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Summary. A new technique for the on-line estimation of spot volatility for high-frequency data

is developed. The algorithm works directly on the transaction data and updates the volatility

estimate immediately after the occurrence of a new transaction. We make a clear distinction

between volatility per time unit and volatility per transaction and provide estimators for both. A

new nonlinear market microstructure noise model is proposed that reproduces the major stylized

facts of high-frequency data. A computationally efficient particle filter is used that allows for the

approximation of the unknown efficient prices and, in combination with a recursive EM algorithm,

for the estimation of the volatility curves. In addition, the estimators are improved by an on-line

bias correction. We neither assume that the transaction times are equidistant nor do we use

interpolated prices.
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1 Introduction

For high-frequency data occurring on a millisecond basis the on-line estimation of spot volatility

is a challenging task because of the presence of market microstructure noise. In this article,

the efficient log-price process of a security is treated as a latent state in a nonlinear state-space

model. The relation between the efficient log-prices and the transaction prices is described by

a new nonlinear market microstructure noise model. A computationally efficient particle filter is

developed which allows the estimation of the filtering distributions of the efficient log-prices given

the observed transaction prices. Based on the filtering distributions the time-varying volatility

is estimated using a new sequential Expectation-Maximization (EM) algorithm. Our procedure

works on-line and updates the volatility estimate immediately when a new transaction comes in.

The method is suitable for real-time applications because of its computational efficiency.

Until recently, the main focus in the literature has been on the estimation of the integrated

volatility. This task has been studied extensively under various assumptions on the market mi-

crostructure noise (Zhou 1996; Zhang et al. 2005; Andersen et al. 2006; Bandi and Russell

2006, 2008; Hansen and Lunde 2006; Barndorff-Nielsen et al. 2008; Kalnina and Linton 2008;

Christensen et al. 2009; Jacod et al. 2009; Podolskij and Vetter 2009). Some authors suggested

that estimates of the spot volatility can be obtained through localized versions of estimators for

the integrated volatility (Harris 1990; Foster and Nelson 1996; Zeng 2003; Fan and Wang 2008;

Bos et al. 2009; Kristensen 2009) or by (Fourier-) series methods (Munk and Schmidt-Hieber
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2009). In contrast to these existing methods which are essentially off-line procedures, our ap-

proach allows on-line estimation.

In this article, transaction data are treated as noisy observations of a latent efficient log-price

process Xt. We assume that transaction prices Ytj are observed at times t1 < t2 < . . . < tT .

The evolution of the efficient log-price process is modeled by a random walk in transaction time

with possibly time-varying volatility σtj , that is

Xtj = Xtj−1 + Ztj (1)

with Ztj ∼ N (0, σ2
tj ), or alternatively by a diffusion model in clock time – see Section 4. Drift

terms are ignored because their effect is of lower order with high-frequency data.

We make a clear distinction between volatility per time unit and volatility per transaction and

provide estimators for both. We start with a model in transaction time instead of clock time

leading to an estimator of the spot volatility per transaction. In Section 4, a transformation from

transaction time volatility to clock time volatility is given leading to a subsequent estimator of the

volatility per time unit. In addition, we give a direct clock time estimator. In our opinion a model

in transaction time has at least two advantages: First, the distribution of asset log-returns in a

transaction time model can be modeled in most situations quite well by a Gaussian distribution,

and second, volatility in transaction time is more constant than volatility in clock time making the

algorithm more stable (Ané and Geman 2000; Plerou et al. 2001; Gabaix et al. 2003 – see also

the discussion in sections 4, 7, and 8).

The relation between the efficient (log-)prices and the observed transaction prices is described

through a general nonlinear market microstructure noise model which is completely different from

the models considered so far. It depends on the (observed or unobserved) order book or market

maker quotes and it can be expressed through a nonlinear equation

Ytj = gtj
(

exp[Xtj ]
)

= gtj ;Yt1:j−1

(
exp[Xtj ]

)
, (2)

where the function gtj may also depend on past observations Yt1:j−1 := {Yt1 , . . . , Ytj−1} (see

case 3 in Section 2). The function gtj is time-inhomogeneous and it can be interpreted as a

generalized rounding function. The details of this model along with its economic motivation are

given in Section 2.

The state equation (1) and the observation equation (2) form a nonlinear state-space model.

The volatility is considered as a parameter of this state-space model. The estimation is done

through a particle filter and a new sequential EM-type algorithm. Very roughly speaking our

volatility estimator can be viewed as a localized realized volatility estimator based upon the par-

ticles of the particle filter. In detail the situation is however more complicated because we need a

back and forth between particle filter and volatility estimator to obtain a decent on-line estimator.

Bias corrections and an adaptive parameter choice complicate the situation even further.

We mention that our methods are not restricted to the above model but can also be applied
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with other microstructure noise models. Contrary to several other papers we do not assume that

the transaction times are equidistant nor do we use interpolated prices.

The article is organized as follows. Section 2 describes the nonlinear market microstructure

noise model. In Section 3, a particle filter and a sequential EM-type algorithm are proposed

for on-line estimation of spot volatility. In Section 4, estimation of spot volatility in clock time

is sketched and a transformation from transaction time volatility to clock time volatility is given

including the corresponding estimates. Methods for adaptive bias correction and step size se-

lection are proposed in Section 5. A description of the implementation of our algorithm is given

in Section 6. Finally, simulation results and an application to real data are presented in Section 7

followed by some conclusions in Section 8.

2 A New Nonlinear Market Microstructure Noise Model

In most existing market microstructure models the efficient log-price is assumed to be corrupted

by additive stationary noise (Aït-Sahalia et al. 2005; Zhang et al. 2005; Bandi and Russell

2006; Hansen and Lunde 2006; Barndorff-Nielsen et al. 2008). The noise variables are typically

independent of the efficient log-price process. The major weakness of these models is the fact

that they cannot reproduce the discreteness of the transaction prices. More adequate models

which incorporate rounding noise have also been considered (Ball 1988; Large 2007; Li and

Mykland 2007; Robert and Rosenbaum 2008; Rosenbaum 2009). A popular model is based

on additive noise followed by rounding according to the smallest tick size. A drawback of most

existing models is the dependence on parameters and on distributional assumptions.

In this article, a general market microstructure noise model is proposed which differs signifi-

cantly from existing models. We are convinced that it is more suitable to explain microstructure

features of real data. The model is based on the following simple assumption on the filter-

ing distribution p(exp[xtj ]|yt1 , . . . , ytj ) of the unknown efficient price exp[Xtj ] given the observed

transaction prices Yt1 = yt1 , . . . , Ytj = ytj .

Model assumption 1: The support Atj of the filtering distribution p
(

exp[xtj ]
∣∣yt1 , . . . , ytj) is

bounded and known.

It follows that the support of the filtering distribution of the efficient log-price p(xtj |yt1 , . . . , ytj )

is given by logAtj .

This assumption is rather weak because we make no assumption at all on the distribution

of Yt. The clue is that given the model of the efficient log-price process (1) this assumption

already leads to the identifiability of the distribution p(xtj |yt1 , . . . , ytj ) (see Proposition 1 below).

It is shown later that this distribution can be approximated through a particle filter. A real data

example is given in Figure 1. It shows the supports Atj (gray vertical lines) and kernel density

estimates of the filtering distributions of the efficient prices (black lines) which are computed

based on the output of the particle filter. In this example, market maker quotes are available (see

3
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Figure 1: A real data example of estimated filtering distributions based on our market microstructure noise model
for the case when market maker quotes are available in addition to the transaction data. The details are provided
in Section 7.2. The plot shows some transaction prices (circles) along with kernel density estimates of the filtering
distributions of the efficient prices (black lines) based on the particles produced by our particle filter. The gray vertical
lines indicate the assumed support of the filtering distributions. The bid and ask market maker quotes are displayed
by gray and black horizontal lines, respectively. The x-axis shows transaction time.

case 2 below) which are indicated by gray and black horizontal lines. The details of this example

are provided in Section 7.2.

The above model assumption is, for instance, fulfilled in the following three cases: In cases 1

and 2, limit order book data and market maker quotes are available, respectively, in addition to

the transaction data leading to the support Atj . In case 3, only transaction data are available and

a method to construct the Atj is suggested.

Case 1: (order book data)

Let’s assume that at each transaction time tj the exchange provides a limit order book with bid

and ask levels given by αktj and βktj , k = 1, 2, . . . ,K, respectively. The order book levels satisfy

αKtj < . . . < α2
tj < α1

tj < β1
tj < β2

tj < . . . < βKtj and we denote

Mtj = {αKtj , . . . , α
2
tj , α

1
tj , β

1
tj , β

2
tj , . . . , β

K
tj }.

Mtj represents the state of the order book immediately before the transaction at time tj occurs.

Clearly, ytj ∈Mtj . The support of the filtering distribution at time tj is defined through

Atj = {x ∈ R : argminγ∈Mtj
|x− γ| = ytj}.

Thus, the transaction price at time tj is that price in the set Mtj with the smallest Euclidean

distance to the efficient price. Note, that Atj is simply an interval of the real line. The economic

intuition behind this model is that the efficient price at time tj should be closer to the observed

price ytj than to any other order book level. Of course, this cannot be guaranteed. However, it

seems to be more realistic assumption than many other microstructure noise models leading at

the same time to quite strong results.

An example of this market microstructure model is visualized in Figure 2. The supports of the

filtering distributions are indicated by thick vertical lines. Observe that sometimes the bid-ask

spread widens the support of the filtering distribution.
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Figure 2: An example of our market microstructure noise model for the case when order book data are available. The
figure shows the transaction prices (circles), the (in practice unknown) efficient prices in transaction time (diamonds),
the latent efficient price process in clock time (black line), the order book levels (gray horizontal lines), and the supports
of the filtering distributions of the efficient prices (gray vertical lines).

Case 2: (market maker quotes)

In the case where market maker quotes are available (instead of order book data), we only have

a single bid and a single ask level αtj and βtj , respectively, which satisfy αtj < βtj . That is, ytj is

either equal to αtj or equal to βtj . The supports Atj are then defined through

Atj = [ytj −∆tj , ytj + ∆tj ),

where ∆tj = 0.5(βtj − αtj ). The economic intuition given in case 1 applies similarly.

Case 3: (transaction data only)

For the case where no order book data or market maker quotes are available we now suggest

a method for defining the supports of the filtering distributions solely based on the observed

transaction prices. Conditional on yt1 , . . . , ytj , we set

Atj = [ytj −∆tj , ytj + ∆tj ),

where

∆tj =

{
0.5|ytj − ytj−1 | if ytj 6= ytj−1,

∆tj−1 else.

Note that ∆tj can be seen as an estimate of half the bid-ask spread at time tj .

In practice, the intervals Atj will be similar for all three cases. Consequently, the estimation

results will not differ much. It is mentioned that we do not need to explicitly specify the unknown

nonlinear function gtj in the observation equation (2). The model assumption can be regarded

as an assumption on the inverse mapping g−1
tj

, namely g−1
tj

(ytj ) = {x|gtj (x) = ytj} = Atj (con-

ditional on yt1 , . . . , ytj−1). That is, the observed price ytj determines the possible values of the

associated efficient price.
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Figure 3: Comparison of real transaction data for Citigroup (left column) with simulated data from our market
microstructure noise model (right column). The plots show (from top to bottom): 10,000 transaction prices; the first
250 transaction prices and the efficient price process of the simulated data; the autocorrelations and the partial
autocorrelations of the returns of the transaction prices.

We strongly believe that our model better describes the real world market microstructure than

most existing models. Data simulated from our model reproduce the major stylized facts of high-

frequency data, such as price discreteness an first-order negative autocorrelation of the returns.

Therefore, it seems to be an adequate model. As an example, transaction data of Citigroup are

compared with data simulated from our model (see Figure 3). The figure shows the simulated

efficient prices and the observations. The observations are the efficient prices rounded to the

nearest cent (that is ∆tj ≡ 0.5 cents). The efficient log-prices were generated according to (1)

such that the observations have approximately the same volatility as the Citigroup data. We

emphasize the large number of zero returns in both data. It is not surprising that the trajec-

tories of the transaction processes look completely different. The important point, however, is

that our market microstructure noise model automatically introduces autocorrelations and partial

autocorrelations of the returns which are very similar to those of the real Citigroup data.
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Our estimation method is not limited to this market microstructure noise model. In particular it

can also be applied after a suitable modification of the particle filter to the additive microstructure

noise models

Ytj = round
(

exp[Xtj ] + Utj
)

or Ytj = round
(

exp[Xtj + Utj ]
)

(3)

where the Utj are for instance i.i.d. Gaussian distributed.

3 On-Line Estimation of Spot Volatility Based on a Particle Filter
and Sequential EM-Type Algorithms

We now present on-line algorithms for the estimation of the spot volatility. Because all results

also hold in the multivariate case with synchronous trading times we formulate this section for

multivariate security prices. We are aware of the fact that the main challenge in the multivariate

case are non-synchronous trading times. The presented results are, however, the basis for future

work on non-synchronous trading.

We therefore consider in this section the estimation of the covariance matrix Σtj which gives

the volatilities of the individual efficient log-price processes Xt,s, s = 1, . . . , S, as well as their

cross-volatilities. The algorithms for the spot volatility are obtained by setting Σtj = σ2
tj .

3.1 A Nonlinear State-Space Model

The multivariate version of the nonlinear state-space model (2) and (1) is given by

Ytj = gtj (exp[Xtj ]), (4)

Xtj = Xtj−1 + Ztj , (5)

where Xt = (Xt,1, . . . , Xt,S)T , gtj (exp[Xtj ]) =
(
g
t
(1)
j

(exp[Xtj ,1]), . . . , g
t
(S)
j

(exp[Xtj ,S ])
)T with the

g
t
(s)
j

possibly depending on Yt1:j−1 , and Ztj ∼N (0,Σtj ). The set Atj from Model assumption 1

usually is of the form Atj = Atj ,1 × · · · × Atj ,S with the Atj ,s being intervals (although this is

not used). For simplicity we assume as an initial condition that given Yt1,s the efficient prices

exp[Xt1,s] are uniformly distributed on At1,s.

Model assumption 2: Σtj is assumed to be either constant or slowly varying in time, that is we

assume some smoothness for Σtj .

The smoothness assumption does not need to be specified any further because we do not use

it formally. However, without this assumption the estimation procedure developed in Section 3.3

would not make sense. A detailed specification of this assumption would become necessary if

we tried to prove consistency (see Section 8).

We remark that (4) and (5) constitute a slightly generalized state-space model because the

observations Ytj are not conditional independent of Yt1:j−1 given Xtj as in standard state-space

models. This dependency on past observations is induced by our market microstructure noise
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model (see case 3 in Section 2). In the following section a particle filter is derived which can

cope with this setting.

Our objective is the estimation of the covariance matrix Σtj based on the observed prices

Yt1:j = yt1:j . Because of the nonlinear market microstructure noise this is difficult. It is well

known that crude estimators that ignore the noise lead to severely biased estimates (see, for

instance, Voev and Lunde 2007). The idea of our estimation procedure is to approximate the

conditional distribution of the efficient log-prices Xtj given all observed transaction prices yt1:j

up to time tj by an efficient particle filter. Based on this approximation a localized EM-type

algorithm is used to construct an estimator of Σtj .

3.2 An Efficient Particle Filter

Particle filters are sequential Monte Carlo methods (Doucet et al. 2001) that approximate the

posterior distributions p(xt1:j |yt1:j ) with clouds of particles {xit1:j
, ωitj}

N
i=1. A particle consists of a

sample xit1:j
and an associated weight ωitj . The particle approximation of the target distribution

is given by

p(xt1:j |yt1:j ) ≈
N∑
i=1

ωitjδxit1:j
(xt1:j ),

with δ being the Dirac delta function. A particle filter generates particles sequentially in time

making use of the relation

p(xt1:j |yt1:j ) =
p(ytj ,xt1:j |yt1:j−1)

p(ytj |yt1:j−1)
=
p(ytj |yt1:j−1 ,xtj ) p(xtj |xtj−1)

p(ytj |yt1:j−1)
p(xt1:j−1 |yt1:j−1) (6)

and a general sampling technique known as importance sampling. Importance sampling is

necessary because direct sampling from (6) is not feasible. In standard state-space models

p(ytj |yt1:j−1 ,xtj ) further simplifies to p(ytj |xtj ). As a result of the violated conditional indepen-

dence property mentioned earlier, this is not the case for our model.

In each iteration of the particle filter samples are drawn from an importance sampling distri-

bution called proposal. Subsequently, the samples are weighted such that they approximate the

target distribution. The choice of the proposal is crucial for the efficiency of the filter. In our

framework it is possible to sample from the proposal p(xtj |yt1:j ,xtj−1) which is the optimal pro-

posal in the sense that it minimizes the variance of the importance sampling weights (Doucet

et al. 2000). The following algorithm is known as sequential importance sampling (Gordon et

al. 1993): Assume that weighted particles {xit1:j−1
, ωitj−1

}Ni=1 approximating p(xt1:j−1 |yt1:j−1) are

given; then

• For i = 1, . . . , N :

– Sample xitj ∼ p(xtj |yt1:j ,x
i
tj−1

).

– Compute importance weights

ω̆itj ∝ ω
i
tj−1

p(ytj |yt1:j−1 ,x
i
tj ) p(x

i
tj |x

i
tj−1

)

p(xitj |yt1:j ,x
i
tj−1

)
= ωitj−1

p(ytj |yt1:j−1 ,x
i
tj−1

).

8



• For i = 1, . . . , N :

– Normalize importance weights ωitj = ω̆itj/(
∑N

k=1 ω̆
k
tj ).

• Obtain particles {xit1:j
, ωitj}

N
i=1 which approximate p(xt1:j |yt1:j ).

It is well-known that this algorithm suffers from weight degeneracy which means that after some

iterations only few particles will have significant weight. This issue can be resolved by introducing

a resampling step that maps the particle system {xit1:j
, ωitj}

N
i=1 onto an equally weighted parti-

cle system {xit1:j
, 1/N}Ni=1. Because resampling is time-consuming, it is carried out only if the

effective sample size

ESS
(
{ωitj}

N
i=1

)
=

1∑N
i=1(ωitj )

2

is below some threshold (Kong et al. 1994). Different resampling schemes are discussed in

Douc et al. (2005).

To apply the particle filter to the state-space model given by (4) and (5) it is necessary to

specify the optimal proposal and the computation of the importance weights. The following result

shows that both take a very simple form. Furthermore, it gives the uniqueness of the joint filtering

distribution p(xt1:j |yt1:j ). This implies that in our microstructure noise model the knowledge of

the support Atj of p(exp[xtj ]|yt1 , . . . ,ytj ) already is sufficient for the identifiability of the efficient

(log-)price distribution conditional on the observations.

Proposition 1. The joint filtering distribution p(xt1:j |yt1:j ) is uniquely determined by the supports

logAtk of the filtering distributions p(xtk |yt1 , . . . ,ytk), k = 1, . . . , j. The optimal proposal is a

truncated multivariate normal distribution given by

p(xtj |yt1:j ,xtj−1) ∝ N (xtj |xtj−1 ; Σtj )
∣∣
logAtj

with logAtj = logAtj ,1 × · · · × logAtj ,S and the importance weights can be computed through

ω̆itj ∝ ω
i
tj−1

∫
logAtj

N (xtj |xitj−1
; Σtj ) dxtj . (7)

The proof can be found in the appendix.

Remark: For the market microstructure noise models (3) the optimal proposal cannot be com-

puted that easily. For this case we suggest the standard proposal p(xtj |xtj−1) = N (xtj |xtj−1 ; Σtj )

with importance weights

ω̆itj ∝ ω
i
tj−1

∫
logAtj

N
(
y
∣∣xitj ;σ2

U

)
dy or ω̆itj ∝ ω

i
tj−1

∫
Atj

N
(
y
∣∣ exp[xitj ];σ

2
U

)
dy,

respectively. This may necessitate a larger sample size N .

9



3.3 A Sequential EM-Type Algorithm

In this section, we discuss the estimation of Σtj in the time-constant and time-varying case.

A stochastic EM algorithm can be used to obtain the maximum likelihood estimator in the

time-constant case Σtj = Σ (Dempster et al. 1977). The EM algorithm maximizes the likelihood

pΣ(yt1:T ) by iteratively carrying out an E-step and an M-step. In the E-step, the expectation

Q(Σ|Σ̂(m)) = EΣ̂(m)

[
log pΣ(Xt1:T ,yt1:T )|yt1:T

]
=

T∑
j=1

EΣ̂(m)

[
log p(ytj |yt1:j−1 ,Xtj )|yt1:T

]
+ EΣ̂(m)

[
log p(Xt1)|yt1:T

]
+

T∑
j=2

EΣ̂(m)

[
log pΣ(Xtj |Xtj−1)|yt1:T

]
(8)

needs to be approximated, where Σ̂(m) is the current estimator. Note, it is sufficient to consider

the sum in (8) because the random variables log p(ytj |yt1:j−1 ,Xtj ) and p(Xt1) do not depend on

Σ. In the M-step, a new parameter estimate Σ̂(m+1) is obtained by maximizing Q(Σ|Σ̂(m)).

If Σtj is time-varying some regularization is needed. For example Σ̂
(m+1)
tj

can be obtained by

maximizing some localized version of (8), e.g.

Qtj (Σ|Σ̂
(m)
t1:T

) =
1

T

j−2∑
k=j−T

1

b
K
( k
bT

)
E

Σ̂
(m)
t1:T

[
log pΣ(Xtj−k |Xtj−k−1

)|yt1:T

]
(9)

with a kernel K(·) and a bandwidth b.

An approximation of Q(Σ|Σ̂(m)) and Qtj (Σ|Σ̂
(m)
t1:T

) can be computed based on the smoothing

particles

{xit1:T
, ωitT }

N
i=1

from our particle filter or (with higher precision) from existing particle smoothing algorithms (God-

sill et al. 2004; Neddermeyer 2010; Briers et al. 2010). The smoothing particles give the approx-

imation

EΣ̂t1:T
[log pΣ(Xtj−k |Xtj−k−1

)|yt1:T ]

≈
N∑
i=1

ωitT
1

2

[
S log 2π + log |Σ|+ tr

{
Σ−1

(
xitj−k − xitj−k−1

)(
xitj−k − xitj−k−1

)T}] (10)

which leads, with

Σ̆tj (ωtT ) :=

N∑
i=1

ωitT
(
xitj − xitj−1

)(
xitj − xitj−1

)T
, (11)

to the maximizers

Σ̂(m+1) =
1

T − 1

T∑
j=2

Σ̆tj (ωtT ) (12)

and

Σ̂
(m+1)
tj

=
[∑

k

K
( k
bT

)]−1 ∑
k

K
( k
bT

)
Σ̆tj−k(ωtT ) (13)

10



of (8) and (9), respectively (note that the particles and, therefore, also Σ̆ depend on m.)

Instead of these estimates, one will prefer in most situations an on-line algorithm which up-

dates the estimates when a new observation comes in. This requires on the one hand the use

of filtering particles instead of smoothing particles and on the other hand an integration of the

E-step into the algorithm.

We now develop such an algorithm step-by-step. Note that the recursion developed in 1)

below is not an on-line algorithm. It is just discussed to demonstrate the relation of the on-line

algorithms in (21) and (22) to the estimates (12) and (13), respectively. Note, in the following

steps the notation Σ̂tj is used for different estimates.

1) A “recursive” solution for the above situation (both for time-constant and time-varying Σtj ) is

Qtj (Σ|Σ̂t1:T ) := {1− λj}Qtj−1(Σ|Σ̂t1:T ) + λj EΣ̂t1:T

[
log pΣ(Xtj |Xtj−1)|yt1:T

]
(14)

with Qt2(Σ|Σ̂t1:T ) = EΣ̂t1:T

[
log pΣ(Xt2 |Xt1)|yt1:T

]
leading to

Qtj (Σ|Σ̂t1:T ) =

j−3∑
k=0

[ k−1∏
`=0

(1− λj−`)
]
λj−k EΣ̂t1:T

[
log pΣ(Xtj−k |Xtj−k−1

)|yt1:T

]
+
[ j−3∏
`=0

(1− λj−`)
]
EΣ̂t1:T

[
log pΣ(Xt2 |Xt1)|yt1:T

]
. (15)

With the “constant parameter setting” λj := 1/(j − 1) , where
[∏k−1

`=0 (1− λj−`)
]
λj−k = 1

j−1 , this

gives the classical (quasi-) likelihood

1

j − 1

j−2∑
k=0

EΣ̂t1:T

[
log pΣ(Xtj−k |Xtj−k−1

)|yt1:T

]
,

that is (8) for j = T . Furthermore, the maximizer of (15) is, with the smoother-approximation as

in (10) and Σ̆tj (ωtT ) as in (11), given by

Σ̂
(m+1)
tj

=

j−3∑
k=0

[ k−1∏
`=0

(1− λj−`)
]
λj−k Σ̆tj−k(ωtT ) +

[ j−3∏
`=0

(1− λj−`)
]

Σ̆t2(ωtT ). (16)

This can be written as the recursion

Σ̂
(m+1)
tj

= {1− λj} Σ̂
(m+1)
tj−1

+ λj Σ̆tj (ωtT )

with Σ̂
(m+1)
t2

= Σ̆t2(ωtT ). Again, we obtain with the “constant parameter setting” λj := 1/(j − 1)

that Σ̂
(m+1)
tj

coincides with the estimate in (12) for j = T .

2) On-line algorithms: The above algorithm is not an on-line algorithm because the conditional

expectation in (14) depends on all observations. Therefore, we replace the conditioning set

of variables {yt1:T } by {yt1:j} meaning that we pass from the smoothing distribution to the

filtering distribution. More precisely, EΣ̂t1:T

[
log pΣ(Xtj |Xtj−1)|yt1:T

]
is replaced by

11



EΣ̂t1:j−1

[
log pΣ(Xtj |Xtj−1)|yt1:j

]
(we need at this point an estimate for Σtj - see the comment

at the end of this section) leading to the on-line algorithm

Qtj (Σ|Σ̂t1:j−1) := {1− λj}Qtj−1(Σ|Σ̂t1:j−2) + λj EΣ̂t1:j−1

[
log pΣ(Xtj |Xtj−1)|yt1:j

]
(17)

with Qt2(Σ|Σ̂t1) = EΣ̂t1

[
log pΣ(Xt2 |Xt1)|yt1:2

]
. (15) holds analogously and we now obtain anal-

ogous to (16) the estimate

Σ̂tj =

j−3∑
k=0

[ k−1∏
`=0

(1− λj−`)
]
λj−k Σ̆tj−k(ωtj−k) +

[ j−3∏
`=0

(1− λj−`)
]

Σ̆t2(ωt2) (18)

now with

Σ̆tj (ωtj ) :=

N∑
i=1

ωitj
(
xitj − xitj−1

)(
xitj − xitj−1

)T
based on the filtering particles {xitj−1:j

, ωitj}
N
i=1. This estimate can be obtained from the on-line

recursion

Σ̂tj = {1− λj} Σ̂tj−1 + λj Σ̆tj (ωtj ) with Σ̂t2 = Σ̆t2(ωt2). (19)

Observe that the estimated covariance matrix Σ̂tj is positive semi-definite by construction.

The new parameter estimate Σ̂tj is used afterwards to calculate the next filtering particles

and their weights {xitj+1
, ωitj+1

}Ni=1 followed by the calculation of Σ̂tj+1 via another application of

(19) etc. In contrast to the standard EM algorithm, our sequential variant therefore updates the

covariance estimate (which in turn is used in the next step of the particle filter) in every time step.

In the “new E-step”, Qtj (Σ|Σ̂t1:j−1) is approximated through

Q̂tj (Σ|Σ̂t1:j−1) = {1− λj} Q̂tj−1(Σ|Σ̂t1:j−2) (20)

− λj
1

2

N∑
i=1

ωitj

[
S log 2π + log |Σ|+ tr

{
Σ−1

(
xitj − xitj−1

)(
xitj − xitj−1

)T}]
using the particles {xitj−1:j

, ωitj}
N
i=1 which are generated as described in Section 3.3. In the “new

M-step”, the maximization of Q̂tj (Σ|Σ̂t1:j−1) gives the on-line estimator defined in (19).

Note that Σ̆tj (ωtj ) is not an approximation of the conditional variance Var
(
Xtj−Xtj−1

∣∣yt1:j

)
but

an approximation of E
(
(Xtj−Xtj−1)2

∣∣yt1:j

) (
both are different because E(Xtj−Xtj−1 |yt1:j ) 6= 0

)
.

As a result of E
[
E
(
(Xtj−Xtj−1)2

∣∣Yt1:j

)]
= E

(
Xtj−Xtj−1

)2
= Var

(
Xtj−Xtj−1

)
, Σ̂tj is a descent

estimator of Σtj apart from the bias problems described in Section 5.2.

3) Time-constant covariance matrices: If Σtj is time-constant the first idea is to apply the algo-

rithm (19) with the “constant parameter setting” λj = 1/(j−1) . However, the situation is different

from the classical case in that the “old” estimate Σ̂tj−1 has in addition some bias due to the use of

particles generated with an estimated covariance instead of the true one. Therefore we need to

put less weight on the first term in (19). The situation has been carefully investigated for a similar

algorithm in the i.i.d.-case by Cappé and Moulines (2009). Following their recommendation we

use in our situation the on-line algorithm

Σ̂tj = {1− (j − 1)−γ} Σ̂tj−1 + (j − 1)−γ Σ̆tj (ωtj ) (21)
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with γ ∈ (1
2 , 1). Cappé and Moulines prove consistency and asymptotic normality of their esti-

mate for weights λj := λ0j
−γ and γ ∈ (1

2 , 1) and also for γ = 1 under some restrictions on λ0

(Theorem 2). Furthermore, in their simulations it turned out that a value of γ = 0.6 and λ0 = 1

has lead to good estimates. From our experience we prefer the choice γ = 0.9 and λ0 = 1

(see Section 6). Even-Dar and Mansour (2003) obtained an optimal value of about 0.85 in a

related estimation problem. We emphasize that the choice of γ needs more investigations - both

theoretical and practical.

4) Time-varying covariance matrices: If Σtj is time-varying it is necessary to put more weight on

recent observations. In this case, the traditional solution is to use the algorithms (14), (17) and

(19) with time-constant λj ≡ λ instead of a decaying λj . To achieve a better degree of adaptation

our λj will still be time-varying (see Section 5.1) but with the intuition that the λj fluctuate around

some fixed value of λ. That is we use in the time-varying case

Σ̂tj = {1− λj} Σ̂tj−1 + λj Σ̆tj (ωtj ) with Σ̂t2 = Σ̆t2(ωt2). (22)

The choice of the λj is discussed in Section 5.1. For a deeper understanding we stress the

following heuristics: If λj ≡ λ and tj = j δ (e.g. δ = 1
T ) then we have with b := δ

λ for δ → 0

[ k−1∏
`=0

(1− λj−`)
]
λj−k = (1− λ)kλ =

δ

b

(
1− δ

b

) 1
δ
kδ
≈ δ

b

(
e−

1
b

)kδ
=
δ

b
K
(kδ
b

)
(23)

where K(x) := e−x. That is Qtj (Σ|Σ̂t1:T ) from (17) is basically the kernel likelihood given in (13)

with the one-sided exponential kernel, and Σ̂tj given by (22) is basically the kernel estimate

Σ̂tj =
[∑

k

K
( k
bT

)]−1 ∑
k

K
( k
bT

) N∑
i=1

ωitj−k
(
xitj−k − xitj−k−1

)(
xitj−k − xitj−k−1

)T
.

3.4 Summary

Our estimation method consists of three components:

(i) The state-space model with a new market microstructure noise model and the transaction

time model for the efficient log-price (Section 3.1);

(ii) A particle filter which sequentially approximates the filtering distributions of the efficient

log-prices given the observed transaction prices (Section 3.2);

(iii) The on-line EM-type estimator Σ̂tj given by (21) or (22) which estimates Σtj based on

the particle approximation of the filtering distribution obtained from the particle filter (Sec-

tion 3.3). This estimator is improved in the time-varying case to Σ̃∗tj |tj in Section 5.

A key aspect of the method is the back and forth between the particle filter and the EM-type

estimator. To propagate the particles from time tj to time tj+1 the particle filter requires an

estimator of Σtj+1 which we denote by Σ̂pf
tj+1

. A simple solution is to use Σ̂pf
tj+1

:= Σ̂tj from the

13
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Figure 4: Estimation of two time-varying volatility curves given by the black lines based on simulated data. Esti-
mators: Σ̂tj (turquoise line), Σ̃∗tj |tj (red line), benchmark estimator (gray line). All estimator use the step sizes (27)
where α and β are optimized for each estimator. For details see Section 7.1.

previous EM-type step. A more sophisticated solution is to use the estimator Σ̂pf
tj+1

:= Σ̃∗tj+1|tj

from Section 5.2 based on a prediction argument. The EM-type estimator then in turn updates

the covariance estimate based on the new particles for time tj+1 generated by the particle filter.

Estimation results of our estimators Σ̂tj , Σ̃∗tj |tj (see Section 5), and a benchmark estimator

(see Section 7.1) are presented in Figure 4. Details and a discussion are given in Section 7.1.

4 From Transaction Time to Clock Time

4.1 Clock Time Spot Volatility Estimation

In the preceding section, we have derived an algorithm for the estimation of the covariance matrix

Σtj = Σ(tj) in a transaction time model. If one prefers a clock time model all results of this paper

continue to hold with some modifications. In this case one may consider as the underlying model

the stochastic differential equation

dX(t) = Γ(t) dW(t) where Γ(t) ΓT (t) = Σc(t) (24)

14



and W(t) is a multivariate Brownian motion. Σc(t) is the volatility curve in the clock time model.

Loosely speaking, it denotes volatility per time unit while Σ(t) denotes the volatility per transaction

at time t. The relation between the two curves should be given by (26) (of course this depends

on the mathematical definition of Σ(t) and Σc(t)). If we set Xtj = X(tj) we obtain the same

state space model as in (4) and (5) but now with the log-returns Ztj = Xtj −Xtj−1 approximately

distributed as

Ztj ∼ N
(
0, |tj − tj−1| Σc(tj)

)
.

This is the only change needed in the state-space model (4), (5). As an estimate Σ̂c
tj we can use

the on-line estimates (21) and (22) but now with the update matrix Σ̆tj (ωtj ) replaced by

Σ̆c
tj (ω

c
tj ) :=

N∑
i=1

ωcitj

(
xcitj − xcitj−1

)(
xcitj − xcitj−1

)T
|tj − tj−1|

(25)

based on the modified filtering particles {xcitj−1:j
, ωcitj}

N
i=1. In Section 5, we discuss bias correction,

adaptive and time-varying selection of the step size λj , and prediction of future volatilities. All

methods can also be applied to Σc(t) which is briefly summarized at the end of Section 5.2.

4.2 An Alternative Estimator for Clock Time Spot Volatility

In the diffusion model (24) the spot volatility in clock time is

Σc(t) = lim
∆t→0

∫ t+∆t
t Σc(s) ds

∆t
= lim

∆t→0

Var
(
X(t+ ∆t)−X(t)

)
∆t

.

To clarify the relation to the transaction time volatility Σ(t) we assume for a moment that the

transaction times tj are realizations of a stochastic point process with intensity function λI(t)

(transaction rate) which is independent of the efficient and observed prices. We then have

lim
∆t→0

Var
(
X(t+ ∆t)−X(t)

)
∆t

= lim
∆t→0

E

∑
j : t<tj≤t+∆t Σ(tj)

∆t

= lim
∆t→0

E

∑
j : t<tj≤t+∆t Σ(tj)∣∣{j : t < tj ≤ t+ ∆t}

∣∣
∣∣{j : t < tj ≤ t+ ∆t}

∣∣
∆t

= Σ(t) λI(t)

that is

Σc(t)=Σ(t)λI(t). (26)

We stress that this is primarily a nonparametric relation (“variance per time unit = variance per

transaction × expected number of transactions per time unit”) and it depends on the underlying

model whether this coincides with the definition of Σc(t) and Σ(t) given in the model. A model

which exactly leads to this formula is the subordinated differential equation dX(t) = Γ(t) dWN(t)

with a point process N(t) with intensity λI(t) (cf. Howison and Lamper 2001). The unit of ∆t

(e.g. milliseconds) determines the unit of Σ(t) (e.g. variance per millisecond) and of the intensity

(e.g. expected number of transactions per millisecond). An obvious estimate of the clock time

volatility therefore is ˆ̂
Σc(tj) = Σ̂tj × |{` : tj −∆t < t` ≤ tj}| /∆t with some ∆t.
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Here we advocate a different estimation method of the intensity function λI(t) which is closer

related to our on-line scheme, namely the estimation of λI(t) by the inverse of the averaged

duration times δ̄j defined by the recursion

δ̄j = (1− λj) δ̄j−1 + λj
(
tj − tj−1

)
with δ̄2 = t2 − t1

leading with (18) to the alternative clock time volatility estimator

Σ̂c
alt(tj) :=

Σ̂tj

δ̄j
=

∑j−3
k=0

[∏k−1
`=0 (1− λj−`)

]
λj−k Σ̆tj−k(ωtj−k) +

[∏j−3
`=0(1− λj−`)

]
Σ̆t2(ωt2)∑j−3

k=0

[∏k−1
`=0 (1− λj−`)

]
λj−k

(
tj−k − tj−k−1

)
+
[∏j−3

`=0(1− λj−`)
](
t2 − t1

)
(or better with Σ̂tj replaced by Σ̃∗tj |tj from Section 5). This estimator has a remarkable property:

Because Σ̆t`(ωt`) ≈
(
t` − t`−1

)
Σ̆c
t`

(ωct`) the estimator is of the form

Σ̂c
alt(tj) ≈

∑j−2
k=0wkΣ̆

c
tj−k

(ωctj−k)∑j−2
k=0wk

that is Σ̂c
alt(tj) is a weighted average of the Σ̆c

t`
(ωct`) and therefore also a decent estimator in

the clock time model (the “≈” signs stem from the fact that in Σ̆t`(ωt`) and Σ̆c
t`

(ωct`) two different

particle filters are used - the effect of this is not clear!). Notice that the denominator tj−k− tj−k−1

in Σ̆c
tj−k

(ωctj−k) cancels out leading therefore to a more stable estimator (for example the sharp

green peaks in Figures 8 and 9 are caused by small values of tj−k − tj−k−1).

The above argument contains a pitfall: While Σ(t) usually is smooth thus requiring small values

of λj , the intensity of the point process λI(t) changes considerably over time thus requiring larger

values of λj . For that reason we use different sequences λj for the estimators Σ̂tj and δ̄j .

The modified estimators Σ̃∗ctj |tj (quasi mean squared error corrected version of Σ̂c
tj as defined in

Section 5) and Σ̃c
alt(tj) := Σ̃∗tj |tj/δ̄j

(
with the quasi mean squared corrected version Σ̃∗tj |tj instead

of Σ̂c
alt(tj) - see (42)

)
are plotted in figures 8 and 9 and discussed in Section 7.2. In this example

a constant step size λj ≡ λ turned out to be sufficient for the estimator δ̄j .

5 Fine-Tuning of the Volatility Estimator in the Time-Varying Case

In this section we present a method for the adaptive choice of the time-varying step size λj and

an on-line bias correction for the estimator Σ̂tj given by (18) through (19). The basic idea for bias

correction is to calculate two estimators with different step sizes in parallel and to balance the

two on-line. The resulting estimator is the estimator Σ̃∗tj |tj from Figure 4. We continue to use the

notation with Σ although we only discuss the univariate case (the basic formula (35) also holds

in the multivariate case with synchronous trading times). We also present an on-line method for

quasi mean squared error minimization, and a method for the prediction of future volatilities.
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5.1 Adaptive Step Size Selection

For constant λ we have the equivalence of the on-line estimator with a kernel estimator with

kernel K(x) = e−x as described in Section 3.3 under 4). For kernel estimators the adaptive (off-

line) choice of the bandwidth has been discussed extensively and most of these results could be

transferred to the present setting. However, there does not exist any equivalence between our

on-line estimator with time-varying λj and kernel estimators with local bandwidths: The weight

λj at time tj only applies to the last observation and not to a longer stretch of data.

We are not aware of any rigorous results on adaptive choices for a sequence λj for exponential

smoothing estimators. This means that the method proposed below may also be of relevance in

other on-line estimation settings.

Here is an overview of the method:

1. We start with the ad-hoc proposal based on the logistic function (to ensure 0<λj<1)

λj :=
exp[α+ βhtj−1 ]

1 + exp[α+ βhtj−1 ]
, (27)

where

htj−1 :=

∣∣∣∣ log Σ̂tj−1 − log Σ̂
(1/2)
tj−1

j − 1 − j − 1
(1/2)

∣∣∣∣2. (28)

(27) was proposed by Taylor (2004) with a different htj−1 . The above htj−1 is motivated at

the end of Section 5.2. For the definition of the expressions in htj−1 see (33) and below. α

and β are adaptively determined in step 4.

2. At each time tj we calculate on-line two different estimators: First Σ̂tj as defined in (19) and

second Σ̂
(1/2)
tj

which is the same as Σ̂tj but with all λj replaced by λj/2. Thus we have at

each time step two on-line estimators available - one with a larger step size sequence (with

less smoothing) and one with a smaller step size sequence (with stronger smoothing).

3. We then consider arbitrary linear combinations of these estimators and determine at each

time step tj the optimal linear combination with respect to the optimal quasi mean squared

error, or alternatively with respect to unbiasedness resulting in the estimators Σ̃∗tj |tj or Σ̃tj |tj .

The advantage of this method is that it can be performed on-line for each tj .

4. The mean squared error of the estimator Σ̃∗tj |tj resulting from the whole procedure 1.

through 3. is finally minimized with respect to α and β by the cross-validation type cri-

terion

crit(α, β) :=

T−1∑
j=2

(
Σ̃∗tj |tj − Σ̆tj+1(ωtj+1)

)2
. (29)

This cannot be done on-line. In practice, one will use in an on-line setting the values of α

and β from past experience. The expectation of the above criterion is approximately
T−1∑
j=2

[(
EΣ̃∗tj |tj − Σtj

)2
+ Var

(
Σ̃∗tj |tj

)
+ Var

(
Σ̆tj+1(ωtj+1)

)]
.
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Because the last term does not depend on α and β we correctly minimize the approximate

mean squared error.

We do not know anything about the theoretical properties of the procedure as a whole. We feel

however that the degree of adaption is high as a result of the minimization in step 3 (correcting

somehow for the limitations of the ad-hoc proposal in step 1) and the final minimization with

respect to α and β. This is confirmed by our simulations.

Remark: A simpler alternative is to use a fixed step size λj ≡ λ and to minimize the mean

squared error (29) with respect to λ. Steps 2 and 3 can be kept as they are in this case.

5.2 On-line Bias Correction and Mean Squared Error Minimization

We now describe steps 2 and 3 in detail. We stress that these steps can be done for arbitrary

step size sequences λj , that is we do not need the specific choice from step 1.

Let τ : [0,∞)→ [0,∞) be the mapping that maps transaction time to clock time, i.e. τ(j) = tj

(we assume that τ is defined on the whole positive real line). We define

Σ̇(s) :=
∂

∂s
Σ
(
τ(s)

)
= Σ′

(
τ(s)

)
τ ′(s)

leading to the linear approximation

Σ(tj) = Σ
(
τ(j)

)
≈ Σ(ti) + (j − i) Σ̇(i) (30)(

for the meaning of the “≈”-sign see Section 8; for example in the equidistant case ti = iδ we

have τ ′(i) = δ and (j − i) Σ̇(i) = (j − i) δΣ′(ti) is small for small δ
)
. By using the approximation

E Σ̆tj (ωtj ) = E

N∑
i=1

ωitj (x
i
tj − xitj−1

)(xitj − xitj−1
)T ≈ E

[
E
(
(Xtj −Xtj−1)(Xtj −Xtj−1)T

∣∣Yt1:j

)]
= E (Xtj −Xtj−1)(Xtj −Xtj−1)T = Σtj (31)

(compare the discussion at the end of 2) in Section 3.3) we obtain from (18) (with some i close

to j)

E Σ̂tj ≈
j−3∑
k=0

[ k−1∏
`=0

(1− λj−`)
]
λj−k Σ

(
tj−k

)
+
[ j−3∏
`=0

(1− λj−`)
]

Σ
(
t2
)

≈
j−3∑
k=0

[ k−1∏
`=0

(1− λj−`)
]
λj−k

[
Σ(ti)−

(
i− (j − k)

)
Σ̇(i)

]
+
[ j−3∏
`=0

(1− λj−`)
][

Σ(ti)−
(
i− 2

)
Σ̇(i)

]
= Σ(ti)−

(
i− j̄

)
Σ̇(i) ≈ Σ(ti)−

(
i− j̄

)
Σ̇(j̄) ≈ Σ

(
tj̄
)

(32)

with

j̄ :=

j−3∑
k=0

[ k−1∏
`=0

(1− λj−`)
]
λj−k (j − k) +

[ j−3∏
`=0

(1− λj−`)
]

2 . (33)

We note that j̄ can be obtained via the on-line recursion

j̄ = (1− λj) j − 1 + λj j with 2̄ = 2. (34)
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This means that we are estimating Σ(t) essentially at time tj̄ < tj . This is a result of the one-

sidedness of the recursive method
(
for example in the equidistant case tj = jδ and λj ≡ λ we

obtain j̄ ≈ j + 1− 1/λ and tj̄ ≈ (j + 1− 1/λ) δ - see also (23)
)
. In order to correct for this bias

or to construct even approximately unbiased estimators of future volatilities we now take a linear

combination of the two estimators Σ̂tj and Σ̂
(1/2)
tj

where the latter is the same as Σ̂tj in (18) and

(19) but with all λj replaced by λj/2. Analogously we define j̄ (1/2) as in (33) and (34) but again

with all λj replaced by λj/2. The new estimator now is defined by the extrapolation

Σ̃ti|tj :=
(
1 + κi|j

)
Σ̂tj − κi|j Σ̂

(1/2)
tj

(35)

with time-varying weights

κi|j :=
i− j̄
j̄ − j̄ (1/2)

. (36)

We immediately obtain

E Σ̃ti|tj ≈ Σ(ti)−
[(

1 + κi|j
) (
i− j̄

)
− κi|j

(
i− j̄ (1/2)

)]
Σ̇(i) = Σ(ti)

and for i = j we therefore have a bias-corrected estimator of Σ(tj). Because the estimator

extrapolates the two estimators Σ̂tj and Σ̂
(1/2)
tj

we have to watch particularly the variance which

may become large. From a statistical view a better choice is the estimator with a minimal mean

squared error. In the appendix, we calculate the quasi mean squared error (with the unknown

efficient log-prices used instead of the filter particles) and show that this mean squared error is

minimized by

κmin ≈
(
i− j̄

)(
j̄ − j̄ (1/2)

) [
∂
∂t log Σ(t)|t=tj̄ τ

′(j̄)]2 − 2 (v1,j − v3,j)(
j̄ − j̄ (1/2)

)2 [ ∂
∂t log Σ(t)|t=tj̄ τ

′
(
j̄
)]2

+ 2 (v1,j + v2,j − 2v3,j)

with v1,j , v2,j and v3,j obtained from the recursions

v1,j =
(
1− λj

)2
v1,j−1 + λ2

j , v1,2 = 1; (37)

v2,j =
(
1− λj

2

)2
v2,j−1 +

λ2
j

4
, v2,2 = 1; (38)

v3,j =
(
1− λj

)(
1− λj

2

)
v3,j−1 +

λ2
j

2
, v3,2 = 1. (39)

∂
∂t log Σ(t)|t=tj̄ and τ ′

(
j̄
)

are unknown. In order to get an adaptive choice of κ we replace these

terms by estimators. From (32) we know that Σ̂tj and Σ̂
(1/2)
tj

are essentially estimators of Σ(t) at

times tj̄ and tj̄ (1/2) , respectively. We therefore use

log Σ̂tj − log Σ̂
(1/2)
tj

tj̄ − tj̄ (1/2)

tj̄ − tj̄ (1/2)

j̄ − j̄ (1/2)
(40)

as an estimate of ∂
∂t log Σ(t)|t=tj̄ τ

′(j̄) leading to

κ∗i|j :=

i−j̄
j̄−j̄ (1/2)

[
log Σ̂tj − log Σ̂

(1/2)
tj

]2
− 2 (v1,j − v3,j)[

log Σ̂tj − log Σ̂
(1/2)
tj

]2
+ 2 (v1,j + v2,j − 2v3,j)

(41)

19



0 5000 10000 15000

0.
00

00
7

0.
00

01
0

0.
00

01
3

0 5000 10000 15000

0.
00

52
0.

00
60

0 5000 10000 15000

−
1.

0
0.

0
1.

0

Figure 5: Estimation of the time-varying volatility curve given by the black line in the upper plot based on simulated
data. Upper plot: Σ̃∗tj |tj (red line), Σ̂tj (green line), Σ̂

(1/2)
tj

(blue line) (all with the same step sizes given by (27));
middle plot: step size sequence λj ; lower plot: sequence κ∗j|j . For details see Section 7.1.

and the corresponding estimator

Σ̃∗ti|tj :=
(
1 + κ∗i|j

)
Σ̂tj − κ∗i|j Σ̂

(1/2)
tj

. (42)

In practice, the values of κ∗i|j will be restricted to the interval [−1, 1] because other values do not

make sense (smaller values than −1 may occur because Σ̂tj and Σ̂
(1/2)
tj

are correlated - however

such values yield an extrapolation in the wrong time direction).

An example of this estimator for simulated data is given in Figure 5. The bias of Σ̂tj and Σ̂
(1/2)
tj

and the bias correction of Σ̃∗tj |tj are clearly visible. For details see Section 7.1. The estimators

look slightly undersmoothed. We comment on that at the end of Section 7.1.

It is easy to prove that (v1,j + v2,j − 2v3,j) ≥ 0. “Usually” also v1,j − v3,j ≥ 0
(
for example for

constant λj ≡ λ v1,j and v3,j converge to the fixpoints of the recursion v1 = λ
2−λ and v3 = λ

3−λ

with v1,j − v3,j > 0
)
. For this reason we usually have κ∗i|j < κi|j .

For the recursion described in Section 3.4 (where Σ(tj+1) is needed in the next step of the

particle filter) we think that the mean squared error choice Σ̃∗tj+1|tj with κ∗j+1|j is the best choice.
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On the contrary as an estimate for Σ(tj) of financial log-returns the unbiased estimator with κj|j
may be more interesting (it is less smoothed and contains in some sense more information).

Perhaps in a practical application both estimators (with κj|j and κ∗j|j) should be plotted.

We finally motivate the choice of λj and htj−1 in step 1: In the case of constant λj = λ we

obtain from (32) and (47) for the mean squared error

E
(

Σ̂tj − Σ(tj)
)2
≈ 1/λ2 Σ̇(j̄)2 + λΣ(tj̄)

2

which gets minimal for

λ =
∣∣∣√2

∂

∂t
log Σ(t)|t=tj̄ τ

′(j̄)∣∣∣2/3 .
Together with the restriction 0<λj<1 (leading to the use of the logistic function) and the estimate

(40) this has motivated the local choice of λj as in (27) with

htj−1 :=

∣∣∣∣ log Σ̂tj−1 − log Σ̂
(1/2)
tj−1

j − 1− j − 1
(1/2)

∣∣∣∣ ρ
where α and β are determined as described in step 4. We have simulated the mean squared

error of the whole procedure 1. through 4. for several values of ρ leading finally to the choice

ρ = 2 as in (28). Nevertheless, the choice of λj and htj−1 as given in (27) and (28) remains to be

an ad-hoc suggestion.

Bias correction in clock time models: A similar algorithm for adaption and bias correction can

be established in the clock time setting from Section 4. Instead of the approximation (30) we

start with

Σc(tj) = Σc(ti) + (tj − ti) Σc ′(ti)

and define instead of j̄

t̄j :=

j−3∑
k=0

[ k−1∏
`=0

(1− λj−`)
]
λj−k tj−k +

[ j−3∏
`=0

(1− λj−`)
]
t2

given by the on-line recursion

t̄j = (1− λj) t̄j−1 + λj tj with t̄2 = t2.

Analogously we obtain the estimator

Σ̃c
ti|tj :=

(
1 + κti|tj

)
Σ̂c
tj − κti|tj Σ̂

c (1/2)
tj

with

κti|tj :=
ti − t̄j
t̄j − t̄ (1/2)

j

as the approximately unbiased estimator and Σ̃∗ cti|tj with

κ∗ti|tj ≈

ti−t̄j
t̄j−t̄

(1/2)
j

[
log Σ̂c

tj − log Σ̂
c (1/2)
tj

]2
− 2 (v1,j − v3,j)[

log Σ̂c
tj
− log Σ̂

c (1/2)
tj

]2
+ 2 (v1,j + v2,j − 2v3,j)
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as the estimator with approximately optimal quasi mean squared error.

Prediction: The estimators Σ̃ti|tj and Σ̃∗ti|tj can be used (with i > j) for prediction of future

volatilities. In particular in combination with a predictor for future durations (e.g. with an ACD

model - cf. Engle and Russell (1998)) this may lead to new predictors. One should keep in mind

that these predictions are based on linear extrapolation. However, it should be possible to adapt

the methods of this paper also to other prediction models such as in Meddahi et al. (2006). By

plugging the relation
ti − t̄j
t̄j − t̄ (1/2)

j

≈
(
i− j̄

)
τ ′
(
j̄
)(

j̄ − j̄ (1/2)
)
τ ′
(
j̄
) =

i− j̄
j̄ − j̄ (1/2)

into (36) and (41) and replacing afterwards ti by t we can also obtain predictors for arbitrary time

points t. Similarly the above estimators from the clock time model can be used for prediction.

6 Implementation Overview in the Time-Varying Case

The Algorithm

For transaction time we use the algorithm as described in Section 3.4 with Σ̂pf
tj

= Σ̃∗tj |tj−1
in the

update step of the particle filter. As the estimator of Σtj we usually use Σ̃∗tj |tj from (42) (if not

otherwise stated) and sometimes Σ̃tj |tj from (35). This means in particular that we are applying

the adaptation procedure described in Section 5.1. α and β are used from past experience or

determined as described in step 4.

The particle filter uses the following steps for j = 2, . . . , T (see Proposition 1)

• For i = 1, . . . , N :

– Generate xitj from the optimal proposal N (xtj |xitj−1
; Σ̂pf

tj
)
∣∣
logAtj

.

– Compute the importance weight ω̆itj as in (7). If S = 1 this is given by

ω̆itj ∝ ω
i
tj−1

{
Φ
(

sup logAtj |xitj−1
; Σ̂pf

tj

)
− Φ

(
inf logAtj |xitj−1

; Σ̂pf
tj

)}
.

• For i = 1, . . . , N : Normalize the importance weight ωitj = ω̆itj/
∑N

k=1 ω̆
k
tj .

• If the effective sample size ESS({ωitj}
N
i=1) < 0.2N , then resample the particles using, for

instance, the residual resampling scheme (Douc et al. 2005).

The whole algorithm is computationally very efficient because the complexity of one iteration is

linear in the number of particles N . As a result of the efficiency of our particle filter, the number of

particles N is not a critical quantity. Typically, about 500 particles suffice to achieve a reasonable

precision (see Figure 6).

Initialization

Our experience from many data sets is that the algorithm stabilizes quickly provided that reason-

able starting values are used – e.g. Σ̂t2 = Σ̂
(1/2)
t2

= Σ̂pf
t2

= Σ̂ with Σ̂ from prior knowledge or with
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Σ̂ being a rough initial estimate. The particle filter is started by simulating the xit1,s such that the

exp[xit1,s] are uniformly distributed on At1,s. In that case one will use v1,3 = λ3
2−λ3

, v2,3 = λ3
4−λ3

and

v3,3 = λ3
3−λ3

with (say) λ3 = 1/500 (these are the fix points of the recursions (37) through (39)).

More sophisticated starting values are obtained as follows: One uses the procedure of this

paper over the first 500 transactions in reversed time order leading to values Σ̂rev
t1 , Σ̂

rev(1/2)
t1

, 1̄rev,

1̄rev(1/2) and starts the algorithm then with the following values obtained by extrapolation:

2̄ := −1̄rev + 3 ; 2̄(1/2) := −1̄rev(1/2) + 3;

Σ̂t2 :=
(

1 +
2× 1̄rev − 2

1̄rev(1/2) − 1̄rev

)
Σ̂rev
t1 −

2× 1̄rev − 2

1̄rev(1/2) − 1̄rev Σ̂
rev(1/2)
t1

;

Σ̂
(1/2)
t2

:=
(

1 +
1̄rev + 1̄rev(1/2) − 2

1̄rev(1/2) − 1̄rev

)
Σ̂rev
t1 −

1̄rev + 1̄rev(1/2) − 2

1̄rev(1/2) − 1̄rev Σ̂
rev(1/2)
t1

;

v1,2 =
λrev

1
2−λrev

1
; v2,2 =

λrev
1

4−λrev
1

; v3,2 =
λrev

1
3−λrev

1
. We then obtain e.g. for the bias-corrected estimator(

where κ2|2 = 2−2̄
2̄−2̄ (1/2) = 1̄rev−1

1̄rev(1/2)−1̄rev = κrev
1|1
)

after some calculations

Σ̃t2|t2 =
(
1 + κ2|2

)
Σ̂t2 − κ2|2 Σ̂

(1/2)
t2

= . . . =

=
(

1 +
1̄rev − 1

1̄rev(1/2) − 1̄rev

)
Σ̂rev
t1 −

1̄rev − 1

1̄rev(1/2) − 1̄rev Σ̂
rev(1/2)
t1

= Σ̃rev
t1|t1

(note that because of Xt1 −Xt2 = −Zt2 with Zt2 ∼N (0,Σt2) we have Σrev
t1 = Σt2). The particle

filter could be started with Σ̂pf
t2

:= Σ̃t2|t2 . λ3 can then be calculated from the above formulas.

The reversed method works nicely as can be seen from Figure 7 below.

In order to exclude the effect of starting values we have used in the simulations (except from

Figure 6) the true matrix Σt2 as the starting value (i.e. Σ̂pf
t2

= Σ̂t2 = Σ̂
(1/2)
t2

= Σt2).

7 Simulations and Applications

7.1 Results for Simulated Data

Estimation of time-constant spot volatility

We first consider the estimation of time-constant spot volatility. An efficient log-price process is

simulated from t1 to t5000 with squared volatility equal to Σt = 0.00012. The initial efficient price

exp[Xt1 ] is sampled from a uniform distribution on [50− 0.005, 50 + 0.005). The transaction prices

are obtained by rounding the efficient prices to the nearest cent which constitutes a special case

of our market microstructure noise model. Our algorithm for time-constant spot volatility estima-

tion (21) is applied with different numbers of particles N and different values of γ. The starting

value Σ̂pf
t2

= Σ̂t2 is drawn from a uniform distribution on (0.000092, 0.000112). For comparison the

results of two benchmark algorithms are also reported. The first benchmark method (“Bench-

mark” in Figure 6) is a recursive estimator with a simpler microstructure noise correction. It

is related to the method in Zumbach et al. (2002) and it is based on the market microstructure

model log Ytj = Xtj +Utj , where the noise variables Utj are i.i.d. with Var Utj = η2. The recursive
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Figure 6: Box plots for the estimation of a time-constant volatility based on simulated data (5,000 transactions).
The estimator (21) is applied with different numbers of particles N and different γ and compared to the benchmark
estimator and the optimal estimator (not available in practice). The box plots are based on 500 independent runs.
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estimator is given by

Σ̂B
tj :=

{
1− 1

j − 1

}(
Σ̂B
tj−1

+ max{0, 2η̂2
tj−1
}
)

+
1

j − 1
(log ytj − log ytj−1)2 −max{0, 2η̂2

tj} (43)

where η̂2
tj := {1− 1

j−2}η̂
2
tj−1
− 1
j−2

(
log ytj−log ytj−1

)(
log ytj−1−log ytj−2

)
(here 1

j−2 is used instead

of 1
j−1 because the algorithm starts one time point later). The term max{0, 2η̂2

tj} corrects for the

market microstructure noise. This follows from the fact that

Cov
(

log Ytj − log Ytj−1 , log Ytj−1 − log Ytj−2

)
= −η2.

The second benchmark method is, in some sense, the optimal estimator (“Optimal” in Figure 6). It

is unavailable in practice because it uses the latent efficient log-prices. It is computed analogous

to (21) but instead of the particles it employs the efficient log-prices leading to

Σ̂Opt
tj

= {1− (j − 1)−γ}Σ̂Opt
tj−1

+ (j − 1)−γ(xtj − xtj−1)2.

The simulation results are given in terms of box plots which are obtained by 500 independent runs

(Figure 6). The box plots suggest that our volatility estimator is asymptotically unbiased and that

γ = 0.9 is a reasonable value. We can also conclude that about 500 particles are sufficient which

makes our algorithm computationally efficient and suitable for real-time applications. In addition,

it can be observed that the benchmark estimator has a larger variance than our estimator.

Estimation of time-varying spot volatility

We now compare our algorithms (22) and (42) for the time-varying spot volatility estimators

Σ̂tj and Σ̃∗tj |tj , respectively, with a benchmark estimator. The efficient log-prices are generated

with respect to the time-varying volatility given by the black lines in Figure 4. The first case

(upper plot) is more challenging while the second case (lower plot) is more realistic for a volatility

curve in transaction time - see the real data example in Figure 7. In both cases exp[Xt1 ] ∼

U [50 − 0.005, 50 + 0.005). Again transaction prices (observations) are obtained by rounding the

efficient prices to the nearest cent. 15,000 transactions are generated which is typical for one

trading day of a liquid stock. The particle filter is applied with N = 500 particles. The estimator

Σ̃∗tj |tj is calculated as described in Sections 5 and 6. Σ̂tj also uses the time-varying step sizes

(27) where α and β are obtained by minimizing the criterion (29) as for Σ̃∗tj |tj . (A simpler strategy

avoiding the calculation of Σ̂
(1/2)
tj

is to use a constant step size λ obtained by minimizing (29).)

Analogous to (43) we consider the benchmark estimator given by

Σ̂B
tj := {1− λj}

(
Σ̂B
tj−1

+ max{0, 2η̂2
tj−1
}
)

+ λj
(

log ytj − log ytj−1

)2 −max{0, 2η̂2
tj} (44)

with η̂2
tj := {1− 1

j−2}η̂
2
tj−1
− 1
j−2

(
log ytj−log ytj−1

)(
log ytj−1−log ytj−2

)
. For a fair comparison we

also use the time-varying step sizes (27) where α and β are obtained by minimizing the criterion

T−1∑
j=2

(
Σ̂B
tj + max{0, 2η̂2

tj} − (log ytj+2 − log ytj+1)2
)2 (45)
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(
the terms Σ̂B

tj + max{0, 2η̂2
tj} and (log ytj+2 − log ytj+1)2 are independent in the additive mi-

crostructure noise model log Ytj = Xtj + Utj with Utj i.i.d. - thus by using (log ytj+2 − log ytj+1)2

(45) becomes a decent estimate of the mean squared error (plus a term constant in α and β)
)
.

For η̂2
tj we use the step sizes 1

j−2 because η2
t should be close to a constant function.

All estimators use the true volatility as starting value. Typical outcomes of the estimators are

given in Figure 4. Note that volatility is plotted (instead of squared volatility). Because the true

Σ(tj) is known we can compute the mean squared error ΣT−1
j=2

(
Σ̂(tj) − Σ(tj)

)2 for all estimators

which gives 1.21×10−18, 1.14×10−18, and 1.34×10−18 (upper plot in Figure 4) and 3.20×10−19,

1.77 × 10−19, and 6.76 × 10−19 (lower plot in Figure 4) for the estimators Σ̂tj , Σ̃∗tj |tj , and Σ̂B
tj ,

respectively. In both plots, Σ̃∗tj |tj significantly outperforms the other estimators.

We have tried to improve the benchmark estimator by a bias correction similar to Section 5.

Surprisingly, this has lead only to minor improvements. (We have refrained from plotting this

estimator.) The reason for this is not clear: We think that the rounding in the values ytj is

responsible for the bad quality in that it leads to a (local) bias and higher fluctuations. Perhaps

the estimator may be improved a bit by modifying (28).

To further investigate the estimator Σ̃∗tj |tj we have also plotted in Figure 5 Σ̂tj and Σ̂
(1/2)
tj

from

(42) (i.e. all estimators with the same α and β used to optimize Σ̃∗tj |tj ) as well as the sequences

λj and κ∗j|j . The bias of Σ̂tj and Σ̂
(1/2)
tj

is clearly visible. Furthermore, it can be seen how the

estimator Σ̃∗tj |tj extrapolates these raw estimates to improve on the bias. During the period of

constant volatility the step size λj gets low because (28) is close to zero. Furthermore, κ∗j|j gets

close to −1 which implies Σ̃∗tj |tj ≈ Σ̂
(1/2)
tj

(which is the smoother estimate). During periods of

volatility changes the step size λj gets large and Σ̃∗tj |tj adapts more quickly to Σtj .

The general impression from figures 4 and 5 is that the estimators are undersmoothed. This

is in part due to the on-line procedure which (for constant λ) corresponds to a one-sided kernel.

Additional variability comes in from the particle filter where the estimated covariance matrix is

used instead of the true one. The third point is a limitation of the adaptation procedure from

Section 5 where the smallest possible λj is 1
1+exp (−α) . It is not very difficult to improve on that

(e.g. by using Σ̂
(1/4)
tj

with step-sizes λj/4 instead of Σ̂
(1/2)
tj

). The price to pay are estimates which

react much slower to changes of the volatility. Thus we feel that our estimates come close to

the need of practitioners who like to have a quickly reacting estimate and who prefer to correct

undersmoothed estimates by “eye inspection”.

7.2 Results for Real Data

We use stock data from the TAQ data base. Transactions and market maker quotes of the symbol

C (Citigroup) for the 3rd September 2007 were extracted from the TAQ data base. To improve

the data quality we carried out the following data cleaning and transformation.

Cleaning A: Delete all transactions (quotes) with time stamps outside the main trading period

(9:30 AM to 4 PM).
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Cleaning B: Delete all transactions (quotes) that are not originating from the NYSE.

Cleaning C: Delete all transactions with abnormal sale condition or corrected prices (see the

TAQ User’s Guide for details).

Data transformation: If multiple transactions have the same time stamp (after the data clean-

ing) apply the following transformation. Assume tj = tj+1 = . . . = tk−1 6= tk. Replace tl by

t′l = tj + (l − j)(tk − tj)/(k − j) for l = j + 1, . . . , k − 1.

After the data cleaning 16,287 transactions remained. The transformation replaces identical

time stamps with time stamps that are equally spaced. This transformation is necessary because

the time stamp precision of our data is limited to one second. We mention that the transformation

is only required for clock time volatility estimation. If the volatility is estimated in transaction time

then the times stamps are irrelevant (only the order of the transactions matters).

Unfortunately, the quality of the TAQ data is to poor to match easily the transactions with the

market maker quotes. Note that it is necessary for our method that the transaction and quote

data are perfectly matched. Therefore, our simulations are mainly focused on transaction data.

Estimation results for real market maker quotes

In order to show how our method works in the case when market maker quotes are available

(case 2 in Section 2) we matched by hand (through an adjustment of the time stamps) the quotes

and transactions of symbol C for a fraction of the trading day. As mentioned earlier, the quality

of our data is to poor to do this automatically. Our particle filter is used with N = 5, 000 particles

to estimate the filtering distributions of the unknown efficient (log-)prices. Figure 1 gives kernel

density estimates of filtering distributions of some efficient prices which are computed based

on the particle approximations. The market maker quotes, the transaction prices, and supports

of the filtering distributions are also shown. From the figure it can be seen that some filtering

distributions are highly skewed. In addition, consecutive zero returns lead to very uninformative

filtering distributions (see transactions 2,300 through 2,309).

Estimation results for real transaction data

We apply our estimators Σ̂tj and Σ̃∗tj |tj with N = 500 particles and the benchmark method Σ̂B
tj

(44) to estimate the spot volatility for C. To obtain a good initialization for the estimator Σ̃∗tj |tj the

initialization algorithm which proceeds in reversed time order is applied to the first 500 transac-

tions (see Section 6). For Σ̂tj and Σ̂B
tj an initial volatility of 0.0005 is used.

The transaction data of C and the volatility estimators are shown in Figure 7. At the beginning

of the trading day the volatility is large and highly varying. Later, the volatility settles down and

seems to be almost constant. Therefore, the localized step size selection from (27) is clearly

advantageous compared to fixed step sizes. Again the benchmark estimator is rougher than our

estimators. Practically, the volatility in transaction time is almost constant after 10:00.
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Figure 7: Real data example: Estimation of time-varying spot volatility in transaction time. The upper plot shows
the transaction data of the symbol C for the 3rd September 2007. The middle and the lower plot give the volatility
estimators Σ̂tj (turquoise line), Σ̃∗tj |tj (red line) and the benchmark estimator Σ̂B

tj (gray line).

Clock time spot volatility estimation

We now compare our two approaches for the estimation of spot volatility in clock time for symbol

C. The first estimator Σ̃∗ctj |tj is applied as described in Sections 4.1 and 5.2. α and β are optimized

with respect to (29) where Σ̆tj+1(ωtj+1) is replaced with Σ̆c
tj+1

(ωctj+1
). A plot of this estimator (not

presented) was quite poor – apart from some strong spikes caused by very small values of

tj − tj−1 and therefore very large values of Σ̆c
tj (ω

c
tj ) in (25), the volatility seemed to be strongly

oversmoothed. This is caused by the MSE-type criterion in (29) in combination with the very

large values of Σ̆c
tj (ω

c
tj ) acting like outliers and leading to small λj . We therefore intuitively took

2λj leading to the estimate which is plotted in Figure 8. The second estimator is the alternative

estimator Σ̂c
alt(tj) = Σ̃∗tj |tj/δ̄j proposed in Section 4.2 with the transaction time estimator Σ̃∗tj |tj

from Figure 7 (red line). For the duration estimator δ̄j we found empirically that a constant step

size suffices (because the duration curve roughly has constant smoothness over the trading day).

The used step size for δ̄j is determined by minimizing the prediction error ΣT−1
j=2 {δ̄j − (tj+1− tj)}2

leading to λ = 0.1025. (We mention that because of the dependence of the durations δ̄j and

(tj+1 − tj) usually are not independent and the minimization of the above criterion therefore is
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Figure 8: Real data example: Estimation of time-varying spot volatility in clock time based on the transactions of
symbol C for the 3rd September 2007. The upper plot gives the volatility estimators Σ̃∗ctj |tj (green line) and Σ̂calt(tj)

(red line). The middle plot shows the estimators for a fraction of the trading day. The averaged duration times δ̄j (for
a fraction of the trading day) are given in the lower plot (the y-axis shows seconds).

not approximately the same as the minimization of the mean squared error. Despite of this we

think that the resulting λ is reasonable. However, this should be investigated further.)

The estimation results are provided in Figures 8 and 9. First we state that both estimators

roughly coincide in magnitude (which was not clear beforehand). From the upper plot of Figure 8

we observe that Σ̃∗ctj |tj (green line) produces some large spikes during the trading day (due to

small values of tj − tj−1). The variability of Σ̂c
alt(tj) = Σ̃∗tj |tj/δ̄j is mainly a result of the variability

of the duration estimator δ̄j (plotted in the lower plot) because the transaction time estimator Σ̃∗tj |tj

is almost constant (apart from the beginning of the trading day – see Figure 7). The fluctuation

of the duration estimator is very high during the whole day.

Figure 9 compares the transaction data and the volatility estimates for a small time period.

The different behavior of the two estimators is apparent. We regard the strong spikes of Σ̃∗ctj |tj as

artificial due to small values of tj − tj−1. Furthermore, the estimator needs about one minute to

settle down again after the occurrence of a spike. On the other hand the small spikes of Σ̂c
alt(tj)

are caused by small averaged durations. For this reason we have more confidence in the second

estimator. In addition, it is theoretically more appealing (because the transaction time volatility is
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Figure 9: Real data example: Estimation of time-varying spot volatility in clock time based on the transactions of
symbol C for the 3rd September 2007. The figure only gives the results for a small fraction of the trading day (compare
Figure 8). The plots show (from top to bottom): transaction prices of C; our volatility estimators Σ̃∗ctj |tj (green line) and

Σ̂calt(tj) (red line); the averaged duration times δ̄j .

almost constant and the variability of the clock time volatility is mainly caused by the variability of

the trading intensity).

The second estimator is also more stable for another reason: Because volatility in transaction

time is less varying the particle filter in transaction time is more stable.

8 Concluding Remarks

Methodological Comments

We have presented a new technique for the on-line estimation of time-varying volatility based

on noisy transaction data. Our algorithm is easy to implement and computationally efficient.

It updates the volatility estimate immediately after the occurrence of a new transaction, and it

therefore is as close to the market as possible. It also corrects for the bias which occurs as a

result of the on-line estimation. It is straightforward to extend our method to more complicated

price models (e.g. with a drift term) or other microstructure noise models.
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Our work was guided by the goal to execute all calculations on-line in a high-frequency sit-

uation, and, at the same time, to base all methods on solid statistical principles. We feel that

this goal has been achieved: Our algorithm is computationally efficient and it can be applied in

real-time. On a recent personal computer an efficient implementation of our method requires a

few milliseconds for a single update of the estimator (including one iteration of the particle filter

with 500 particles). At the same time we use established or new statistical methods such as par-

ticle filters in nonlinear state space models, EM-type algorithms, and adaptation by quasi mean

squared error minimization.

The contribution of this work is manifold. First, we have proposed a nonlinear market mi-

crostructure noise model that covers bid-ask bounces, time-varying bid-ask spreads, and the

discreteness of prices observed in real data. Second, the problem of on-line volatility estima-

tion has been treated in a nonlinear state-space framework. It has been shown that the filtering

distribution of the efficient price can be approximated with a particle filter and that the volatility

can be estimated as a parameter of the filtering distribution. Third, we have presented a new

bias-corrected sequential EM-type algorithm which allows the on-line estimation of time-varying

volatility. Fourth, the problem of on-line adaptation has been treated satisfactorily (although still

a bid ad-hoc from a theoretical viewpoint). The usefulness of the approach for real-time applica-

tions has been demonstrated through Monte Carlo simulations and applications to stock data.

Practical Aspects

Besides the new microstructure noise model we make a clear distinction between the (spot)

volatility per time unit Σc(t) and the volatility per transaction Σ(t). Volatility in clock time usually

is much more volatile than volatility in transaction time. We advocate the use of transaction

time for modeling, i.e. to estimate Σ(t), together with a subsequent transformation based on

the trading intensity to obtain an estimator for Σc(t). At least for our data sets it turned out that

volatility in transaction time is almost constant (apart from the beginning of the trading day) and

the fluctuation of clock time volatility is merely a result of fluctuation of the trading intensity (or

the mean duration between subsequent trades). Thus a new focus in volatility estimation may

be on the modeling of trading times. It is an interesting open question whether major external

events do not only cause an increase in trading intensity but also an increase in transaction time

volatility.

Furthermore, we are convinced that the distribution of asset returns in a transaction time

model can be modeled in most situations quite well by a Gaussian distribution and many “jumps”

observed in security prices sampled on an equally spaced clock time grid are due to a drastically

increased number of transactions at that time. Our view is based on the investigation of several

data sets (not reported in this paper).

Another issue is the question for the correct goal in volatility estimation: We think that prac-

titioners are more interested in a rapidly adapting (i.e. close to unbiased) and undersmoothed
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estimator instead of an oversmoothed estimator. In that case minimizing the mean squared er-

ror would not be the optimal strategy. We have presented in this paper with the approximately

unbiased Σ̃tj |tj an estimator in this direction.

Mathematical Challenges

Of course it is desirable to have a complete mathematical theory on the methods of this paper.

However, we think that this is very hard to achieve. Here are a few comments in detail:

The results on the particle filter are mathematically exact given that the true volatility is known

(i.e. with Σ̂pf
tj

= Σtj ) including the results from Proposition 1 on the optimal proposal and the

importance weights. In particular it determines correctly the conditional distribution of the efficient

prices given the observations.

Even in the case of constant volatility and for the simplest estimator Σ̂tj from (21) it seems to

be very difficult to establish consistency and the asymptotic distribution. In the slightly simpler

context of i.i.d.-observations convergence properties of recursive EM-type algorithms have been

studied in Titterington (1984), Sato (2000), Wang and Zhao (2006), and Cappé and Moulines

(2009) where also proofs of consistency and asymptotic normality are provided.

For strict mathematical results on local consistency or asymptotic normality some rescaling

framework would be necessary. One approach could be to let the sampling frequency tend

to infinity which would mean in the present setting of non-equally spaced observations that

supj τ
′(j) → 0 where τ is defined as in Section 5.2. At the same time the maximal step size

had to go to zero, i.e. supj λj → 0. Furthermore the assumption supj τ
′(j)
/

infj λj → 0 would be

needed (this corresponds to the common assumption n→∞, bn→ 0 and b→ 0 for kernel esti-

mates with bandwidth b). All “≈”-signs in the appendix and most of the “≈”-signs in Section 5.2

mean that the remaining terms are of lower order if these assumption were fulfilled.

An even bigger challenge is to determine the approximate mean squared error for the estimate

(46) (with the particles instead of the efficient price as in the appendix). This would require to

prove the “≈”-sign in (31) and (even harder) to prove the corresponding relation for the variance.

A strict mathematical result on bias reduction by combining two on-line algorithms with different

step sizes (similar to (36) but with time-constant step sizes) has been proved in the context of

time-varying ARCH models in Dahlhaus and Subba Rao (2007).

Finally, it is a mathematical challenge to put the interplay between transaction time volatility

and clock time volatility on solid mathematical grounds - for example by proving consistency of the

estimator Σ̂c
alt(tj) = Σ̃∗tj |tj/δ̄j in a subordinated differential equation model dX(t) = Γ(t) dWN(t)

with an adequate point process N(t).

Outlook

In a forthcoming paper we extend the results to the on-line estimation of time-varying cross-

volatilities for non-synchronous trading times. This leads to a non-standard state-space model
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where the components of the state evolve non-synchronously in different discrete times. The

properties of this non-standard state-space model differ significantly from those of standard state-

space models. In particular, the state process does not fulfill a Markov property. We develop a

new particle filter that can cope with this situation.

9 Appendix

9.1 Proof of Proposition 1: The likelihood p(ytj |yt1:j−1 ,xtj ) is equal to one if xtj ,s ∈ logAtj ,s for

all s = 1, . . . , S and zero otherwise, that is

p(ytj |yt1:j−1 ,xtj ) =
S∏
s=1

1{xtj ,s ∈ logAtj ,s}.

This and (6) recursively imply the uniqueness of the conditional distribution p(xt1:j |yt1:j ). (Note

that p(ytj |yt1:j−1) does not depend on xt1:j and is therefore part of the norming constant.) It is

easy to verify that the optimal proposal satisfies

p(xtj |yt1:j ,xtj−1) ∝ p(ytj |yt1:j−1 ,xtj ) p(xtj |xtj−1).

Furthermore, the transition prior is given by p(xtj |xtj−1) = N (xtj |xtj−1 ; Σtj ) leading to the asser-

tion. The expression for the importance weights follows from

p(ytj |yt1:j−1 ,x
i
tj−1

) =

∫
p(ytj |yt1:j−1 ,xtj ) p(xtj |xitj−1

) dxtj =

∫
logAtj

p(xtj |xitj−1
) dxtj .

9.2 Calculation of the quasi mean squared error in Section 5.2: We now calculate and mini-

mize the mean squared error of

Σ̃ti|tj (λ) :=
(
1 + κ

)
Σ̂tj − κ Σ̂

(1/2)
tj

as an estimator of Σ(ti) with respect to κ. For several reasons the variance of the estimator is

very hard to derive (because of the recursive estimation scheme and the nonlinear microstructure

noise model). In order not to overstress heuristic considerations we minimize instead the mean

squared error of the above estimator in the case where the unknown efficient prices are used

instead of the filter particles and call this the quasi mean squared error.

We only give a brief sketch. As in Section 5 we only discuss the univariate case. We obtain

as in (32)

E Σ̃ti|tj (λ) ≈ Σ(ti)−
[
(1 + κ)

(
i− j̄

)
− κ

(
i− j̄ (1/2)

)]
Σ̇
(
j̄
)

(46)

and for the variance

Var
(
Σ̂tj

)
≈

j−3∑
k=0

[ k−1∏
`=0

(
1− λj−`

)2]
λ2
j−k 2 Σ(tj−k)

2 +
[ j−3∏
`=0

(
1− λj−`

)2]
2 Σ(t2)2

≈

[
j−3∑
k=0

[ k−1∏
`=0

(
1− λj−`

)2]
λ2
j−k +

[ j−3∏
`=0

(
1− λj−`

)2]]
2 Σ(tj̄)

2. (47)
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Similarly we obtain

Var
(
Σ̂

(1/2)
tj

)
≈

[
j−3∑
k=0

[ k−1∏
`=0

(
1−

λj−`
2

)2]λ2
j−k
4

+
[ j−3∏
`=0

(
1−

λj−`
2

)2]]
2 Σ(tj̄)

2

and

Cov
(
Σ̂tj , Σ̂

(1/2)
tj

)
≈

[
j−3∑
k=0

[ k−1∏
`=0

(
1− λj−`

)(
1−

λj−`
2

)]λ2
j−k
2

+
[ j−3∏
`=0

(
1− λj−`

)(
1−

λj−`
2

)]]
2 Σ(tj̄)

2.

The terms in the brackets can be calculated by the recursions (37) through (39). Therefore

Var
(
Σ̃ti|tj (λ)

)
≈
[
(1 + κ)2 v1,j + κ2v2,j − 2(1 + κ)κ v3,j

]
2 Σ(tj̄)

2

=
[
v1,j + κ (2v1,j − 2v3,j) + κ2 (v1,j + v2,j − 2v3,j)

]
2 Σ(tj̄)

2

leading to the mean squared error

E
(

Σ̃ti|tj (λ)− Σ(ti)
)2
≈
[
− (1 + κ)

(
i− j̄

)
+ κ

(
i− j̄ (1/2)

)]2
Σ̇
(
j̄
)2

+
[
v1,j + κ (2v1,j − 2v3,j) + κ2 (v1,j + v2,j − 2v3,j)

]
2 Σ(tj̄)

2 .

Minimization with respect to κ yields with Σ̇(j) = Σ′
(
tj
)
τ ′(j)

κmin =

(
i− j̄

)(
j̄ − j̄ (1/2)

)
Σ̇
(
j̄
)2 − 2 (v1,j − v3,j) Σ(tj̄)

2(
j̄ − j̄ (1/2)

)2
Σ̇
(
j̄
)2

+ 2 (v1,j + v2,j − 2v3,j) Σ(tj̄)
2

=

(
i− j̄

)(
j̄ − j̄ (1/2)

) [
∂
∂t log Σ(t)|t=tj̄ τ

′(j̄)]2 − 2 (v1,j − v3,j)(
j̄ − j̄ (1/2)

)2 [ ∂
∂t log Σ(t)|t=tj̄ τ

′
(
j̄
)]2

+ 2 (v1,j + v2,j − 2v3,j)
.
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