

f(yt|=t−1, Ct; θ1)f(Ct|=t−1; θ2)dC1 · · · dCT ,

and is hard to obtain an analytical solution because of the high-dimensional integration. We

can employ computationally intensive methods such as the Bayesian Markov chain Monte Carlo

(MCMC) technique of Chib, Nardari and Shephard (2006), the Monte Carlo likelihood methods

of Durbin and Koopman (1997), or the efficient importance sampling approach of Liesenfeld and

Richard (2003). All such methods suggest estimates of Ct and forecasts of CT+k for k ≥ 1.

For Category 3, where Ct|t−1 is specified according to (17) in the DCCt-FC model, we can work

with the conditional density of yt in (5) to get the likelihood function L(θ) =
∏T

t=1 f(yt|=t−1, θ),

where

lnL(θ) =
T∑
t=1

[
−m

2
ln(π(ν +m− 1) + ln Γ

(
ν + 1

2

)
− ln Γ

(
ν −m+ 1

2

)
− 1

2
ln |Ct|t−1|

−ν + 1

2
ln

(
1 +

(yt − µt)′C−1t|t−1(yt − µt)
ν −m− 1

)]
.

(25)

In other words, we may conduct ML estimation via the multivariate t distribution The ML es-

timator becomes the quasi-ML (QML) estimator, if zt is non-Gaussian and/or E−1t follows a

non-Wishart distribution. The calculation of (25) is analogous to the prediction error decompo-
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sition using Kalamn filter (Harvey, 1989; 1993). Like using Kalman filter in state space models,

we first obtain the filtered estimate Ĉt−1 and Ct|t−1 sequentially for t = 1, ..., T using the SCF in

Section 2, and then determine the likelihood as a product of the multivariate t densities. Evaluat-

ing the likelihood function requires only one pass of our SCF. This modeling approach inherently

allows the conditional density, f(yt|=t−1) to be fat-tailed, which matches well with empirical

stylized facts in financial markets. By construction, CT+1|T forecasts CT+1 based on =T . Risk

analysis with financial time series is one application. In such risk analyses, Value-at-Risk (VaR)

is also available. Taking account of the tail behavior of yt, we should work with the multivariate

t distribution rather than the multivariate normal distribution.

6 Monte Carlo Experiments

Let us now investigate the finite sample properties of the ML estimators through simulations for

four DC models, namely, the DC-RC and FIDC-RC models for Ct and the DCCt-FC and TDCCt-

FC models for yt. The former two models are in Category 1, while the latter two are in Category

3.

6.1 DC-RC

With respect to the DC-RC model specified in (3), (13) and (14) with the correlation equation of

Pt|t−1 simplified to (15), consider three data-generating processes (DGP). Specify the parameters

of the dynamic correlations in (15) as

(α, β, s12, ν) =


(0.10, 0.8,−0.3, 5) for DGP1,
(0.10, 0.8, 0.3, 10) for DGP2,
(0.05, 0.9,−0.3, 5) for DGP3,

and set the parameters of the conditional variances, ∆t|t−1, in (14) as (κ1, γ1, δ1) = (0.05, 0.15, 0.8)

and (κ2, γ2, δ2) = (0.02, 0.1, 0.88). Here, s12 is the (1, 2)th element of S. With respect to the

dynamic correlations, the degree of persistence, α + β, is 0.9 for DGP1 and 2, while that is
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0.95 for DGP3. Hence, the last case shows higher persistence in the correlation dynamic. The

parameter of the unconditional correlation, s12, is −0.3 for DGP1 and DGP3, while that is 0.3

for DGP2. The Wishart distribution has 5 degees of freedom for DGP1 and DGP3, but 10 for

DGP2. Turning to the conditional variance, the second component indicates higher persistence

in the variance process than the first component does. These two sets are common in the three

DGPs. We consider a sample size of T = 500 with 1000 replications.

Table 1 shows the sample means, standard deviations and root mean squared errors (RMSE)

of the ML estimators. Small biases and standard deviations are observed in almost all parameters.

The RMSEs and the corresponding standard deviations are close, indicating that the biases are

negligible. The only noticeable exception is the small downward bias in β. Such a bias is expected

to disappear with a larger sample size, as shown by the Monte Carlo experiments with univariate

and multivariate GRACH models (e.g., Lumsdaine, 1995; and Bollerslev and Wooldridge, 1992).

6.2 FIDC-RC

We now turn to the long memory model, the FIDC-RC ((3), (13) and (19)). Consider three DGPs

and specify the parameters for the dynamic correlations as

(φ, β, s12, dc) =

{
(0.00, 0.40,−0.30, 0.45) for DGP4 and DGP6,
(0.95, 0.80,−0.30, 0.20) for DGP5,

and parameters for the variances of

{(κ1, λ1, δ1), (κ2, λ2, δ2), dv} =

{
{(0.01, 0.0, 0.2), (0.002, 0.0, 0.4), 0.45} for DGP4 and DGP5,
{(0.01, 0.7, 0.5), (0.002, 0.9, 0.8), 0.20} for DGP6.

Set ν = 6 for the three DGPs. All the dynamic variances and correlations are stationary long-

memory processes. The pair of long-range dependencies, (dc, dv), controls the long memory char-

acteristics of the DGPs. With respect to DGP5, the variance process has a longer memory than

the correlation process (dv = 0.45 versus dc = 0.2). On the other hand, the variance process of
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DGP6 has a shorter memory than the correlation process (dv = 0.2 versus dc = 0.45). For DGP4,

the long-range dependencies for the variance and correlation processes are the same. We consider

a sample size of T = 1500 with 1000 replications.

Table 2 presents the sample means, standard deviations, and root mean squared errors of the

ML estimators for the FIDC-RC model. As in the DC-RC simulations, all biases are within one

standard deviation of the estimators. Most standard deviations are within 0.1, implying that the

standard errors of most estimates are within one decimal place. The long memory parameters, dv

and dc, are well estimated, especially when the long memory effect is strong (or the long memory

parameters are large). For the sample size of T = 1500, the results show that the biases are quite

close to zero and small biases are observed in s12 and δ1. With respect to δ1, the bias becomes

smaller when δ1 is large.

6.3 DCCt-FC

The next model to consider is based on the filtered estimates, i.e. the DCCt-FC ((3) and (17)).

Let us specify the parameters for the conditional correlations as

(α, β, s12, ν) =


(0.4, 0.5,−0.3, 5) for DGP7,
(0.6, 0.3, 0.3, 5) for DGP8,
(0.6, 0.3,−0.3, 7) for DGP9,

in the dynamic correlations, and set the parameters for the conditional variances as (κ1, γ1, δ1) =

(0.05, 0.45, 0.5) and (κ2, γ2, δ2) = (0.02, 0.3, 0.68). Again, s12 is the (1, 2)th element of S. With

respect to the dynamic correlations, the degree of persistence is 0.9 for all three DGPs. The

parameter of the unconditional correlation, S, is −0.3 for DGP7 and DGP9, but 0.3 for DGP8.

The Wishart distribution has 5 degrees of freedom for DGP7 and DGP8, but 7 for DGP9. The
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conditional variance resembles a GARCH process. As discussed in Section 3, we have

∆11,t = κ1 + γ∗1(y1t − µ1t)2 + δ∗1∆11,t−1,

∆22,t = κ2 + γ∗2(y2t − µ2t)2 + δ∗2∆22,t−1,

where γ∗i = γi(ν − 2)−1 and δ∗i = γi + δi − γ∗i for the bivariate case. For the conditional variance,

(γ∗1 , δ
∗
1) = (0.15, 0.8) and (γ∗2 , δ

∗
2) = (0.1, 0.88) for ν = 5, and (γ∗1 , δ

∗
1) = (0.09, 0.86) and (γ∗2 , δ

∗
2) =

(0.06, 0.92) for ν = 7. The parameter settings imply that the second component, ∆22,t, has higher

persistence (γ∗2 +δ∗2 = 0.98) in the variance process than the first component does (γ∗1 +δ∗1 = 0.95).

Furthermore, the contributions of γ∗i are relatively small for the case of ν = 7. We consider a

sample size of T = 1000 with 1000 replications.

Table 3 reports the sample means, standard deviations, and root mean squared errors of the

ML estimators for the DCCt-FC model. For DGP7 and DGP8, in which ν = 5, there is no major

difference between the two cases in terms of the biases and root mean squared errors. In both

cases, all biases are negligibly small and all RMSEs are small relative to the true values. With

DGP9, the biases are predominantly larger than with DGP7 or DGP8, especially in κ1, κ2 and

s12. It seems that when γ∗i is small, the bias in γ2 increases. All biases in the three DGPs tend

to zero when the sample size is increased to T = 2000 (results are available on request).

6.4 TDCCt

Regarding the TDCCt model ((4), (13) and (20)-(22)), we specify the parameters for the experi-

ment as

Regime Var. τ
(j)
0i τ

(j)
1i κ

(j)
i γ

(j)
i δ

(j)
i s

(j)
12 α(j) β(j) k

j = 1 y1t 0.0 -0.1 0.05 0.05 0.90 -0.50 0.15 0.80 5.00
y2t 0.0 0.0 0.02 0.10 0.88

j = 2 y1t 0.0 0.1 0.02 0.20 0.78 -0.20 0.05 0.85
y2t 0.0 -0.1 0.05 0.15 0.80
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where yit denotes the ith component of yt. The threshold variable rt is selected to be y1t. The

number of regimes is fixed at two, the delay n = 1 and the threshold value of l = 0. In other words,

whether or not yit−1 > 0 determines the regime. The persistence of the conditional variance for yit

is γ
(j)
i +δ

(j)
i = 0.95 or 0.98, depending on the regime j. Regarding the persistence of the conditional

correlation process (α(j) + β(j)), regime 1 (j = 1) has higher persistence than regime 2 does. The

degrees-of-freedom parameter for the Wishart distribution is ν=6, indicating that the conditional

distribution of yt is the multivariate t distribution with the degrees-of-freedom parameter k=5

(ν −m+ 1). As before, the sample size is T = 500, and we conduct 1000 replications.

Table 4 shows the sample means, standard deviations, and root mean squared errors of the

ML estimators for the TDCCt model. As the sample size is not very large, the results shows a

small downward bias in γ
(j)
i , δ

(j)
i and β(j). The biases in γ

(j)
i and δ

(j)
i make the biases in κ

(j)
i

bigger (see Lumsdaine (1995)). Even for the relatively small sample size of T = 500, the standard

deviations of the estimators are mostly less than 0.1, indicating precise estimation in terms of

having small standard errors. Exceptions are κ
(1)
2 , s

(1)
12 , s

(2)
12 and k, where the biases are still

acceptable. The statistical precision should improve with a larger sample size like T = 1000,

corresponding to roughly four years of daily observations in a financial market. Note that the

number of parameters is almost double compared to the DCCt specification. Hence, we need to

be careful about the sample size when reliable statistical tests are required in empirical analysis.

7 Empirical Examples

7.1 A bivariate FIDC model for realized covariance of exchange rates returns

In this subsection, an empirical analysis is conducted applying the bivariate DC-RC and FIDC-RC

models to data on the spot exchange rates for the U.S. dollar, the Japanese yen, and the Singapore

dollar. The raw data consists of all interbank JPY/USD and SGD/USD bid/ask quotes from
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August 1, 2001 through November 30, 2007, obtained from Olsen & Associates. The return series

are constructed as follows. We first calculate fifteen-minute prices from the linearly interpolated

logarithmic average of the bid and ask quotes. We then determine the fifteen-minute returns

as the first difference of the logarithmic prices. We exclude all Saturday and Sunday returns to

avoid modeling weekend effects. We then obtain the realized covariance matrices by the method

of Hayashi and Yoshida (2005)3. As a result, we have a series of realized covariances covering

T = 1644 days.

As a preliminary analysis, consider the case of m = 1 with two univariate models for the

realized variance, ct. One is a GARCH-type model based on the realized variance (RV-GARCH),

which is the univariate version of (3) and (14),

ct = (ν − 2)etct|t−1, e−1t ∼ χ2(ν),

ct|t−1 = κ+ γct−1 + δct−1|t−2.

The other is a RV-FIGARCH model, which is the univariate version of (3) and (19),

ct = (ν − 2)etct|t−1, e−1t ∼ χ2(ν),

ct|t−1 = κ+ δct−1|t−2 + (1− δL− (1− λL)(1− L)d)ct,

where L is the lag operator as before.

Table 5 shows the ML estimates of the RV-GARCH and RV-FIGARCH models for the

JPY/USD and SGD/USD rates. All estimates are significant at the five percent level. With re-

spect to the RV-GARCH model, the estimates of ν are 8.42 and 8.13 for JPY/USD and SGD/USD,

3For more frequent time series such as one-minute or five-minute data, we need to remove the microstructure
noise by the methods proposed by Bandi and Russel (2005), Zhang (2005), Shephard (2006), Voev and Lunde
(2007), or Griffin and Oomen (2007). These are multivariate extensions of the univariate approach. For instance,
Barndorff-Nielsen et al. (2008) showed how to use realized kernels to carry out efficient inference on the ex post
variation of asset prices, while Voev and Lunde (2007) formulated its multivariate extension.
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respectively. Like a typical result from a GARCH model, the estimates of γ + δ, which are about

0.95, are larger than 0.9 and quite close to one. Models with fractional integration can thus be a

promising alternative to the RV-GARCH model. For the RV-FIGARCH model fitting, the esti-

mates of d are 0.2978 and 0.1661 for JPY/USD and SGD/USD, respectively. The results indicate

that the two processes of the realized variance exhibit clear long memory effect and are stationary.

Incorporating the long memory property does not seem to affect the implied distribution of ct,

because the estimates of ν are close to those of the RV-GARCH. For the both series, AIC and BIC

select the RV-FIGARCH model. We consider the likelihood ratio test for the null of RV-GARCH

against the RV-FIGARCH. The test statistic rejects the null at the five percent significance level,

implying the we prefer RV-FIGARCH to RV-GARCH with both series.

Table 6 gives the ML estimates for the DC-RC model in (3), (13), (14) and (15), i.e.

Ct = C
1/2
t|t−1 {(ν −m− 1)Et}C1/2

t|t−1, E−1t ∼W (Im, ν), Ct|t−1 = ∆
1/2
t|t−1Pt|t−1∆

1/2
t|t−1,

Pt|t−1 = S(1− α− β) + αPt−1 + βPt−1|t−2,

vecd(∆t|t−1) = κ+ γ ◦ vecd(∆t−1) + δ ◦ vecd(∆t−1|t−2).

All estimates are significant at the five percent level. In particular, the estimates for κi, γi and

δi are close to the values given in Table 5. After accounting for the dynamic correlation, the

estimate of the degrees-of-freedom parameter, ν, becomes 11.71, which is higher than the two

values in Table 5. The estimate of s12 is 0.1802, implying that the unconditional correlation is

positive and significant. The estimate of α + β is 0.98, revealing that the realized correlation

process is more persistent than the two realized variance processes. Given the high persistence in

both realized variances and realized correlation, we explore if the dynamic process of Ct is more

suitably described by a fractionally integrated process. Table 7 presents the ML estimates of the
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FIDC-RC model in (3), (13) and (19), i.e.

Ct = C
1/2
t|t−1 {(ν −m− 1)Et}C1/2

t|t−1, E−1t ∼W (Im, ν), Ct|t−1 = ∆
1/2
t|t−1Pt|t−1∆

1/2
t|t−1,

vech(Pt|t−1) =vech(S) + βvech(Pt−1|t−2 − S) +
{

1− βL− (1− φL)(1− L)dc
}

vech(Pt − S),

vecd(∆t|t−1) =κ+ δ ◦ vecd(∆t−1|t−2) +
{
Im − δL− (Im − λL)(1− L)dv

}
vecd(∆t).

Compared with the case of m = 1 in separate modeling of the two realized variance processes

in Table 5, both λi and δi are smaller than their univariate counterparts, whereas dv (0.3699) is

larger than both long-range dependence parameters for the JPY/USD (0.2978) and SGD/USD

(0.1661) series. After capturing the dynamic correlation property, the long memory characteristic

of the realized variance is more evident. Regarding the conditional variance, the estimate of

the parameter for the common long-run dependence is 0.3699, implying that the processes are

fractionally integrated. All the dynamic correlation parameters except φ are significant, indicating

that the realized correlation follows an ARFIMA(0,dc,1). The estimate of dc is 0.4372, which is

larger than dc. This empirical finding is consistent with Table 6 that the realized correlation

process is more persistent than the realized variance process. As the estimates of dc and dv are

smaller than 0.5, the covariance structure is stationary. The estimate of ν is almost identical

to the one in Table 6. In terms of information criteria, both AIC and BIC select the FIDC-RC

model. In addition, the likelihood ratio test for the null of DC-RC against the FIDC-RC rejects

the null hypothesis at the five percent level.

By virtue of the fact that E[Ct|=t−1] = Ct|t−1, the conditional covariance matrix, Ct|t−1, can

be used for one-step-ahead prediction of Ct. Based on the parameter estimates obtained from the

first T = 1300 observations, predicted values can be calculated for the last 300 observations, i.e.

CT+1|T ,..., CT+300|T+299. Figure 1 shows the forecasts of the conditional correlation based on the

FIDC-RC model together with the realized correlations. The FIDC-RC model captures the long
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term trend well by the nature of fractional integration, but it may take time for the model to

accommodate the effects of big and sudden changes.

Consider now a portfolio of the two exchange rate returns. From the realized covariance

matrices Ct = {cij,t}, the realized portfolio variance is given by

σ2p,t = w2
1c11,t + (1− w1)

2c22,t + 2w1(1− w1)c12,t,

where w1 is the weight for JPY/USD and (1 − w1) is for SGD/USD. The minimum variance

portfolio is given by

w
opt
1t =

c22,t − c12,t
c11,t + c22,t − 2c12,t

,

while the one-step-ahead forecast of w
opt
1t is given by

wf
1t =

ω22,t − ω12,t

ω11,t + ω22,t − 2ω12,t
,

which is calculated using Ct|t−1 = {ωij,t} in place of Ct. Figure 2 shows the forecasts and the

realized value of w
opt
1t , demonstrating that the realized values fluctuate strongly but the forecasts

capture the trend. To compare the performance of the predicted weights, we calculate the ratio

of the portfolio risk, defined by √√√√ σ2p,t(w
f
1t)

σ2p,t(w
opt
1t )

,

where σ2p,t(w
f
1t) and σ2p,t(w

opt
1t ) are the portfolio variance based on the weights wf

1t and w
opt
1t ,

respectively. Figure 3 shows the ratio of the portfolio risk. It is always greater than one, as the

risk based on the forecast is higher than that of the optimal value. The average of the ratio is 1.040,

so the difference is very minor. The ratio exceeds 1.1 twenty-six times among 300 forecasts, while

it exceeds 1.2 only eight times. The percentage difference between
√
σ2p,t(w

f
1t) and

√
σ2p,t(w

opt
1t )

is within 10% for most of the predicted values. Hence, the FIDC-RC model produces minimum

variance portfolios whose volatility approximates the true minimum portfolio risk very well.
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7.2 A trivariate threshold DCCt-FC model of stock returns

This subsection presents an empirical analysis with the trivariate DCCt-FC and TDCCt-FC mod-

els. The datasets consist of daily closing values of the Nikkei 225, Hang Seng, and Singapore Straits

Times (SST) stock indices. The return series are calculated as yit = 100×(lnPit − lnPi,t−1), where

Pit is the closing price of the ith index. The sample period is July 9, 2001 through August 28, 2009,

giving T = 2000 observations. Table 8 presents the ML estimates for the DCCt-FC model in (17)

with µt given by τ0 + τ1yt−1. Denote the ith component of τ0 and τ1 by τ0i and τ1i, respectively.

For the mean equation, all the constant terms, τ0i, are positive, while all the AR(1) coefficients,

τ1i, are negative. The constant term for the Hang Seng and SST are significant, while the AR(1)

coefficient for the SST is significant. The magnitude of τ1i’s are smaller than 0.1, implying weakly

negative correlations. With respect to the conditional variance, the persistence of the conditional

variance, ∆t|t−1, is estimated to be γi + δi > 0.99. Regarding the conditional correlations, the

persistence estimate α+β is 0.9724. The estimate of the degrees-of-freedom parameter, ν, is 8.89.

All of these results are typical for dynamic correlation model fitting.

Table 9 shows the ML estimates for the TDCCt-FC model in Section 4.2. The lag-one Nikkei

return is chosen as the threshold variable. In other words, regime 1 is defined by the negative

sign of the yesterday’s Nikkei return, and regime 2 is by the positive sign. While all τ
(1)
1i for

regime 1 are negative, some τ
(2)
1i for regime 2 are positive. This implies evidence of asymmetry in

the mean equation. Other evidence of the need for a threshold DC model lies in the estimates of

γ
(2)
i +δ

(2)
i which are close to 0.93, whereas those of γ

(1)
i +δ

(1)
i exceed one. However, the averages of

γ
(1)
i +δ

(1)
i and γ

(2)
i +δ

(2)
i are 0.99, which is similar to the estimates of γi+δi of the DCCt-FC model

in Table 8. For the dynamic correlation, the estimate of α(1) + β(1) exceeds one, whereas that of

α(2) + β(2) is 0.9216. The average is about 0.96, and similar to the estimate of α + β with the
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DCCt-FC model. The estimate of the degrees-of-freedom ν is 9.12, which is consistent with the

corresponding estimate using the DCCt-FC model. In addition to the above empirical evidence

supporting the use of the TDCCt-FC over the DCCt-FC, the LR test for the null hypothesis of

the DCCt-FC model also favors the TDCCt-FC model. The AIC selects the TDCCt-FC model,

while the BIC chooses the DCCt-FC.

To further compare the DCCt-FC and the TDCCt-FC models, we examine the Value-at-Risk

(VaR) thresholds of the h-step-ahead predictions (h = 1, 5, 10, 20) for the equally weighted port-

folio with wt = (1/3, 1/3, 1/3)′. Fixing the sample size at T=1800, we re-estimate the two models

and obtain estimates of the conditional variance, V ar(wT+h
′ yT+h|=T ) = wT+h

′ V ar(yT+h|=T )wT+h,

for the last 200 days. We determine CT+1|T as V ar(yT+1|=T ) for one-step-ahead prediction. Based

on equation (8), we produce estimates of V ar(yT+h|=T ), h = 5, 10, 20, by obtaining h-step-ahead

forecasts of E(CT+h|=T ) and V ar(µt+h|=t) with the Monte Carlo methods described in equations

(6) and (7), respectively. We calculate the VaR thresholds, accommodating (i) a standardized t

distribution and (ii) a filtered historical simulation (FHS) approach. The former is derived by

our model specification, while the latter is an effective method for predicting VaR thresholds

(see Kuester et al. (2006) for some studies discussing the FHS approach). In short, the FHS

approach estimates the empirical distribution of the standardized returns and then obtains the

100pth empirical percentiles as the 100p% VaR thresholds. In our analysis, we adopt a rolling-

sample method. Each time, we estimate the models with 1800 observations and estimate the VaR

for various combinations h and p. The models are re-estimated when the 1800 observations in the

estimation window are updated.

To assess the estimated VaR thresholds, we conduct the unconditional coverage and indepen-

dence tests developed by Christoffersen (1998). Consider the “hit sequence” of VaR exceedences,
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which takes one if the return is smaller than (or exceeds) the VaR threshold, and takes zero if

the VaR is not exceeded. According to Christoffersen (1998), if we can predict the hit sequence,

then that information may help to construct a better model. For a good model, the hit sequence

should therefore be unpredictable, and it should follow an independent Bernoulli distribution.

The unconditional coverage test is the likelihood test for examining the null hypothesis that the

Bernoulli probability is p. The likelihood ratio test of independence is constructed against a first-

order Markov alternative. Both tests have an asymptotic χ2(1) distribution. Table 10 presents

the proportion of VaR exceedences and test results for the DCCt-FC and TDCCt-FC models with

h = 1, 5, 10 and 20 with the FHS approach and the standardized t distribution. We compute

each proportion of exceedence using the sample size of 200 − h + 1 for h-step-ahead prediction.

For the DCCt-FC model, the percentage exceedences are far from the nominal values of p = 1%

or 5%, leading to rejection in the unconditional coverage tests in many cases. With respect to

the TDCCt-FC model, the tests do not reject the null hypothesis for the 5% and 1% VaR thresh-

olds, indicating that the estimated VaR thresholds are satisfactory for both the standardized t

and the FHS approaches. The FHS approach does not seem to produce any benefit over the

implied standardized t distribution from our DCCt-FC and TDCCt-FC models with respect to

VaR prediction.

8 Conclusion

In this paper, we introduce a new class of stochastic covariance models accommodating the dy-

namic correlation. We classify the models into three categories; (i) the conditional covariance

Ct|t−1 includes past information of Ct, which is observable; (ii) the conditional covariance Ct|t−1

includes past information of Ct, which is a latent variable; (iii) the conditional covariance Ct|t−1

excludes past information of Ct, where past values of Ct are replaced by their filtered estimates,
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Ĉt−s(s ≥ 1). We also develop a stochastic covariance filter for filtering and prediction of covari-

ances. We suggest three kinds of extensions of the new models, namely, the fractionally integrated

model for correlations, the threshold model, and the portfolio index model. Our methodology fa-

cilitates modeling stochastic covariance no matter whether the covariance matrix is observable or

latent. Empirical examples with FIDC-RC and TDCC-FC show that the new specifications per-

form well in predicting the minimum variance and in estimating portfolio VaR. Further research

on how to enrich these stochastic variance models for incorporating more time series properties of

the dynamic correlation is fruitful.
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Table 1: Finite Sample Performance of the ML Estimator for the DCC-RC model with T = 500

Parameters DGP1 DGP2 DGP3

True value True value True value
κ1 0.05 0.0524 0.05 0.0570 0.05 0.0526

(0.0140) (0.0216) (0.0140)
[0.0142] [0.0227] [0.0142]

γ1 0.15 0.1488 0.15 0.1480 0.15 0.1489
(0.0232) (0.0247) (0.0232)
[0.0232] [0.0248] [0.0232]

δ1 0.8 0.7982 0.8 0.7945 0.8 0.7980
(0.0305) (0.0374) (0.0306)
[0.0306] [0.0378] [0.0306]

κ2 0.02 0.0223 0.02 0.0273 0.02 0.0223
(0.0090) (0.0163) (0.0090)
[0.0092] [0.0178] [0.0093]

γ2 0.1 0.0996 0.1 0.0995 0.1 0.0997
(0.0167) (0.0189) (0.0168)
[0.0167] [0.0189] [0.0168]

δ2 0.88 0.8775 0.88 0.8729 0.88 0.8773
(0.0217) (0.0282) (0.0218)
[0.0218] [0.0291] [0.0220]

α 0.1 0.1003 0.1 0.1000 0.05 0.0527
(0.0320) (0.0306) (0.0256)
[0.0320] [0.0306] [0.0258]

β 0.8 0.7643 0.8 0.7645 0.9 0.8375
(0.1268) (0.1154) (0.1686)
[0.1317] [0.1207] [0.1798]

s12 -0.3 -0.3006 0.3 0.2997 -0.3 -0.3012
(0.0383) (0.0265) (0.0422)
[0.0383] [0.0265] [0.0422]

ν 5 5.0201 10 10.056 5 5.0190
(0.1360) (0.3312) (0.1362)
[0.1375] [0.3360] [0.1375]

Note: Standard deviations are in parentheses and
root mean squared errors are in brackets.
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Table 2: Finite Sample Performance of the ML Estimator for the FIDC-RC model with
T = 1500

Parameters DGP4 DGP5 DGP6

True value True value True value
κ1 0.01 0.0100 0.01 0.0099 0.01 0.0106

(0.0058) (0.0058) (0.0024)
[0.0058] [0.0058] [0.0025]

κ2 0.002 0.0021 0.002 0.0021 0.002 0.0022
(0.0012) (0.0010) (0.0007)
[0.0012] [0.0011] [0.0008]

λ1 0.0 -0.0145 0.0 -0.0157 0.7 0.6952
(0.1273) (0.1221) (0.0554)
[0.1281] [0.1231] [0.0556]

λ2 0.0 -0.0025 0.0 -0.0017 0.9 0.8946
(0.0564) (0.0541) (0.0291)
[0.0565] [0.0541] [0.0296]

δ1 0.2 0.1790 0.2 0.1767 0.5 0.4898
(0.1422) (0.1363) (0.0627)
[0.1437] [0.1382] [0.0635]

δ2 0.4 0.3871 0.4 0.3861 0.8 0.7906
(0.0709) (0.0681) (0.0453)
[0.0720] [0.0695] [0.0462]

dv 0.45 0.4400 0.45 0.4382 0.2 0.1918
(0.0358) (0.0351) (0.0367)
[0.0371] [0.0371] [0.0376]

φ 0.0 -0.0116 0.95 0.9498 0.0 -0.0107
(0.0695) (0.0139) (0.0692)
[0.0704] [0.0139] [0.0700]

β 0.4 0.3839 0.8 0.7820 0.4 0.3858
(0.1019) (0.0787) (0.1087)
[0.1032] [0.0807] [0.1147]

s12 -0.3 -0.1882 -0.3 -0.2535 -0.3 -0.1840
(0.1364) (0.1598) (0.1392)
[0.1780] [0.1665] [0.1812]

dc 0.45 0.4441 0.2 0.1788 0.45 0.4452
(0.0554) (0.0931) (0.0560)
[0.0558] [0.0955] [0.0563]

ν 6 6.0579 6 6.0630 6 6.0363
(0.1092) (0.1075) (0.1087)
[0.1236] [0.1246] [0.1147]

Note: Standard deviations are in parentheses and
root mean squared errors are in brackets.
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Table 3: Finite Sample Performance of the ML Estimator for the DCCt-FC model with
T = 1000

Parameters DGP7 DGP8 DGP9

True value True value True value
κ1 0.05 0.0560 0.05 0.0565 0.05 0.0654

(0.0229) (0.0241) (0.0434)
[0.0237] [0.0250] [0.0460]

γ1 0.45 0.4581 0.45 0.4531 0.45 0.4665
(0.1048) (0.1002) (0.1209)
[0.1052] [0.1003] [0.1221]

δ1 0.5 0.4847 0.5 0.4897 0.5 0.4870
(0.1107) (0.1062) (0.1368)
[0.1117] [0.1067] [0.1375]

κ2 0.02 0.0240 0.02 0.0245 0.02 0.0304
(0.0130) (0.0146) (0.0274)
[0.0136] [0.0153] [0.0293]

γ2 0.3 0.3001 0.3 0.2996 0.3 0.3552
(0.0713) (0.0716) (0.0806)
[0.0713] [0.0716] [0.0812]

δ2 0.68 0.6732 0.68 0.6739 0.68 0.6672
(0.0758) (0.0754) (0.0885)
[0.0761] [0.0756] [0.0894]

α 0.4 0.4118 0.6 0.6083 0.6 0.6224
(0.1149) (0.1122) (0.1205)
[0.1155] [0.1125] [0.1226]

β 0.5 0.4642 0.3 0.2792 0.3 0.2732
(0.1556) (0.1316) (0.1417)
[0.1597] [0.1332] [0.1442]

s12 -0.3 -0.2909 0.3 0.2963 -0.3 -0.2772
(0.0587) (0.0613) (0.0691)
[0.0593] [0.0614] [0.0727]

ν 5 5.1020 5 5.1147 7 7.1730
(0.3750) (0.3717) (1.8663)
[0.3886] [0.3890] [1.9387]

Note: Standard deviations are in parentheses and
root mean squared errors are in brackets.
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Table 4: Finite Sample Performance of ML Estimator for the Bivariate Threshold DCCt Model
for T = 500

Regime 1 (j = 1) Regime 2 (j = 2)
Parameters y1t y2t y1t y2t

True value True value

τ
(j)
0i 0.0 0.0 -0.0010 0.0012 0.0 0.0 -0.0023 0.0001

(0.0578) (0.0475) (0.0537) (0.0436)
[0.0578] [0.0475] [0.0537] [0.0436]

τ
(j)
1i -0.1 0.0 -0.1007 -0.0010 0.1 -0.1 0.0974 -0.0999

(0.0800) (0.0598) (0.0841) (0.0582)
[0.0800] [0.0598] [0.0841] [0.0582]

κ
(j)
i 0.05 0.02 0.0567 0.0462 0.02 0.05 0.0376 0.0580

(0.0421) (0.2013) (0.0922) (0.0512)
[0.0427] [0.2030] [0.0939] [0.0518]

γ
(j)
i 0.05 0.10 0.0434 0.0932 0.20 0.15 0.1890 0.1458

(0.0322) (0.0627) (0.0660) (0.0666)
[0.0329] [0.0631] [0.0669] [0.0667]

δ
(j)
i 0.90 0.88 0.8913 0.8615 0.78 0.80 0.7697 0.7939

(0.0787) (0.0885) (0.0893) (0.0877)
[0.0792] [0.0904] [0.0899] [0.0879]

s
(j)
12 -0.50 -0.4442 -0.20 -0.1800

(0.5472) (0.5358)
[0.5501] [0.5361]

α(j) 0.15 0.1500 0.05 0.0475
(0.0508) (0.0291)
[0.0508] [0.0292]

β(j) 0.80 0.7723 0.85 0.8446
(0.1048) (0.0946)
[0.1084] [0.0947]

k 5.00 5.5008
(1.0799)
[1.1903]

Note: Standard deviations are in parentheses and root mean
squared errors are in brackets.
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Table 5: ML Estimates for the RV-GARCH and RV-FIGARCH Models

Model RV-GARCH RV-FIGARCH

Parameters JPY/USD SGD/USD JPY/USD SGD/USD

κ 0.0176 0.0075 0.0012 0.0019
(0.0049) (0.0017) (0.0006) (0.0007)

γ 0.2375 0.1317
(0.0301) (0.0205)

λ 0.9719 0.9457
(0.0126) (0.0161)

δ 0.7192 0.8072 0.9457 0.9117
(0.0391) (0.0320) (0.0190) (0.0243)

ν 8.4203 8.1304 8.7348 8.1818
(0.2787) (0.2736) (0.2701) (0.2737)

d 0.2978 0.1661
(0.0318) (0.031296)

LogLike 809.199 2511.83 835.432 2524.55
AIC -1610.40 -5015.67 -1660.86 -5039.09
BIC -1588.78 -4994.05 -1633.84 -5012.07

Note: Standard errors are in parentheses.

Table 6: ML Estimates for the Bivariate DC-RC Model

Parameter JPY/USD SGD/USD Parameter Corr. Parameter Common

κi 0.0178 0.0073 α 0.1305 ν 11.708
(0.0039) (0.0013) (0.0307) (0.2183)

γi 0.2296 0.1305 β 0.8522
(0.0234) (0.0162) (0.0365) LogLike 6623.02

δi 0.7262 0.8052 s12 0.1802 AIC -13226.0
(0.0306) (0.0257) (0.0646) BIC -13172.0

Note: Standard errors are in parentheses.
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Table 7: ML Estimates for the Bivariate FIDC-RC Model

Parameter JPY/USD SGD/USD Parameter Corr. Parameter Common

κi 0.0108 0.0021 φ 0.2510 ν 11.793
(0.0050) (0.0006) (0.1559) (0.2062)

λi 0.5418 0.6296 β 0.5156
(0.1680) (0.0550) (0.1891)

δi 0.5805 0.7404 s12 0.1656
(0.1680) (0.0442) (0.0759) LogLike 6660.69

dv 0.3699 dc 0.4372 AIC -13297.4
(0.0326) (0.0780) BIC -13232.5

Note: Standard errors are in parentheses.

Table 8: ML Estimates for the Trivariate DCCt-FC Model

Parameters Nikkei Hang Seng SST Parameters Others

τ0i 0.0221 0.0554 0.0523 α 0.2075
(0.0261) (0.0232) (0.0199) (0.0461)

τ1i -0.0271 -0.0296 -0.0760 β 0.7649
(0.0185) (0.0167) (0.0169) (0.0537)

κi 0.0121 0.0115 0.0098 ν 8.8863
(0.0049) (0.0038) (0.0030) (0.5695)

γi 0.3118 0.2092 0.2289
(0.0540) (0.0408) (0.0408)

δi 0.6863 0.7832 0.7616
(0.0537) (0.0379) (0.0417)

s2i 0.5883
(0.0318) LogLike -8734.9

s3i 0.5854 0.6747 AIC 17511.8
(0.0326) (0.0267) BIC 17629.4

Note: Standard errors are in parentheses.
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Table 9: ML Estimates for the Trivariate Threshold DCCt-FC Model

State 1 (j = 1) State 2 (j = 2)
Parameters Nikkei Hang Seng SST Nikkei Hang Seng SST

τ
(j)
0i 0.0103 0.0485 0.0563 -0.1005 0.0302 0.0427

(0.0502) (0.0357) (0.0305) (0.0472) (0.0340) (0.0288)

τ
(j)
1i -0.0818 -0.0792 -0.0954 0.0911 0.0160 -0.0549

(0.0372) (0.0263) (0.0261) (0.0378) (0.0241) (0.0242)

κ
(j)
i 5.6616×10−11 3.2100×10−11 1.4252×10−12 0.0293 0.0265 0.0172

(0.0428) (0.0304) (0.0232) (0.0324) (0.0225) (0.0172)

γ
(j)
i 0.4162 0.2993 0.2873 0.2336 0.1510 0.1413

(0.0833) (0.0651) (0.0565) (0.0745) (0.0428) (0.0491)

δ
(j)
i 0.6515 0.7513 0.7686 0.6960 0.7852 0.7910

(0.0856) (0.0735) (0.0654) (0.0685) (0.0476) (0.0523)

s
(j)
2i -0.9976 0.4332

(1.9917) (0.0758)

s
(j)
3i -0.6463 -0.6309 0.4629 0.5437

(1.6570) (1.7285) (0.0765) (0.0666)

α(j) 0.2241 0.2081
(0.0535) (0.0770)

β(j) 0.7838 0.7135
(0.0549) (0.1034)

ν 9.1160
(0.6141)

LogLike -8709.4
AIC 17500.8
BIC 17730.4

LR Test 51.02 [0.0001]

Note: Standard errors are in parentheses. LR test is the likelihood ratio test for the null hypothesis of
the DCCt-FC model. P -values are in the square brackets.
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Table 10: Tests for Value-at-Risk Thresholds

(a) Filtering Historical Simulation

Model DCCt-FC Threshold DCCt-FC

Test Stat. % Failure UC IND % Failure UC IND

1-step-ahead
VaR 5% 0.0200 0.0275* 0.6854 0.0350 0.3047 0.4749
VaR 1% 0.0050 0.4315 0.9199 0.0050 0.4315 0.9199

5-step-ahead
VaR 5% 0.0205 0.0329* 0.6815 0.0513 0.9348 0.2970
VaR 1% 0.0051 0.4507 0.9189 0.0051 0.4507 0.9189

10-step-ahead
VaR 5% 0.0158 0.0120* 0.7557 0.0316 0.2127 0.5305
VaR 1% 0.0000 NA NA 0.0053 0.4706 0.9179

20-step-ahead
VaR 5% 0.0111 0.0040* 0.8316 0.0222 0.0558 0.6689
VaR 1% 0.0000 NA NA 0.0056 0.5130 0.9156

(b) Standardized t distribution

Model DCCt-FC Threshold DCCt-FC

Test Stat. % Exceedence UC IND % Exceedence UC IND

1-step-ahead
VaR 5% 0.0250 0.0737 0.6117 0.0550 0.7493 0.2564
VaR 1% 0.0050 0.4315 0.9200 0.0050 0.4315 0.9199

5-step-ahead
VaR 5% 0.0308 0.1860 0.5360 0.0667 0.3085 0.1716
VaR 1% 0.0051 0.4507 0.9189 0.0103 0.9714 0.8383

10-step-ahead
VaR 5% 0.0263 0.1008 0.6022 0.0579 0.6258 0.2435
VaR 1% 0.0000 NA NA 0.0053 0.4706 0.9179

20-step-ahead
VaR 5% 0.0167 0.0178* 0.7491 0.0278 0.1367 0.5919
VaR 1% 0.0056 0.5130 0.9156 0.0056 0.5130 0.9156

Note: ‘% Exceedence’ is the proportion of days when the return exceeds the VaR
threshold. UC and IND are the likelihood ratio tests for unconditional coverage and
independence (against a first-order Markov alternative) developed by Christoffersen
(1998). The two columns under ‘UC’ and ‘IND’ present P -values of the UC and IND
tests with ‘*’ indicating the significance at the five percent level.
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Figure 1: Plot of the estimates of the conditional correlations, CT+1|T , ..., CT+300|T+299 (the blue
one), and the realized correlations (the red one).
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Figure 2: Plot of the forecasts of ωf
1t (blue); and the realized value of ω

opt
1t (red). 

 

Figure 3: The ratio of the portfolio risks. 
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