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Abstract

This paper studies a rational price bubble in a productive asset and
its e¤ect on the real economy in an overlapping generations model of a
small open economy with an analysis on a collateralized credit constraint.
As a consequence, the small open economy is vunerable to the bubble
emergence. Crucially for the policy-making, the credit constraint plays
a double-bladed role in the bubble emergence. That is, with the natural
credit limit which is evaluated at the fundamental value of the collateral,
a bubble cannot exist; while, if the �nancial intermediary sets the credit
limit at the expected value of the collateral, the credit constraint instead
helps support the bubble. Hence, the tight �nancial regulation and su-
pervision over the credit constraint are recommended for policymakers to
prevent or terminate the bubble.

1 Introduction

Throughout history, an small open economy has always been a platform for a
price bubble in a productive asset such as land and housing to emerge causing
an economic boom and a subsequent painful crash; for example Mexico in early
1980s, Japan in late 1980s1 , and East Asian countries in late 1990s. In com-
mon, the large amount of fund is borrowed and invested in the productive asset
during the boom period until the price collapses which leads to the widespread
default, �nancial turmoil, and severe recession. In this paper, this phenomenon
is explicitly formulated in a format of an overlapping generations model with
heterogeneous agents and endogenous supply of the productive asset (referred

1Although Japan is normally viewed as a large economy, there is an evidence that in late
1980s the monetary policy seemingly was constrained as the interest rate was kept at the low
level despite the overheating economy, see Noguchi[17]. The �xed interest rate characteristic
suits the small open economy assumption and results from this paper can be applied. However,
the di¤erence of Japan�s case from other emerging countries�is that Japan bubble was fueled
by its own enormous saving, not from abroad.
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to as factory buildings) in both the absence and presence of the collateral credit
constraint.
Essentially, three contributions can be highlighted from this paper. Firstly,

the small open economy possesses the loose wealth constraint and hence can fuel
the bubble with the cheap loan from abroad. Gambling that the bubble will not
crash in the near future, agents borrow and purchase bubbly factory buildings
in the hope of high capital gain. Secondly, due to the endogenous supply, the
bubble induces the over-construction and overutilization of factory buildings
which result in an unnecessarily sharp drop in the price level (when the bubble
bursts) and the prolonged recession afterward as the economy converges back
to the steady state. Lastly and most strikingly, the collateral credit constraint
can either terminate or help originate the bubble depending on the type of the
credit limit is used: the natural or the expectedly-valued limit.
Particularly, in the stochastic economy with the incomplete market, the

credit limit should be set equal to the level known as the natural credit limit
(see Aiyagari [2]) which is equal to the lowest possible value of collateralized
factory buildings in possession. Since the bubble induces large supply of factory
buildings, the fundamental price decreases and hence lowers the ability for agents
to a¤ord the bubble. As a result, the rational bubble cannot exist. However,
the historical evidence over many �nancial episodes suggests that the �nancial
sector does not follow the natural credit limit practice: the credit limit rapidly
expands according to the market value of factory buildings over the boom and
the �nancial intermediary faces a great loss due to the widespread default in the
crash time; for instance, see Dubach and Li [7]. Therefore, the expectedly-valued
credit limit is alternatively investigated. With this constraint, as the bubble is
growing, the credit limit is being relaxed, and hence helps magnify the bubble
in the positive feedback loop fashion. Furthermore, the expectedly-valued can
even help endogenise the initial bubble2 . In regard of the policy implication, this
double-bladed role of credit constraint calls for the careful �nancial regulation
and supervision to prevent the bubble.
Several works are related to this paper. In the general equilibrium setting,

the transversality condition is the main reason for the non-existence of bub-
bles (for example, see Tirole [22], Obstfeld and Rogo¤ [18], Magill and Quinzii
[16], Santos and Woodford [20], and Kocherlakota [12]). However, Tirole [23]
and Caballero and Krishnamurthy [3] shows that in the overlapping generations
framework bubbles can emerge if the economy is dynamically ine¢ cient. In
this paper, relaxing the transversality condition by using the small open as-
sumption with the de�nite crash probability setting is adopted rather than the
dynamically ine¢ ciency argument for the bubble to emerge.
The most related framework to the present paper is by Weil [24] which

incorporates the probability for the price of an asset to once-and-for-all collapse
to its fundamental value. Additionally, the collateralized credit constraint in

2As in Diba and Grossman [5, 6], Weil [25], and Jarrow, Protter, and Shimboposits [10], if
a rational asset bubble exists, it must have started on the �rst day of trading. This present
paper also shares this feature. The expectedly-valued credit constraint can help endogenise
the bubble in the �rst period with respect to the unexpected shock on the interest rate.
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the spirit of Kiyotaki and Moore [11], where an asset (factory buildings in this
paper) play the dual role as being a factor of production and the collateral for
the loan, is introduced. The presence of the collateral credit constraint brings
about the balance-sheet e¤ect which is studied extensively in the literature (for
instance, see Krugman [14], Aghion, Bacchetta, and Banerjee [1], and Schneider
and Tornell [21]). Although the e¤ect disappears in the natural credit limit, it
is crucial in the expectedly-valued credit limit case.
This paper is organized as follows. Section 2 analyzes the deterministic

economy after the bubble crash. Based on the fundamental price level derived in
the after-crash economy, Section 3 examines the stochastic before-crash economy
in various environments. Next, the e¤ect of the bubble on the real output is
provided in Section 4. Lastly, Section 5 concludes the paper.

2 After-Crash Economy

This section �rstly examines the deterministic economy to search for the funda-
mental price path so that the next section can study a bubble in the stochastic
economy de�ned upon this fundamental price by using backward induction.
Consider an overlapping generations model of a small open economy with two-
period-lived agents and the perfect international capital mobility. The economy
faces the �xed world interest rate r� 2 R+ and all markets are competitive.
There are two goods in this economy which are a factory building 3 and a

composite-consumption good. The price of the consumption good is set equal to
1 as the numéraire. Denote pt 2 R++ as the period t price of factory buildings in
term of consumption good. In addition, factory buildings are the non-tradable
good.
Each generation is populated with n1 contractors and n2 producers. Each

type is initially endowed with the constant amount of consumption good W . At
the end of the young period, each contractor and producer accesses to technology
to construct factory buildings and to produce consumption good respectively.
Available saving channels are only through the �nancial intermediary and avail-
able production.
Denote subscript i = 1; 2 referring to variables related to the contractor and

to the producer correspondingly. Both types have a linear life-time utility func-
tion ci1t+�ci2t, where ci1t;ci2t 2 R+ represent the consumption of a generation
t agent of type i when they are young and old respectively, and � 2 (0; 1] is
a discount factor4 . Additionally, the patient economy where �(1 + r�) > 1 is
assumed5

3 It can be interpreted as any durable good which is an input of the production of goods
and services, for example working o¢ ces and kiosks.

4Note that the model speci�cation is designed for the tractability reason. In order to be
capable of later studying the credit constraint analytically, the risk averse preference and the
wage dynamic are drop o¤.

5This patient economy assumption is not crucial. The analysis over the impatient economy
where �(1 + r�) < 1 can also be conducted and similar insights will be obtained. Since
considering this case costly lengthens the paper, it is ignored here.

3



The young contractor chooses the amount of the borrowing b1t 2 R and
investment in capital input kt 2 R+ which is used to construct new factory
buildings in the next period y1t 2 R+ through the concave production function
assumed to be of the Cobb-Douglas form: y1t = Ak�t . The capital is depreciated
at rate � 2 (0; 1].
Given the factory depreciation rate � 2 (0; 1], the no-arbitrage condition

between the borrowing and capital investment results below.

r� + � = pt+1�Ak
��1
t (1)

Intuitively, the contractor�s demand for capital input depends on tomorrow�s
price of factory output: the higher factory price prevails next period, the more
pro�table the contractor perceives and the more he invests in factory buildings
today.
Next, according to Equation 1, the law of motion of factory stock per pro-

ducer can be written below: tomorrow�s level of factory stock is the sum between
today�s level of factory stock and the newly-built factory buildings, which are
determined by tomorrow�s factory price.

ft+1 = (1� �)ft + �p
�

1��
t+1 (2)

where � = An1
n2

�
�A
�+r�

� �
1��

.

For the young producer, the decision between borrowing b2t 2 R and factory
purchase ft 2 R+, which is used to produce consumption good in the next
period y2t 2 R+ through the concave production function assumed to be of
the Cobb-Douglas form Bf"t , is processed. Additionally, he faces the following
credit constraint.

(1 + r�)b2t � (1� �)pct+1ft (3)

where pct+1 is the price which the �nancial intermediary uses to evaluate the
value of the collateral next period.
This credit constraint limits the amount of borrowing based on value of the

collateral which is factory buildings in possession. In the spirit of Kiyotaki and
Moore [11], this happens because of the asymmetric information problem. The
risk-neutral �nancial intermediary cannot verify how much consumption good
the producer actually produces. Thus, the producer may intentionally misre-
port the productivity and default. On the contrary, factory buildings cannot
be secretly sold due to the durability and the immovability which make the
veri�cation on contractors relatively easy. As a result, to eliminate the default
risk on the part of producers, factory buildings are required as the collateral for
the loan. In other words, the debt obligation cannot exceed the future value of
factory buildings in possession.
For the sake of analysis, �rstly consider the baseline case where there is no

credit constraint for the producer. Then, use the obtained result to analyze the
economy with the credit constraint afterward.
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2.1 Without credit constraint: the baseline model

In the absence of credit constraint, the producer demands for factory buildings
optimally at the level that equates the return of factory investment to the risk-
free return as in Equation 4.

"Bf"�1t + (1� �) pt+1
pt

= (1 + r�) (4)

Therefore, according to Equation 2 and Equation 4, the after-crash system
in the baseline case is presented below as the system of two �rst-order di¤erence
equations. Equation 5 provides the positive steady state of the system. Denote
xt = (pt; ft), �x =

�
�p; �f
�
, and de�ne the after-crash system below as xt+1 = �(xt)

where � : R2+ ! R2+.

�
pt+1
ft+1

�
= �(xt) =

264
( �

1+r�

1��

�
pt � 


(1��)f�t
if positive

0 if otherwise
(1� �)ft + �p	t+1

375
�
�p
�f

�
=

264 �
�
�

� �
1��	

�



r�+�

� 1
1+�	

�
�
�

� �
1��	

�



r�+�

� 	
1+�	

375 (5)

where � = 1� ", 	 = �
1�� , and 
 = "B

6 .
The after-crash dynamics are de�ned by sequences of factory price and stock

fptg1t=T and fftg
1
t=T where T is the time of crash such that they satisfy the

system � with a given factory stock of the crash period fT . The system �
demonstrates the rich interaction between today�s and tomorrow�s levels of both
factory price and stock. The supply of newly-built factory buildings from the
contractor depends on tomorrow�s factory price. The demand for factory build-
ings depends not only on the future price in term of capital gain, but also on
the factory stock itself in term of rent. Given today�s price, if today�s factory
stock is large, which translates into the low rent, tomorrow�s price has to be
high for the no-arbitrage condition (Equation 4) to hold.
Standard de�nition of the fundamental value of an asset (for example, see

Santos and Woodford [20]) is the expected present value of the stream of its
dividends. This de�nition becomes problematic in this context. To see this,
Equation 4 can be re-written as follows.

pT =
lT+1
1 + r�

+
(1� �)lT+2
(1 + r�)2

+
(1� �)2lT+3
(1 + r�)3

+ : : :

where lt is denoted as the rent the producer attain at period t: lt = "Bf
"�1
t .

6The lower-bound condition in the system � implies that when the expectation of the
tomorrow�s factory price is negative, factory buildings become useless and have zero value.
Consequently, no new factory building will be produced thereafter.
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Letting limt!1
(1��)t�1lT+t
(1+r�)t = 0 normally implies no bubble in the standard

de�nition. However, the system � implies that the sequence of rents fltg1t=T in
turn relies on pT itself. In other words, di¤erent pT generates di¤erent corre-
sponding sequence of rents so any pT can be all considered as the fundamental
price in the standard de�nition. With this price-dividend dependency dissatis-
faction, new de�nition is demanded.
De�nition 1 A function �(ft) where � : R++ ! R++ is a fundamental price

function if for any ft 2 R2++, (�(ft+1); ft+1) = �(� (ft) ; ft) and �fng (� (fT ) ; fT )
is �nite for all n 2 N where �fng means n-time iteration of the system �. �
In words, the fundamental price here is the positive equilibrium price path

whose price and stock both do not explode eventually. This resembles the com-
mon transversality condition or wealth constraint (see Tirole [23] and Obstfeld
and Rogo¤ [18]). Intuitively, an open economy within the world of �nite number
of countries can still a¤ord the factory stock with an increasing price only if the
growth rate of the world is higher than the growth rate of the bubble7 . Other-
wise, there will be a generation that cannot a¤ord factory buildings in the future
which causes the solution infeasible in the forward-looking model. However, the
small open economy assumption together with the exogenous crash probability
generates the possibility for the �nite-period explosive price path.
Now, we are in the position to de�ne a bubble used in this paper.
De�nition 2 A bubble is a di¤erence between the actual and the funda-

mental price de�ned in De�nition 1: pt � �(ft). �
Thereby, the de�nition of a bubble here is weaker than the standard one due

to the stronger de�nition of the fundamental value. Since the price of the asset
can a¤ect its future dividends, the bubble may be easily misperceived as the
fundamental price. This is probably the reason why bubbles in the real world
are very hard to be early detected, not until it bursts.
From De�nition 2, the fundamental price function is required in order to

study a behavior of the bubble. The below proposition serves this purpose. In
words, the proposition states that there exists the unique fundamental value
at any given level of factory stock. Moreover, the more factory stock in the
economy, the lower the fundamental price becomes. Intuitively, when supply of
factory buildings rises, the price decreases to clear the market, see Figure 1.
Proposition 1 For the system �, there exists �(ft) which is unique, con-

tinuous, strictly decreasing, and satisfying limn!1 �
fng (� (fT ) ; fT ) = �x. �

Proof Basically, �(ft) is derived from the globally stable manifold of �. See
Appendix. �

7Note that the zero population and endowment growth assumption implies the zero growth
rate of the world.
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Figure 1: The fundamental price path

2.2 With credit constraint

In the deterministic context, pct+1in Equation 3 is simply equal to the actual
future price pt+1. Now, the producer�s desired level of borrowing b2t may not
be granted. Since the producer is patient �(1+ r�) > 1, he consumes only when
he is old c21t = 0, so the optimal debt obligation is expressed below.

(1 + r�) b2t = (1 + r
�) (ptft �W )

From Equation 4, the collateral value can be written as (1 � �)pt+1ft =
(1 + r�)ptft + "Bf

"
t . Consequently, the critical value f̂ can be de�ned below

as the level of factory stock that equates the debt obligation to the collateral
value.

f̂ =

�
(1 + r�)W

"B

� 1
"

Hence, for any ft � f̂ the credit constraint binds and vice versa. Note
that @f̂

@W > 0. Intuitively, when the producer possesses the larger amount of
endowment, he borrows less and the economy tends to be less credit-constrained.
Next, the binding credit constraint case, using (1+ r�)b2t = (1� �)pt+1ft as

a constraint, is analyzed. This applies only to the economy with ft � f̂ . The
factory investment optimal condition is derived below.

�(1 + r�)"Bf"�1t + (1� �) pt+1
pt

= (1 + r�) (6)

Considering this case leads to the possibility of violating the young consump-
tion non-negativity constraint c21t � 0. From Equation 6 and the binding credit
constraint, the optimal debt can be derived as follows.

b2t = ptft � �"Bf"t
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Then, the other critical value ~f can be de�ned as the level of factory stock
that makes c21t = 0.

~f =

�
W

�"B

� 1
"

Thereby, conditional on ft � f̂ , for any ft � ~f the non-negativity constraint
binds and vice versa, and the optimal factory investment condition is derived
from the binding credit constraint and c21t = 0, resulting in Equation 7 below.

(1 + r�)Wf�1t + (1� �) pt+1
pt

= (1 + r�) (7)

Since �(1 + r�) > 1 is assumed, ~f < f̂ ; thus, the domain of factory stock
f 2 R++ is divided into two regimes only: f 2 (0; f̂ ] is the non-binding regime
(non) where Equation 4 holds, and f 2 [f̂ ;1) is the credit-binding regime (cb)
where Equation 7 holds8 .
Denote �xj =

�
�pj ; �fj

�
, and de�ne the below system as xt+1 = �j(xt) where

�j : R
2
+ ! R2+ and j = non; cb.

�j(xt) =

�
pt+1
ft+1

�
=

264
( �

1+r�

1��

�
pt � 
jt

(1��)f�t
if positive

0 if otherwise
(1� �)ft + �p	t+1

375
�
�pj
�fj

�
=

264 �
�
�

� �
1��	

�
�
jt
r�+�

� 1
1+�	

�
�
�

� �
1��	

�
�
j

r�+�

� 	
1+�	

375 (8)

where 
non;t = �
non = "B for the non-binding system, and 
cb;t =
(1+r�)W

f"t

with �
cb =
(1+r�)W

�f"cb
for the credit-binding system9 .

Proposition 2 Given �(1 + r�) > 1, there exists a time-invariant critical

value f̂ =
h
(1+r�)W

"B

i 1
"

which separates the system into the non-binding regime

f < f̂ and the credit-binding regime f > f̂ . �
Proof As already shown in the text. �
To prevent any confusion, the following terminology is de�ned.
De�nition 3 The system �j is regime-dependent if j is changed according

to which regime the dynamics currently are located in10 . �
8Note that the credit-binding regime here is de�ned as both the credit and non-negativity

constraints are binding.
9Note that the system � in Proposition 1 is exactly the same as the system �non.
10For example, suppose that (pT ; fT ) is located in the regime non and then jumps into

the regime cb in the next period. Then the dynamics in the period T + 2 are determined as
follows: (�T+2; fT+2) = �cb(�non(pT ; fT )).
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Hence, the after-crash dynamics are de�ned by sequences of factory price
and stock fptg1t=T and fftg1t=T where T is the time of crash such that they
satisfy the regime-dependent �j with a given factory stock of the crash period

fT . The steady state in Equation 8 and the critical values f̂ in Proposition 2
divide an analysis into two di¤erent cases which depends upon the level of the
initial endowment. To be precise, this low or high endowment translates into
whether the valid steady state of factory stock is located on the right or the left
of f̂ respectively. For a given set of parameter values, the economy can only fall
into one of the following two cases11 .

� Economy 1: �fnon < �fcb < f̂ .

� Economy 2: f̂ � �fcb < �fnon.

As in the baseline model, the deterministic after-crash economy is the un-
derlying ground for the bubble in the stochastic before-crash economy to build
on; hence, the fundamental price path is �rstly needed to determined. The fun-
damental price in De�nition 4 below is a slight modi�cation of De�nition 1 to
suit the more complex system with credit constraint.
De�nition 4 A function �(ft) where � : R++ ! R++ is a fundamental price

function if for ft 2 R++, (p(ft+1); ft+1) = �j(� (ft) ; ft) and �
fng
j (� (fT ) ; fT ) is

�nite for all n 2 N , where �j is regime-dependent. �
Proposition 3 below characterizes the fundamental price function in each of

the above two economies. It turns out that the fundamental price with the same
topological properties as in Proposition 1 is obtained: unique, continuous, and
strictly decreasing in f .
Proposition 3 Given fT 2 R++ and regime-dependent �j , there exists

a unique, continuous, and strictly decreasing fundamental price function � :
R++ ! R++ in which,

� for Economy 1: limn!1 �
fng
j (� (fT ) :fT ) = �xnon.

� for Economy 2: limn!1 �
fng
j (� (fT ) :fT ) = �xcb. �

Proof See Appendix. �
Intuitively, being constrained by the credit constraint and non-negativity

constraint should result in the lower fundamental value than it would have been
without the constraint. In particular, agents need a su¢ cient borrowing to
purchase factory buildings at the normal fundamental value. Credit constraint
limits the ability to a¤ord factory buildings at the normal fundamental value;
consequently, the fundamental value is required to fall. Proposition 4 captures
this intuition.
Proposition 4 The binding credit and non-negativity constraints reduce

the level of the fundamental value. �
11Note that in the view of Proposition 2 there is only one valid steady state in each case .

For example, Economy 1�s steady state is �fnon, not �fcb. �fcb is stated to show the topological
property of the system and it is useful in the proof of Proposition 3 below.
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Proof This is proved by directly comparing the fundamental price function
derived from Proposition 1 with the one from Proposition 3, see Figure 2a-b12

�

xnon

f
f

p

x
''' xbb

xcb

xnon

f
f

p

Figure 2a: �(f) of Economy 1 Figure 2b: �(f) of Economy 2

3 Before-crash economy

Based on the deterministic economy in the former section, now the stochastic
economy is analyzed. Taking the after-crash economy as given, the economy
follows a Markov process between two states: optimism and pessimism. Being
optimistic today, there is a �xed probability q to change to the pessimism next
period. It is assumed that the pessimism occurs once and for all. The transition
matrix is given below. �

1� q 0
q 1

�
This Markov process certi�es that in the future the optimism will crash with

probability one. This is easily seen as shown below.

Pr(E) = lim
t!1

(1� q)t = 0

where Pr means probability and E is an event that the pessimism never occurs
for all time13 .
As long as agents are still con�dent about the boom period and enjoying the

high capital gain �nanced by the overseas capital in�ow, the economy can be
o¤ the fundamental path temporarily. In particular, the before-crash economy
operates by means of the expected value between optimistic and pessimistic
states. The pessimistic state is referred to as the after-crash economy which has

12The solid line is the fundamental price function when there is the credit constraint; while,
the dash line is the one when there is no credit constraint.
13The argument that agents expect the pessimism to eventually occur and the bubble will

surely collapse so the borrowing from abroad will not reach in�nity is debatable. One can
address that the expected future borrowing still can become very large and this may violate
the small open economy assumption. However, this is the best justi�cation that permits
examination of a bubble-followed-by-crash scenario.
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been analyzed. Therefore, the optimistic price also endogenously rests on the
fundamental price. When agents suddenly become pessimistic, the factory price
sharply collapses to the fundamental price. Denote ph and pl as the factory price
corresponding to the optimistic or �high-value�state, and the fundamental or
�low-value�state respectively.

3.1 The before-crash baseline economy

Without credit constraint, agents make decision upon the expected future price.
Hence, the before crash system is derived simply by replacing the actual level of
future price pt+1 with Et(pt+1) in the system � and get the new system, denoted
as ', below.

' (xht) =

�
'1 (xht)
'2 (xht)

�

=

�
pht+1
ft+1

�
=

24 (1+r�)pht
(1�q)(1��) �



(1�q)(1��)f�t

� qplt+1
(1�q)

(1� �)ft + �
��

1+r�

1��

�
pht � 


(1��)f�t

�	
35

where plt+1 = �(ft+1)14 .
Given f0 2 R++, the crash time period T , and ph0 > �(f0), the before-crash

dynamics fphtgT�1t=0 and fftg
T�1
t=0 are determined by the system '. Remind that

' applies only up to the period T � 1, just before the crash. During these
periods, only the high price ph is realized ex post.
Next, Proposition 5 characterizes the bubble in regard to the monotonicity

of the dynamic of the factory price and stock. This is of the interest because
the bubble event is normally �acknowledged� as the increase in factory price
and hence stock over time. Proposition 5 con�rms precisely that the present
model can replicate this pattern for any given initial price higher than a unique
threshold level. Kindly note that the price considered in Proposition 5 is the
high-realization price ph of the system ', not p from the after-crash system �.
Proposition 5 Under the system ', for any given (ph0; f0) where f0 2 R++

and ph0 > �(f0), there exists a threshold function �̂(f) satisfying the following
properties:

1. �̂(f) � �(f) for all f 2 R++.

2. �̂(f) is continuous, strictly decreasing in f over (0; �f ] and strictly increas-
ing in f over ( �f;1) where �f is the valid steady state.

3. For any t � T � 1, pht+1 > pht and ft+1 > ft if and only if pht > �̂(ft).

4. For a su¢ ciently large T , there exists t̂ < T � 1 with pht̂ > �̂(ft̂), pht+1 >
pht, and ft+1 > ft for all t̂ � t � T � 1. �

14Unlike the after-crash system, the before-crash system ' is stated without the boundary
concern due to the reason that the optimistic price, later, turns out to only be higher than or
at least equal to the fundamental price which is positive.
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Proof See Appendix �
For ph0 > �̂(f0), both factory price and stock keep increasing until the

bubble bursts; while, for ph0 > �̂(f0), the bubbly price can be temporarily
decreasing in the beginning of the bubble path15 . To sum up, this section shows
that the small open economy without credit constraint is a well-constructed
platform for the bubble to emerge. Optimistic producers expect the high price
for the high capital gain and the expectation is self-ful�lling. With the high
price expectation, the contractor builds more factory buildings. However, the
bubble is fragile. When the pessimism occurs, the price collapses down to the
fundamental level and the economy stays on the fundamental path converging
to the steady state16 .

3.2 The before crash economy with the credit constraint

With credit constraint, agents make decision upon the expected future price
and the collateral-evaluation price pct+1 which is determined by the �nancial
intermediary. As being assumed to be risk-neutral, the �nancial intermediary
safeguards itself by setting pct+1, and hence the credit limit, at the level that
always guarantees the return of lending equal to the cost of fund, 1+ r�. Then,
it should rationally evaluate the collateral value at the lowest possible future
price level: in general, this implies pct+1 = minfpht+1;plt+1g where plt+1 =
�(ft+1)

17 . The reason lies on the fact that in the bad realization, the borrower
defaults and the �nancial intermediary obtains the low-valued collateral which
is worth less than the actual debt obligation; while, in the good realization
the �nancial intermediary gets no extra bene�t since the borrow just repay
the debt. Therefore, the ex ante expected return is lower than 1 + r� for any
pct+1 > minfpht+1;plt+1g. This credit limit (1� �)minfpht+1;plt+1gft is known
as a �natural� limit. The below subsection analyzes the before-crash economy
with this credit constraint.

3.2.1 The before-crash natural credit limit

Intuitively, the existence of the bubble induces the increase in the supply of
factory buildings. To fuel the bubble, the additional borrowing is required. In
the presence of the binding natural collateralized credit limit where pct+1 =
minfpht+1;�(ft+1)g, the increase in the factory supply lowers the fundamental
price of factory buildings and hence pct+1. This lessens the ability of the pro-
ducer to borrow; as a result, the bubble might be ruled out. Precisely, the
15Unlike Weil [25], this decreasing price does not need the dependency between the existence

of bubbles and fundamental value.
16Note that in Proposition 5 the given ph0 > �(f0) is required for the bubble existence of

any other period t. In other words, if a rational asset bubble exists, it must have started on
the �rst day of trading. This is consistent with the standard bubble literature (see Diba and
Grossman [5, 6], Weil [25], and Jarrow, Protter, and Shimboposits [10])
17 In the normal bubble context, the lowest possible price level should be the fundamental

price since the bubble is usually perceived to be positive. However, technically it might be
possible that the endogenous optimistic price pht+1 turns out to be lower than the fundamental
price plt+1.
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next proposition states the impossibility of bubble emergence con�rming this
intuition.
Proposition 6 In the case of Economy 2 with f0 � f̂ with the before-crash

natural credit limit where pct+1 = minfpht+1;�(ft+1)g, the bubble cannot exist.
�
Proof The �rst step is to show that for any ft � f̂ , the before-crash econ-

omy is credit-binding. For the non-binding region, Equation 9 and 10 replace
Equation 2 and 4 respectively.

ft+1 = (1� �)ft + �Et(pt+1)
�

1�� (9)

"Bf"�1t + (1� �)Et(pt+1)
pht

= (1 + r�) (10)

where Et(pt+1) = (1� q)pht+1 + qplt+1 where plt+1 = �(ft+1).
Therefore, the credit constraint is binding when the following condition

holds.

(1 + r�) b2t = (1 + r
�) (phtft �W ) � (1� �)pct+1ft

=) ft +

�
1� �
"B

�
[Et(pt+1)� pct+1]ft � f̂

So, if ft � f̂ , the credit constraint is binding.
When the credit constraint is binding, Equation 11 below (which replaces

Equation 6 in the after-crash economy) holds.

�(1 + r�)["Bf"�1t + (1� �) (Et(pt+1)� pct+1)ft] + (1� �) pct+1
pht

= (1 + r�)

(11)
According to Equation 11, the non-negativity constraint is binding when the

following condition holds.

c21t =W +
(1� �)pct+1ft
(1 + r�)

� phtft � 0

=) ft +

�
1� �
"B

�
[Et(pt+1)� pct+1]ft � ~f

Therefore, if ft � f̂ , both of the credit and non-negativity constraints are
binding18 .
The second step is to show that the fundamental price path is a unique

solution for the case of Economy 2 with f0 � f̂ . When both constraints are

18Note that �(1 + r�)"Bf"t > (1 + r
�)W when the economy is patient means ft > f̂ .
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binding, Equation 12 (which replaces Equation 5 in the after-crash economy)
holds.

(1 + r�)Wf�1t + (1� �) pct+1
pht

= (1 + r�) (12)

Firstly, consider the system where pct+1 = plt+1 = �(ft+1). Thereby, the
before-crash credit-constrained system (from Equation 9 and 12), denoted as �,
is the following.

�(xht) =

�
pht+1
ft+1

�

=

�
�1(xht)
�2(xht)

�
=

24 1
(1�q)

�
ft+1�(1��)ft

�

� 1
	 �

�
q
1�q

�
�(ft+1)

��1
��

1+r�

1��

��
pht � W

ft

��
35

where pht � �(ft) = pct for all t < T .
As being Economy 2, for any xht on the globally stable manifold of �cb, the

dynamics of � is exactly the same as �cb. This implies that the steady state of
the above system is �xcb. Moreover, the stable manifold of this system and the
fundamental price function �(ft+1) coincide over the domain [f̂ ;1).
Since f0 > f̂ , given x0 = (�(f0); f0) and any x00 = (�(f0) + �; f0) where

� > 0, �1(x
0) > �1(x

00) and �2(x
0) > �2(x

00). This means that the dynamics
cross the fundamental price path, pht+1 < �(ft+1) = pct+1, which contradicts
pct+1 = plt+1 = minfpht+1;plt+1g.
To see more, linearize � at �xcb. The characteristic equation is as follows.

jD�(�xcb)� �Ij = �2 + [�� +�+��]�� �[(1� �)]� = 0

where � = (� �fbb)
1�	
	

(1�q)	�
1
	
> 0, � = �

�
1+r�

1��

�
��10 (�pcb) > 0, � = q(1+r�)

(1�q)(1��) > 0,

and � = W
�f2bb
> 019 .

Since ��[(1 � �)]� < 0 and, as having been shown, there exists the stable
manifold, 0 < �1 < 1 and �2 < 0. This con�rms the �nding that the dynamics
of � oscillate across the stable manifold, which is the fundamental price path.
Therefore, for any ph0 > �(f0), pct+1 6= plt+1, which is a contradiction.
Alternatively, consider the system where pct+1 = pht+1. It turns out that the

system �cbis obtained. Since �cb is topologically equivalent to �, Proposition
5 states that for any pht > �(ft), pht+1 = pct+1 > �(ft+1) for all t < T which
contradicts pct+1 = pht+1 = minfpht+1;plt+1g.
As a result, for pht > �(ft), neither pht+1 nor plt+1 can be pct+120 . This

concludes that pht must be �(ft) which proves that the bubble cannot exist. �
19Note that ��10 (�pcb) =

d��1

dplt+1

���
plt+1=�pcb

.

20Note that for pht < �(ft), if pct+1 = pht+1, the factory price and stock dynamics will
eventually be negative which is not allowed in the forward-looking equilibrium.
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The proposition shows that if the �nancial sector follows this natural credit
limit practice, the existence of the credit constraint helps prevent bubbles. Then,
the question is what goes wrong in the real world. Throughout the history, many
�nancial crises that the world has experienced indicate that the �nancial inter-
mediary does not behave in this manner. In the Asian crises, including Japan�s
bubble burst, the �nancial intermediary did not lend out according to the low-
est possible value of the collateral, but the market value or the expected value
instead. This loose lending policy may be justi�ed by banking characteristics
in these countries which may give the �nancial intermediary the extra bene�t
in the high-realization state; for example, the symbiotic relations between the
�nancial intermediary and industrial corporations, and the equity-linked asset
holding of the �nancial intermediary (see Dubach and Li [7], Radelet, Sachs,
Cooper, and Bosworth [19] and Charumilind, Kali, and Wiwattanakantang [4])
In Japan during 1980s, the shift in tendency to rely more on equity and equity-
linked �nancing instead of borrowing from the �nancial intermediary causes
the lending competition more intense and might lead to this risky lending, (see
Noguchi [17]).
In what follows, the case which the �nancial intermediary assesses the collat-

eral at the expected value pct+1 = Et(pt+1) > �(ft+1) is assumed. Interestingly,
the dramatic di¤erence in outcome is obtained: the credit constraint helps bub-
bles to emerge.

3.2.2 The before-crash expectedly-valued credit limit

Using pct+1 = Et(pt+1), the before-crash system, written in term of ph and
denoted as xht+1 = 'j(xht) where 'jm for m = 1; 2 accordingly below, can be
attained simply by replacing pt+1 in the after-crash system �j by Et(pt+1).

'j (xht) =

�
'j1 (xht)
'j2 (xht)

�

=

�
pht+1
ft+1

�
=

24 (1+r�)pht
(1�q)(1��) �


jt
(1�q)(1��)f�t

� qplt+1
(1�q)

(1� �)ft + �
��

1+r�

1��

�
pht � 
jt

(1��)f1�"t

�	
35

where plt = �(ft) and j = non; cb.
In the presence of the expectedly-valued credit limit, the regime-switching

critical value in Proposition 2 is not a¤ected. In other words, here f̂ is indepen-
dent of the crash probability q. So, the before-crash and after-crash systems of
the same regime operate on the same region which makes the framework simple
to analyze.
Unlike the former section, when the credit limit is set by the expected value

of the future collateral in possession, the bubble itself increases the expected
price over time and hence enlarges an ability of the producer to borrow. This
positive feedback loop between the rising bubble and the ease in borrowing
helps fuel the bubble over time. Written analogously to Proposition 5, the
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next proposition shows that the bubble exists for any ph0 > �(f0); moreover, it
characterizes the system 'j to �nd threshold function �̂(f) which results in the
increasing dynamics of factory price and stock over before-crash periods. Figure
3a-b show �̂(f) in Economy 1 and 2 respectively.

A1

xnon

f

f

f
f

p

xb b
xcb

f

f

f
f

p

Figure 3a: �̂(f) of Economy 1 Figure 3b: �̂(f) of Economy 2

Proposition 7 Under the regime-dependent system 'j , for any given
(ph0; f0) where f0 2 R++ and ph0 > �(f0), there exists a threshold function
�̂(f) satisfying the following properties:

1. �̂(f) � �(f) for all f 2 R++.

2. �̂(f) is continuous, strictly decreasing in f over (0; �fj ] and strictly increas-
ing in f over ( �fj ;1) where �fj is the valid steady state.

3. For any t � T � 1, pht+1 > pht and ft+1 > ft if and only if pht > �̂(ft).

4. For a su¢ ciently large T , there exists t̂ < T � 1 with pht̂ > �̂(ft̂), pht+1 >
pht, and ft+1 > ft for all t̂ � t � T � 1. �

Proof See Appendix. �
In contrast to the natural credit limit case, the expectedly-valued credit

constraint recovers the bubble platform like in the baseline case. Moreover,
subject to an exogenous world interest rate shock (the �nancial liberalization,
for example), this credit constraint can help set up the initial bubble ph0 > �(f0)
naturally.

Endogenising initial price Consider the following scenario. The purchase of
factory buildings is proceeded in two lots: the �rst lot is the old depreciated stock
(1� �) �f and the second is the newly-built one � �f . Suppose that at period �1,
after the producer has purchased the �rst lot at the price �p, the world interest
rate unexpectedly drops from r� to r�n. The producer consequently re-determines
his demand for factory holding with regards to the implicit capital gain from
purchasing the �rst lot at the cheaper price. The time line is summarized in
Figure 4 below21 .
21Note that all the events in the �gure happen very closely to the period �1. Only the

order of arrows, not the located distance from period �1 and 0, matters.

16



t=1 0

r drops to r n

purchase 1 f at p

borrow more to re purchase at a new higher price

Figure 4: Time line

Since we are dealing with the change in the world interest rate, Proposition
8 below provides the comparative static of various steady states and the critical
value with r�. Note again that in a particular economy only one steady state is
valid.
Proposition 8 In general, @

�fj
@r� < 0 and @f̂

@r� > 0 where j = non; cb. Fur-

thermore, @�pnon@r� < 0 if and only if �(1�")1�� <
�
r�+�
r�+�

�
; while, @�pcb@r� < 0 if and only

if �
1�� <

�
r�+�
r�+�

��
1��
1+r�

�
. �

Proof Trivial. �
Intuitively, when the decrease in the world interest rate bene�ts the con-

sumption good production more than the factory construction, it should push
up the fundamental price. In particular, an relatively small � compared to "
implies that the capital input relatively produces less output (factory buildings)
than the factory input does (consumption good). However, if the world interest
rate drops dramatically, the economy may move from non-binding regime to
binding regime. Being constrained by the credit limit may prevent the funda-
mental price to increase as elaborated in Proposition 4. To see this, consider

the case of Economy 1 where
�
r�+�
r�+�

��
1��
1+r�

�
< �

1�� <
�
r�+�
r�+�

��
1
1�"

�
and the

economy is initially at the steady state xh�1 = �xnon. Denote subscript n asso-
ciating variables or functions with the new lower world interest rate r�n. When
the world interest rate drops, Proposition 8 states that �pnon;n > �pnon, �fj;n > �fj ,
and f̂j < f̂ where j = non; cb. Suppose that �pnon;n > �pnon, �pcb;n < �pcb, and
�fk;n > �fk where k = non; cb. Suppose that f�1 > f̂n, and 1 � �(1 + r�n) < 0.
In this case, the economy at period �1 changes from the non-binding regime to
the credit-binding regime (Economy 1 to Economy 2). It is possible that even
though the �pnon;n > �pnon, the new fundamental price �n(f�1) is lower than
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before because the valid fundamental price is no longer the one associated with
�pnon;n but the one associated with �pcb;n. This is illustrated in Figure 5 below.

xcb

xh 1 xnon f 1 , f 1

xnon,n

xcb,n
n f 1 , f 1

n f

f

A

f n f
f

p

Figure 5: Constrained fundamental price

If this was the baseline case, the new fundamental price would be placed
on the point A in the �gure. However, the economy is credit constrained and
point A cannot be attained. The new fundamental price then depends on the

credit-binding system and with �(1�")
1�� <

�
r�+�
r�+�

�
it may be lower than the initial

level. In order to generally attain the higher fundamental price as interest rate

decreases, �
1�� <

�
r�+�
r�+�

��
1��
1+r�

�
is required. This implies an unreasonably low

� which is empirically inconsistent and it is not assumed here22 .
Hence, the scenario to endogenise the initial bubble is the following. Consider

an economy of Economy 1�s type where �(1�")
1�� <

�
r�+�
r�+�

�
and is at the steady

state �pnon and �fnon initially. Then, the sequence of events as in Figure 4 occurs
at period �1. Moreover, assume that the decrease in r� causes f̂n < f�1 = �fnon.
In the micro level, each producer has to re-consider his demand for factory

holdings and the new borrowing. Given the sequence of price, (ph�1� �pnon)(1�
�) �fnon is the capital gain and can be considered as an given extra endowment
over W . However, this capital gain depends on ph�1. In other words, the level
of price the producer expects to occur determines the capital gain and hence the
new borrowing-investment decision which in turn determines the level of price
in the macro level.
The no-arbitrage condition still holds.

"B �f"�1�1 + (1� �)E�1(p0)
ph�1

= (1 + r�n) (13)

As being patient, the producer consumes nothing when he is young. Using
c21�1 = 0, the credit constraint, which takes into account the former debt
obligation, is the following.:

22With the 30-year interest rate r� = 17, � = 0:8, and � = 1, it implies that � should be
less than 1 percent. Interpreting � as a income share of capital, � is empirically about 30
percent.
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(1 + r�)�b2�1 + (1 + r
�
n)
�b2�1 � (1� �)E�1(p0) �f�1 (14)

where �b2�1 is the existing loan before the crash and �b2�1 is teh new additional
loan after ther crash: �b2�1 = ph�1 �f�1 �W � (ph�1 � �pnon)(1� �) �fnon � �b2�1.
Then, the question is whether this optimal borrowing �b2�1 violates the credit

constraint. Notice that the higher price ph�1 the producer takes as given, the
higher capital gain he receives and the less credit-constrained he becomes23 .
For the later part of the analysis, �rstly conjecture that the producer takes

a su¢ ciently high price ph�1, which makes the credit constraint non-binding,
as given. Then, all producers and the �nancial intermediary plays �speculative
borrowing game�which in turn determines ph�124 . For the argument to be
consistent, we check that ph�1 has to be higher than �pnon for the producer
to have the capital gain from the �rst-lot purchase. At last, numerical test is
conducted to show that this ph�1 can create ph0 which sets up the bubble in
the spirit of Proposition 7.
The speculative borrowing game is a two-stage game which the �nancial in-

termediary and all producers take part in. At stage-1, the �nancial intermediary
announces the credit limit to the public. At stage-2, the producer decides how
much he wants to borrow.
Working backward, the �rst step is to analyze the decision in stage-2 given

the credit limit. If the credit limit is still not reached, there is an incentive for
the producer to borrow and invest more: if every producer borrows and invest
more, the demand for factory holding with the �xed supply will raise the price
ph�1 up and increases the capital gain (ph�1� �pnon)(1��) �fnon from the �rst-lot
purchase. As long as the no-arbitrage condition (Equation 13) which guarantees
the return of factory investment equal to (1 + r�n) holds, the producer is better
o¤25 .
De�nition 4 A strong Nash equilibrium is a Nash equilibrium in which

no coalition, taking the actions of its complements as given, can cooperatively
deviate in a way that bene�ts all of its members. �
According to the above de�nition, the only strong Nash equilibrium in the

stage-2 game is when every producer borrows and invests at the credit limit
since this maximizes the capital gain from the �rst-lot purchase while Equation
13 still holds. Assuming a strong Nash equilibrium as an equilibrium concept of

23 It may seem unclear whether the increase in ph�1 increases or decreases �b2�1 . However,
after substituting E�1(p0) from Equation 13 in Equation 14, the credit constraint becomes

ph�1 � �pnon +
(r��r�n)�b2�1+"B �f"�1�(1+r

�
n)W

(1+r�n)(1��) �f�1
. This proves that the higher ph�1 is taken as

given, the less credit-constrained the producer becomes.
24The uniqueness of ph�1 depends on the selection of equilibrium de�nition. The game may

have many Nash equilibriums, but the the strong Nash equilibrium is unique.
25Note that only symmetric equilibrium can be Nash equilibrium. On one hand, if only one

producer borrows and invests more, his action cannot a¤ect the factory price in the macro
level and he will end up bearing more cost. On the other hand, if only one producer borrows
and invests less than other, his marginal return of factory investment will still be greater than
(1 + r�n) and it is not optimal. As a result, every symmetric borrowing pro�le which is less
than or equal to the credit limit is Nash equilibrium.
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this game, the equilibrium of this stage-2 game is where every producer borrows
and invests at the credit limit26 .
At stage-1, the �nancial intermediary expects the outcome from the stage-2

and set the credit limit consistently, assuming the use of the expectedly-valued
basis. Remind that the credit limit (1 � �)E�1(p0) �f�1 is endogenous: it relies
on E�1(p0) which relates to ph�1 via Equation 13. So, ph�1 can be determined
below by the credit constraint using the results that the producer borrows at
the credit limit, the �nancial intermediary sets the limit consistently, and the
factory market clears �f�1 = �fnon.

ph�1 = �pnon +
(r� � r�n)�b2�1 + "B �f"non � (1 + r�n)W

(1 + r�n)(1� �) �fnon
(15)

Since f̂n < f�1 = �fnon in this scenario, this implies "B �f"non > (1 + r�n)W .
Consequently, ph�1 > �pnon which means the producer really receives the cap-
ital gain as conjectured. Note that the dynamics from period �1 to period 0
follow 'non;n since, in our argument, Equation 13 is valid. Then, (ph0; f0) =
'non;n(ph�1; f�1). If ph0 > �(f0), the bubble is successfully set up according to
Proposition 7.
Before moving to the numerical experiment to test whether ph0 > �(f0),

let us summarize the argument so far. For arbitrary given price, the producer
derives his optimal borrowing. If this borrowing is still less than the credit
limit, he has an incentive to borrow and invest more along with every other
producer and this will change the price he takes as given. Simultaneously, we
end up with the price ph�1 which maximizes the capital gain while being given
for the expected utility maximization. This price is higher than the price of
the �rst-lot purchase. This is consistent with the argument that the producer
expects capital gain and invests more even though the fundamental price may
drop as discussed earlier in Figure 5.
Lastly, the numerical test is conducted to prove the potential of this argu-

ment to endogenise the initial bubble27 . The result of the experiment is that,

26Borrowing up to the limit is a natural solution in this credit constraint context. Without
credit limit, this argument is not well-de�ned since the maximized strategy would be that
everyone demands in�nite borrowing. This feature of credit constraint is as highlighted by
Kochelakota [13] who argues that the loan upper limit is needed for the in�nite wealth problem.
27Since the framework in this paper is the overlapping generations model with two-period-

lived agent, this translates one period�s length into 30 years. Given �(1�")
1�� <

�
r�+�
r�+�

�
and

�(1 + r�) > 1, let � = 0:3, r� = 17, � = 1, � = 0:8, A = B = 1, and � = " = 0:3
which implies that the yearly rates are common as in the literature: � � 0:96, r� � 0:1,
� � 0:3, and � � 0:05. Moreover, r�n v unfrnd(3; 17), N1

N2
v unfrnd(0; 2), and W v

unfrnd(0; �pnon �fnon) where z v unfrnd(x; y) means z is randomly picked from the uniform
distribution over (x; y). Recall �b2�1 is the borrowing before the world interest rate shock which
provides a degree of freedom to choose. As in Equation 15, the higher �b2�1 is, the higher
ph�1 becomes. So, the highest reasonable level of �b2�1 is used in the experiment. Choose
�b2�1 = minf(1� �)�pnon �fnon; �pnon �fnon �Wg. This means that the producer borrows all up
to purchase the �rst lot if it does not exceed the entire planned borrowing �pnon �fnon �W .
The algorithm is as follows. the experiment is conducted for 100 times. In each time, 100,000

samples are drawn. Then, each sample is �ltered whether it matches the scenario argued
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on average, 79 percent of all admissible cases has ph0 > �(f0) which implies the
great likelihood of our argument to set up the bubble. Note that the argument
does not require any asymmetric information as a friction to create the bubble.
The credit constraint naturally induces the speculative borrowing game and
pinpoint ph�1. Insightfully, the credit constraint constrains the fundamental
price to the low level which makes it easier for the bubble to emerge (easier for
ph0 > �n(f0)). To sum up, Proposition 9 is addressed below.
Proposition 9 In the presence of the expectedly-valued credit constraint,

the unexpected capital gain and the speculative borrowing game can put the
credit-constrained economy on the unique non-stationary sunspot path estab-
lished in Proposition 7. �
Proof As argued and shown numerically in the text. �

4 Boom, crash, overutilization and prolonged
recession

Consider the economy without the credit constraint or with the expectedly-
valued credit constraint given ph0 > �(f0). The interesting case is when T is
large enough to push the factory accumulation further away from the steady
state level before the crash. Figure 6 below illustrates the phenomenon in the
case of expectedly-valued credit constrained economy.

earlier: f̂n < f�1 = �fnon < f̂ . Considering only samples that replicate the scenario, calculate
ph�1 according to Equation 15. After that, compute (E�1(p0); f0) = �̂non;n(ph�1; f�1).

Next, iterate �̂
fmg
cb;n (E�1(p0); f0) for m = 1; 2; :::; 1000. If this gives an eventually increasing

sequence of factory price, this implies that actually ph0 > �(f0) and the economy is set on the
bubble path. Lastly, compute the probability of the samples where ph0 > �(f0) conditional
on the samples where f̂n < f�1 = �fnon < f̂ and average over 100 experiments.
Note that in the algorithm �̂non;n is used instead of 'non;n. The di¢ culty of using 'non;n

lies on �nding the fundamental price �(f) numerically. However, from the analytical result,

Et(pt+1) > �(ft+1) if and only if pht+1 > �(ft+1). If �̂
fmg
cb;n (E�1(p0); f0) results in the

eventually exploding price path, this must imply 'fmgcb;n (ph0; f0) have the same qualitative
path as well. Hence, ph0 > �(f0).
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Figure 6: Boom-bust episode

In such case, the real GDP eventually keeps soaring before the crash causing
the boom. To see this, the real GDP or RGDPt for the before-crash economy
is given below28 .

RGDPt = � [Et�1(pt)]
	
+ "Bf"t�1

According to Proposition 6, ft�1 is increasing before the crash; while, al-
though Et�1(pt) may temporarily fall for some early periods, it will �nally
continue rising and so will the real GDP. At time T , the sharp fall in price
causes the widespread default and brings about the great loss to the �nancial
intermediary. The after-crash real GDP formula is slightly changed as follows.

RGDPt = �p
	
t + "Bf

"
t�1

Actually, the period-T output from both sectors still increases from the
last period since the capital and factory stock is predetermined. However, the
signi�cant fall in price will greatly a¤ect the production of both factory buildings
and consumption good in period T + 1 due to the lower pro�tability and the
reduced ability to borrow.
Before the crash, the optimistic belief in the high but risky capital gain drives

the economy with the miraculous growth rate. The massive factory construction
and signi�cant capital gain result. After the crash, the economy encounters a
very deep recession. The over-construction of factory buildings relative to the
steady state level during the before-crash period leads to the factory overuti-
lization and hence the very low fundamental price appears29 . The factory pro-
duction has to be reduced tremendously. Subsequently, the factory stock will
be left to be depreciated over time until the total stock is reduced to the steady

28Here real GDP is the sum of factory buildings and the consumption good produced in the
period t, divided by the weighted-average price index, which is the simple weighted-average

price index
P
g2G pgtQgtP
g2G Qgt

where G is a set of all goods and Qgt is the quantity of good g

produced in time t.
29Glaeser Gyourko and Saiz [9] also have the similar result but only in the irrational bubble

setting.

22



state level. These factory overutilization and prolonged recession result from
the sunspot boom session that pushes the economy too far away from where it
should have been.
Note that after the crash the price is increasing while the factory stock is

decreasing to the steady state. Indeed, there are two contradicting e¤ects to the
real GDP. The �rst e¤ect is the price e¤ect which values the factory more30 . The
second one is the stock e¤ect which cuts down consumption good production.
Nevertheless, the economy will eventually reach the steady state where the real
GDP will be lower than the level of the boom period. Figure 7 shows the
time path of real GDP corresponding to the economy in Figure 6 . The two
contradicting e¤ects result in the shaded area where the trend of the path of
real GDP after the crash is ambiguous.

T 1
t

RGDP cb,n

RGDP

Figure 7: Real GDP

These patterns from Figure 6 and 7 are empirically consistent with many
�nancial crises. According to Dubach and Li [7], the real estate price in Japan
was phenomenally skyrocketed during 1980s and then crashed in 1991. In the
boom period, Japan experienced the continuous high growth rate; but then
su¤ered from the low L-shaped growth pattern for a decade afterward. For other
emerging markets, Thailand�s and Indonesia�s real estate price seemed to be
stable during early 1990s but still encountered the sudden crash in 1997. From
the present model, this implies that the crash happened quite early relatively
to Japan�s case: T � t̂ in Figure 6. Despite the stable real estate price, the
increase in the supply helps expanded the growth rate of these countries rapidly
(see Radelet, Sachs, Cooper, and Bosworth [19]).

5 Policy implication

It is shown that the small open economy relaxes the wealth constraint of agents
by having a large amount of foreign capital in�ow at the low cost, which makes
the economy fragile to the bubble episode. Apart from limiting the capital

30Note that RGDPt is a function of price since the contractor invests the capital regarding
the next period price of factory buildings. Thus, the price e¤ect is that when price is expected
to be high, the contractor invests more capital and produces more new factory next period.
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account liberalization which directly eliminates the ground for the bubble to
emerge, this paper strikingly �nds the double-bladed role of credit constraint
which can either solve or worsen the bubble problem. Proposition 6 suggests
that the proper credit constraint can help rule out the bubble31 . However,
Proposition 7 and the corresponding initial-bubble-endogenising scheme imply
that if the credit is set higher than the fundamentally-valued level, the outcome
totally becomes in favor of the bubble emergence, even more severe than the
no-credit-constraint case. Therefore, if the bubble is decided to be undesirable,
the policy implication is straightforwardly that the policymaker should focus on
tightening the regulation and monitoring the �nancial sector. Supervision on
the debt contract, especially on the collateral requirement, is really crucial. If all
�nancial intermediaries strictly set the credit limit pessimistically (at most equal
to the natural credit limit level (1+r�)b2t � (1��)�(ft+1)ft), this automatically
re-creates the wealth constraint on agents to �nance bubbles in the future and
rules out bubbles in the forward looking manner.
Nevertheless, any abovementioned policy has its cost. That is, it lowers

the fundamental level of real GDP compared to the baseline model: Proposi-
tion 4 shows that the presence of collateralized credit constraint constrains the
fundamental price path to the lower level and hence lower real GDP

6 Conclusion

The small open economy environment supports the emergence of a bubble by
allowing the large amount of capital in�ow to fuel the bubble as optimism goes
on until the crash. With the collateralized credit constraint, the situation can
be substantially di¤erent. If the natural credit limit is applied, this prevents
the bubble to emerge. In particular, the bubble induces the over-construction
of factory buildings which lowers the fundamental price and hence the credit
limit. This eliminates an ability to fuel the bubble in the future and the bubble
then cannot emerge today.
However, if the expectedly-valued credit limit is applied, the bubble can still

exist while the economy has to bear more cost as the fundamental becomes
constrained. Moreover, this credit constraint can help endogenise the initial
bubble, via the "speculative borrowing game", subject to the unexpected drop
in the world interest rate, for example the �nancial liberalization preceding most
�nancial crises in many emerging countries. The bubble causes the boom-bust
episode as it grows and crashes. The crash is sudden and sharp as the over-
construction and overutilization of factory buildings depress the fundamental
value to the very low level. The succeeding recession results from the reduction
in the factory stock in the process of adjusting the economy back to the steady
state.
For policy implication, imposing the natural credit constraint can prevent

or terminate the bubble. Yet, the double-bladed role of the credit constraint

31Note that interpreting emerging countries as having low initial endowment (W is small),
these countries most likely fall into Proposition 6�s context.
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reminds a policy maker to be careful in implementing the policy. Tightening the
regulation and monitoring the �nancial sector on the credit limit are remarkably
crucial.

7 Appendix

Proof of Proposition 1 Consider the system � without boundary, �̂ : � !
R2++ where � 2 R2++ is a neighborhood of �x and �̂m : � ! R++ for m = 1; 2
is de�ned below accordingly.

�̂ (xt) =

�
�̂1 (xt)

�̂2 (xt)

�
=

�
pt+1
ft+1

�
=

" �
1+r�

1��

�
pt � 


(1��)f�t
(1� �)ft + �p	t+1

#

Linearize the system �̂ at the positive steady state �x. The characteristic
equation is as follows.���D�̂(�x)� �I��� = �2 � ��1 + r�

1� �

�
+ (1� �) + �
	��p	�1

(1� �) �f�+1

�
�+ (1 + r�) = 0

De�ne

0 < ' =
1

2

�q
��2 � 4(1 + r�)� ��

�
< 1

where
�� =

�
1 + r�

1� �

�
+ (1� �) + �
	��p	�1

(1� �) �f�+1

�� =

�
1 + r�

1� �

�
� (1� �) + �
	��p	�1

(1� �) �f�+1

Eigenvalues � and corresponding eigenvectors v of D�̂(�x) are the following.

�1 = (1� �)� ', v1 =

24 �
	��p	�1

(1��) �f�+1 + '

�
�
1+r�

1��

�
	��p	�1

35
�2 =

�
1 + r�

1� �

�
+
�
	��p	�1

(1� �) �f�+1
+ ', v2 =

"
�


(1��) �f�+1
�
	��p	�1

(1��) �f�+1 + '

#
Let Es and Eu denote, respectively, the stable and unstable eigenspaces

of the associated Jacobian matrix. Since 0 < �1 < 1 and �2 > 1, Es = v1
and Es = v2. According to the Centre Manifold Theorem (see Lines [15]), the
mapping �̂ de�ned on the positive domain is trivially smooth and invertible, so
it is di¤eomorphism. Hence, there exists a locally stable manifold W s

loc(�x) and
a locally unstable manifolds Wu

loc(�x) around the steady state �x.

W s
loc(�x) =

n
x 2 �j lim

n!1
d[�̂

fng
(x); �x] = 0 and �̂

fng
(x) 2 � 8n � 0

o
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Wu
loc(�x) =

n
x 2 �j lim

n!1
d[�̂

�1fng
(x); �x] = 0 and �̂

�1fng
(x) 2 � 8n � 0

o
where

�̂
�1
(xt+1) =

"
�̂
�1
1 (xt+1)

�̂
�1
2 (xt+1)

#
=

�
pt
ft

�
=

24
�
1��
1+r�

�
pt+1 +


(1��)�

(1+r�)(ft+1��p	t+1)
�

ft+1
(1��) �

�p	t+1
(1��)

35
According to Galor [8], the global stable manifold of �̂ can be obtained below.

W s(�x) = [n2N
n
�̂
�1fng

(W s
loc(�x))

o
Wu(�x) = [n2N

n
�̂
fng

(Wu
loc(�x))

o
Note that since W k

loc(�x) where k = s; u is connected; hence, so is W
k(�x).

The Centre Manifold Theorem states that W s
loc(�x) forms the curve tangent

to Es. Since Es is negative sloping in the plane f � p, W s
loc(�x) is the curve

in the neighborhood of �x where p is decreasing in f . Moreover, for any two

points x1; x2 2 W s(�x) where p1 > p2 and f1 < f2, �̂
�1
1 (x1) > �̂

�1
1 (x2) and

�̂
�1
2 (x1) < �̂

�1
2 (x2). Therefore, W s(�x) is strictly decreasing in f . In the similar

manner, Wu(�x) is strictly increasing in f 32 .
As a result, W s(�x) generates a fundamental price function � : R++ ! R++

which is unique, continuous, and strictly decreasing in f . �
Proof of Proposition 3 Consider �j without the boundary, �̂j : �j !

R2++ where �j 2 R2++ is a neighborhood of �xj and �̂jm : �j ! R++ for
m = 1; 2 as de�ned accordingly below.

�̂j (xt) =

"
�̂j1 (xt)

�̂j2 (xt)

#
=

�
pt+1
ft+1

�
=

" �
1+r�

1��

�
pt � 
jt

(1��)f�t
(1� �)ft + �p	t+1

#

�̂
�1
j (xt+1) =

"
�̂
�1
1 (xt+1)

�̂
�1
2 (xt+1)

#
=

�
pt
ft

�
=

24 �
1��
1+r�

�
pt+1 +


jt(1��)�
(1+r�)(ft+1��p	t+1)�

ft+1
(1��) �

�p	t+1
(1��)

35
Several claims are required for the main proof. Note that the �rst three

claims are direct consequences of the fact that �̂j for j = non; cb is qualitatively

equivalent to �̂
Claim 1 There exist a stable manifold W s

j and an unstable manifold W
u
j

of �̂j forming a strictly decreasing and strictly increasing price function of f
over R++ respectively. �
32Wu(�x) will be used in the proof of Proposition 3 below.
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Proof Since �̂j for j = non; cb is qualitatively equivalent to �̂. The claim
is already proved in the proof of Proposition 1. �
Claim 2 The dynamics of �̂j do not cross W

s
j and W

u
j . �

Proof Consider Figure 8 below.

x

x

x

x

x1

x3

x2

x j

W u
j

W s
j

f

p

Figure 8: Derivation

Suppose that the dynamics of �̂j move a point x1, which is not on any
manifold, to a point x2 across the manifoldWu

j as in Figure 8. Pick two arbitrary
point �x and �x on a part ofW s

j andW
u
j , respectively, which bound the area where

x1 is located. Draw an arbitrary line connected point �x and �x in such a way that
x1 is on the interior of the line and this line do not cross any manifold except
the end points. Denote this line as arc �x�x. Then, x2 must be on �̂(�x�x). Since �̂j
is continuous and �x�x is a connected set, �̂(�x�x) is connected. Consequently, as
in Figure 8, there must exists at least an intersection x3 between the arc �̂(�x�x)
and a manifold. However, x3 comes from the interior of �x�x. The existence of
x3 contradicts the de�nition of the manifold whose dynamics cannot be o¤ the
manifold forward and backward. �
De�nition 5 For a given dynamic system (at+1; bt+1) = !(at; bt),

� (a) �a!t+1 = at+1 � at and �b!t+1 = bt+1 � bt are de�ned as functions
of (at; bt).

� (b) �a!t = at � at�1 and �b!t = bt � bt�1 are de�ned as functions of
(at; bt). �

Note that the �a!t is an inverse transformation of �a!t+1, not a lag.
Claim 3 The dynamics of �̂j qualitatively follow the phase diagram in

Figure 9 below33 . �
33The dotted single-headed arrow informs the succeeding direction of a point in a particular

area while the dashed double-headed arrow inform the preceding direction of that same point.
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Figure 9: Full phase diagram of �̂j

Proof According to De�nition 5, the following loci and associated direc-
tional �eld are obtained.

�p�̂jt+1
S 0 if

�
r� + �

1� �

�
pt S


j
(1� �)f�t

�f�̂jt+1
S 0 if �[

�
1 + r�

1� �

�
pt �


j
(1� �)f�t

]	 S �ft

�p�̂jt
S 0 if

�
r� + �

1 + r�

�
pt S


j
(1 + r�)

�
1� �

ft � �p	t

��
�f�̂jt

S 0 if �p
	
t

1� � S
�ft
1� �

Figure 9 results trivially. �
Claim 4 For any xt = (pt; ft) where ft = f̂ , �̂non (xt) = �̂cb (xt). �
Proof By substituting f̂ into �̂j accordingly, the claim results. �
Claim 4 states that at the critical value which separates two regimes, the

two systems of each regime coincide.
The main proof Only the case of Economy 1 is proved here. The proof

in the case of Economy 2 can be done in the similar manner.
By de�nition of the fundamental price function, the stable manifold W s

non

clearly forms the fundamental price function �(f) over (0; f̂ ]. The task is to
extend the function over (f̂ ;1) by iterating a selected part of W s

non backward

using �̂
�1
cb .

For this particular case, let fx0g = W s
non \Wu

cb and fx
00g = W s

non \ fx =
(p; f) 2 R2++jf = f̂g. Note that these sets are singleton due to Claim 1. Denote
x000 = �̂non (x

00). According to Claim 4, x000 = �̂cb (x
00) as well. Moreover, let

fx0000g = fx = (p; f) 2 R2++j�p�̂cbt+1 = 0 and f = f̂g which is also singleton
due to Claim 3. The following claims hold.
Claim 5 In the case of Economy 1 with above notation, for x0 = (p0; f 0)

and x000 = (p000; f 000), p0 > p000 and f 0 < f 000. �
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Proof Since �fnon < �fcb < f̂ , f 0 2 (0; f̂) by Claim 1. Since x000 = �̂cb (x00),
the jump from x00 to x000 cannot cross Wu

cb due to Claim 2. Thus, this implies
p0 > p000 and f 0 < f 000, see Figure 10a. �
Claim 6 In the case of Economy 1, W s

non and W
s
cb never cross each other

over (0; f̂ ]. �
Proof Suppose there exists a common point �x between W s

non and W
s
cb over

(0; f̂). Since 
non;t < 
cb;t, �̂non1(�x) > �̂cb1(�x) and �̂non2(�x) > �̂cb2(�x). This
implies that iterating �x through �̂cb brings the dynamics down further below

W s
non. As a result, limn!1 �̂

fng
cb (�x) 6= �xcb whose �pcb > �pnon and �fcb > �fnon

which results in a contradiction.
Suppose W s

non and W
s
cb cross at f̂ . Then the next forward iteration gives

the other common point over (0; f̂) which results in a contradiction. �
Claim 7 In the case of Economy 1 with above notation, for x00 = (p00; f 00)

and x0000 = (p0000; f 0000), p0000 < p00. �
Proof According to Claim 4, the �p�̂nont+1 = 0 locus and the �p�̂cbt+1 = 0

locus coincide at f̂ . Thereby, from Claim 3, the claim results. �
De�ne A0B0 as a connected arc of W s

non between point A0 and B0 including
end points, see Figure 3a.
Next, proceed the following algorithm.

1. Select A0B0 by choosing A0 = x000 and B0 = x00.

2. Iterate An�1Bn�1 via �̂
�1
cb to get AnBn for n 2 N which is de�ned below.

AnBn = �̂
�1
cb (An�1Bn�1) = fx 2 R2++jx = �̂

�1
cb (y) where y 2 An�1Bn�1g

Claim 8 below characterizes the topological feature of the iteration.
Claim 8 In the case of Economy 1 with above notation, for any (p; f) 2

AnBn for n 2 N , �p > p where (�p; f) 2W s
non. �

Proof Since ft > f̂ implies 
non;t > 
cb;t, for any (p; f) 2 �̂
�1
cb (A0B0),

�p > p where (�p; f) 2W s
non. Trivially, �̂

�1fng
cb (A0B0) is also located down below

W s
non for n 2 N . �

xcb

xnon

A0 x '''

B0 x '' A1

B1 A2 B2 A3

x '

W s
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W s
cb W u
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f
f

p

xnon (f)

f
f

p

Figure 10a: Derivation Figure 10b: �(ft) of Economy 1
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Figure 11a illustrates the algorithm above34 . Claim 5 and 6 imply that
A0B0 lies between W s

cb and W
u
cb which implies that the backward dynamics of

each arc AnBn for n 2 N go toward the cb regime. Since @�̂
�1
cb1

@pt+1
> 0, @�̂

�1
cb1

@ft+1
<

0, @�̂
�1
cb2

@pt+1
< 0, @�̂

�1
cb2

@ft+1
> 0, and A0B0 forms a decreasing price function of f over

the corresponding connected support, each of the arc AnBn for n 2 N forms
a decreasing price function of f over each corresponding connected support.

Since B0 = �̂
�1
cb (A0), An = Bn�1 for n 2 N . Denote �(f) as a fundamental

price function formed by W s
non over (0; f̂ ] together with [n2NAnBn: �(f) is

unique, continuous, and strictly decreasing in f .
Lastly, to show that �(f) is de�ned over R++, note that the dynamics of

�̂
�1
cb follow the inverse directional �eld of the phase diagram in Claim 3. Then,
Claim 2 and 3 show that for any x lies between Wu

cb and the �p�̂bbt+1 = 0

locus, the backward dynamics move in the south-east direction and are always
contained between these two loci. From Claim 6 and 7, point A0 is above the
�p�̂bbt+1

= 0 locus but below W s
cb. Hence, the entire arc A1B1 lies between

Wu
cb and the �p�̂cbt+1 = 0 locus and so does An+1Bn+1 for n 2 N . Since the

�p�̂cbt+1
= 0 locus does not cross below the p = 0 axis, �(f) covers R++, see

Figure 10b. �
Proof of Proposition 5 and 7 Since �̂ is �̂non, the proof of Proposition 5

is embedded in the proof of Proposition 7 in the case of Economy 1: just consider
the whole space to be non-binding region. So, only the proof of Proposition 7
in the case of Economy 1 is presented below. The case of Economy 2 can be
proved in the similar manner.
For this particular case, denote ��(ft), ��(ft), and ��(ft) from the�ph'nont+1 =

0,.�f'nont+1 = 0, and �f'cbt+1 = 0 loci respectively.

�ph'nont+1 = 0 if
�
r� + �

1� �

�
��(ft) =


nont
(1� �)f�t

+ q [� (ft+1)� ��(ft)]

�f'nont+1 = 0 if ��(ft) =

nont

(1 + r�)f�t
+

�
1� �
1 + r�

��
�

�

� 1
	

f
1
	
t

�f'cbt+1 = 0 if ��(ft) =
(1 + r�)W

(1� �)ft
+

�
1� �
1 + r�

��
�

�

� 1
	

f
1
	
t

De�ne ~�(f) below.

�̂(f) =

8<:
��(f) for f 2 (0; �fnon)
��(f) for f 2 [ �fnon; f̂)
��(f) for f 2 [f̂ ;1)

34Note that Claim 8 is used in Figure 3a to capture the topological feature of all the loci.
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By Claim 4 ��(f̂) = ��(f̂). Consequently, Figure 11 follows. Figure 11 shows
the directional �eld over (ph; f) for each area35 .

A1

xnon
f n on t 1 0

p h n on t 1 0
f

cb t 1 0

f

f f

f
f

p

Figure 11: Derivation

Trivially from Figure 11, property 1 and 2 in Propostion 7 are satis�ed.
In particular, for pht > ��(ft) where ft 2 [f̂ ;1), pht+1 > pht and ft+1 > ft.
For pht > maxf��(ft); ��(ft)g where ft 2 [0; f̂), pht+1 > pht, ft+1 > ft, and
pht+1 > maxf��(ft+1); ��(ft+1)g. Since ��(ft) > ��(ft) for ft 2 [f̂ ;1), property 3
is proved from the �gure. Property 4 follows the known result that the dynamics
will not fall below �(f) and from the directional �eld the dynamics will break
through �̂(f) at some point in time. �
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