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Abstract: 
 
 Kumaraswamy Vela Velupillai [74] presents a constructivist perspective on the 
foundations of mathematical economics, praising the views of Feynman in developing 
path integrals and Dirac in developing the delta function.  He sees their approach as 
consistent with the Bishop constructive mathematics and considers its view on the 
Bolzano-Weierstrass, Hahn-Banach, and intermediate value theorems, and then the 
implications of these arguments for such “crown jewels” of mathematical economics as 
the existence of general equilibrium and the second welfare theorem.  He also relates 
these ideas to the weakening of certain assumptions to allow for more general results as 
shown by Rosser [51] in his extension of Gödel’s incompleteness theorem in his opening 
section.  This paper considers these arguments in reverse order, moving from the matters 
of economics applications to the broader issue of constructivist mathematics, concluding 
by considering the views of Rosser on these matters, drawing both on his writings and on 
personal conversations with him. 
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I. Introduction 

“Beauty is truth, truth beauty.” --- John Keats, Ode on a Grecian Urn, 

1819. 

 

“For me, and I suppose for most mathematicians, there is another reality, 

which I shall call ‘mathematical reality’; and there is no agreement about the 

nature of mathematical reality among either mathematicians or philosophers.  

Some hold that it is ‘mental’ and that in some sense we construct it, others that it 

is outside of us and independent of us.  A man who could give a convincing 

account of mathematical reality would have solved very many of the most 

difficult problems of metaphysics.  If he could include physical reality in his 

account, he would have solved them all.”   

---  G.H. Hardy, A Mathematician’s Apology, (1969, [30 ], p. 123) . 

 

 Kumaraswamy Vela Velupillai has long labored to understand the deepest 

underpinnings of economic theory.  In earlier years this was focused on nonlinear 

dynamics in economics, focusing particularly on ideas drawn from his professor at 

Cambridge University, the late Richard M. Goodwin [67].  More recently, however, he 

has shifted the focus of his efforts into originating and developing the approach of 

computable economics ([68], [69], [70], [71], [72], [73], [74]).1  In this final paper [74], 

“Taming the Incomputable, Reconstructing the Nonconstructive and Deciding the 

                                                 
1 “Computable” economics is to be distinguished from “computational” economics, with the former 
focusing on fundamental issues such as the computability or undecidability of certain systems, whereas the 
latter tends to be more concerned with more superficial technical matters such as how to get particular 
programs to run more quickly.  The latter also studies simulations of particular economic models. 
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Undecidable in Mathematical Economics,” he embarks upon an especially ambitious 

foray into the topic of computable economics and its deepest foundations.  While 

different schools of constructivist mathematics accept more or less of these, the ideas that 

the strictest of constructivists question include the existence of actual infinities (the 

axiom of infinity), the law of the excluded middle, and the Axiom of Choice.2   

The paper opens with a discussion of the main incompleteness theorem of Gödel, 

[27], and notes that Rosser [51] showed that it held for the more general simple 

consistency as well as for the more restricted ω-consistency.3  Recognizing the centennial 

of Rosser, Velupillai praises his approach for in fact involving some sacrifice of 

generality in order to gain a strengthening of results.   

“This is the standard method that constructive mathematicians apply in 

their constant struggle to constructivize classical mathematics.” Velupillai, ([74], 

p. 4 ) [italics in original] 

He then proceeds to praise Rosser for some of his more practical and simplifying 

approaches to more simple matters, in particular his authorship with Carl de Boor [54] of 

a guide to using pocket calculators for solving basic calculus problems, seeing in this an 

example of the constructivist approach that insists on providing actual algorithms for 

solving problems and proving theorems. 

                                                 
2 A simple statement of this axiom due to Rosser ([52], p. 88) is “If λ is a set of nonempty, nonoverlapping 
sets, then there is a set γ which has exactly one member in common with each member of λ.”  Given that λ 
can vary, which is usually a transfinite cardinal, there are many versions of the axiom, with Zorn’s Lemma 
[79] usually being assumed to assert it holds for most levels that most mathematicians deal with, although 
Specker [64] showed that it does not hold at the ultimate level of the universe as a whole, using the law of 
the excluded middle, or reductio ad absurdum, thus rendering absurd a constructivist assertion of this 
theorem as a general disproof of the axiom.  Specker’s result uses the Quine’s New Foundations approach. 
3 “Simple consistency” is Rosser’s terminology, whereas some others call this “ordinary consistency” and 
Gödel simply called it “consistency.”  It was Gödel who introduced the concept of ω-consistency.  Both of 
these papers, along with important ones by Alonzo Church, Alan M. Turing, Stephen C. Kleene, and Emil 
Post, can be found in Davis [22]. 
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 I shall return to Rosser’s views on these matters in more detail in the final section 

of this paper, but for now let me note that he was one of those relatively rare 

mathematicians who fully spanned both pure and applied mathematics.  While pure does 

not equal classical and applied does not equal constructivist, there is a perceived 

correlation between the two on the part of many.  Thus, he would seem to span that 

divide in some sense, although in contrast with Hardy, whom he greatly admired, he was 

struck by how sometimes apparently “useless” pure mathematics, such as logic seemed in 

the 1930s, could end up proving to have applied uses later that were unforeseen, as the 

theorems about decidability and computability and recursiveness of systems more 

generally would come to be viewed as applied relevance after the full invention and 

spread of programmable computers.  For Hardy [30], following John Keats, the ultimate 

judgment to be made on the supposedly useless (and pure) “real” mathematics should be 

made on aesthetic grounds. 

 Velupillai then argues that this tradeoff between generality and strength of 

argument lay at the base of the development of the Feynman path integrals [26] and the 

Dirac delta function [24], both very useful in physics.  These ideas were criticized by 

mathematicians for their lack of rigor, despite their usefulness, although the search for 

more rigorous foundations of them would lead to developments in mathematics, such as 

the idea of the distributions of generalized functions due to Laurent Schwartz [60] that 

encompasses the Dirac delta function. 

 Velupillai then turns from praise to criticism, focusing on the intermediate value 

theorem, the Bolzano-Weierstrass theorem, and the Hahn-Banach theorem.  The first is 

seen as usually being proved by reductio ad absurdum (or “proof by contradiction”), with 
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the strategy of assuming a particular function such as a polynomial strengthening and 

constructivizing it.  Bolzano-Weierstrass and Hahn-Banach are both usually proven using 

the Axiom of Choice, which is not accepted by the constructivist approach, although 

Velupillai notes that the latter in particular can be proven by constructivist methods that 

actually show the linear functional in question. 

 These latter two are also seen as key to the non-constructivity of crucial “crown 

jewels” of mathematical economics, with Bolzano-Weierstrass deeply tied to the fixed 

point theorems used in the standard proofs of the existence of equilibrium in both game 

theory and in general equilibrium theory.  Hahn-Banach plays a crucial role in the second 

welfare theorem of economics.  The criticisms and analysis by Erret Bishop [6] play a 

central role in these discussions. 

 The problem of non-computability is then considered in the form of the busy 

beaver problem due to Radó [49].  The problems arising from this non-computable 

function are seen as related to the Berry paradox, which is also related to the Richard 

paradox ([39], pp. 36-40).  Velupillai proposes “taming” the busy beaver by constraining 

its growth following the approach of Greenleaf [29].  In Greenleaf’s view, mathematics is 

reduced to being essentially a programming language, so that the old trinity of 

assumption, proof, conclusion becomes input data, algorithm, output data. 

 Velupillai concludes by noting the conventional argument by classicalists that 

constructivism is “too hard to learn.”  He objects that most of those arguing this do not 

really understand the issues at hand or even all the alternatives that may exist, including 

nonstandard analysis, arguing that the conventional view is maintained largely through 
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inertia.  He invokes Gödel on believing that the real meaning of the incompleteness 

results involves the invocation of “higher types” that allow for decidability. 

 In the succeeding sections I shall consider some of these arguments in further 

detail, however will largely go backwards from the economic applications to the views of 

Rosser (my father) on the foundations of mathematics.  In so doing, we shall move from 

what Hardy would have deemed as “trivial” mathematics to “real” mathematics, and from 

the arguably more practical and applied to the purer and more metaphysical, dealing with 

the debate implicit in the opening quotations being our ultimate goal, even if that goal is 

itself ultimately elusive and undecidable. 

 

II. Problems for Economic Theory 

A. Explosive Phenomena 

Velupillai draws on the work of Zambelli ([77], [78]) to consider the problem of 

the possible uncomputability of economic processes.  The economic process Zambelli 

focuses on is that of endogenous growth, and the function he identifies as a metaphor for 

its possible uncomputability is the busy beaver function of Radó [49 ].  Velupillai ([74], 

Section 3.2) proposes a method of minimimalization due to Greenleaf [29] to “tame” the 

otherwise uncomputable busy beaver function, although he states after making his 

proposal ([74], p. 39) that he is “not sure” that his “suggestion” is a “way out of, and 

beyond, this renewed perplexity” (of the busy beaver function).  What is going on here? 

The busy beaver function is defined for n-state Turing machines as the maximum 

number of 1’s (or “productivity”) for any member of the n-state that it writes in a square 

on a blank, two-way infinite tape and halts, and is labeled Σ (n), with this productivity 
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equaling zero if it fails to halt.  This function is the largest of a finite set of non- integers.  

Dewdney ([23], pp. 10-11) explains the non-computability of this well-defined function 

as arising because it “grows too fast.”  Any formula used to compute it will end up 

generating more 1’s for an n-state busy beaver than the formula specifies. 

Velupillai sees the problem as being of a naming or semantical nature along lines 

similar to Chaitin ([15], [16]) and a case of the Berry Paradox, first identified by 

Bertrand Russell [57].  His classic example ([57], p. 222) takes the form of “the least 

integer not nameable in less than nineteen syllables.”  That refers to a particular number, 

111,777, but the phrase in the quotation marks itself only contains eighteen syllables, thus 

establishing the paradox.4   

 The solution advocated by Velupillai is to use Greenleaf’s [29] method to 

properly restrict the range and domain of the busy beaver function.  This method was 

used to guarantee the primitive recursiveness of the Akerman function, although as noted, 

Velupillai is uncertain that this method is fully satisfactory.    

 What then is the economic significance of this problem?  For Zambelli it is a 

metaphor for the development of technological ideas in endogenous growth theory, a 

possible paradox that can arise from the “production of ideas by means of ideas.”  The 

problem is in some sense that the ability to create new ideas can outrace the ability to 

name what is being created.  On the other hand, the arbitrary nature of the halting that 

occurs can become a metaphor for the limits of the production of knowledge as well, 

which he shows in his analysis using the busy beaver function [78].   

                                                 
4 A traditional method to escape the paradoxes of Russell, including the famous one regarding whether the 
set of all sets that are not members of themselves is a member of itself, is to place restrictions on the use of 
certain names that lead to such paradoxes.  It has been argued that many of the paradoxes of logic arise 
from problems related to “naming the names” of mathematical objects. 
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It occurs to me that another area of economics where the questionable 

computability of the busy beaver function might arise might be is with the problem of 

explosive hyperinflation, where the very act of agents attempting adjust their expectations 

to the ever-accelerating rate of inflation itself triggers a further acceleration that pushes it 

ever beyond the ability of their expectational formulations to compute.  An aspect of this 

that is rarely commented upon has a certain connection with the famous remark by 

Keynes ([38], Chap. 12) regarding the beauty contest regarding how agents may begin to 

think in terms of higher order expectations, not merely guessing the average guess of the 

other contestants, but the average guess of the others about the average guess of the 

others, and higher.  However, in this case it may be a matter of focusing on higher order 

derivatives without limit.  As the hyperinflation accelerates agents may cease forecasting 

the rate of inflation but instead focusing on the rate of change of the rate of inflation and 

then the rate of change of the rate of change, and so forth, with these rising expectational 

dynamics themselves driving the system to accelerate ever ahead of these evolving 

expectations. 

Yet another possible example is that implied in the markomata argument of 

Mirowski [43].  While he limits his discussion to the four level hierarchy of Chomsky 

[17], in principle there is no reason that there might not be more levels, with no clear 

upper bound.  This is a model in which simpler markets generate higher order markets 

that embed the lower level ones, much as a futures market may embed a spot market, and 

an options market may then embed a futures market.  We may have seen the outcome of 

such a process in the financial collapses 2007 and 2008 as ever higher order derivatives 

were created out of lower order ones in a way that kept the system from achieving a 



 9

computable general equilibrium solution, although this must be admitted to be a rather 

speculative possible application of these ideas, with such a process not clearly related to 

the busy beaver or any other clearly uncomputable function.  

Of course we should keep in mind that in the applications by Zambelli the 

ultimate process being modeled is not explosive, even if the function that is being used to 

model them is. 

B. The Second Welfare Theorem and the Hahn-Banach Theorem 

Velupillai ([74], Section 3.1.2) summarizes the presentation of both the  

Hahn-Banach Theorem and its use in proving the Second Welfare Theorem of Economics 

as carried out by Lucas, Stokey, and Prescott [42].  This offers an example of the contrast 

between a classical and a constructive approach to a particular economic problem.  The 

Second Welfare Theorem shows that for suitable convexity conditions on sets and 

continuity conditions on functions, then for any Pareto optimal allocation there is a 

Walrasian equilibrium price vector that can support it.  Use of an appropriate separating 

hyperplane is part of most of the proofs of this theorem to guarantee the existence of the 

appropriate price vector, with the Hahn-Banach Theorem generally invoked for this part. 

 The classical version of the Hahn-Banach Theorem involves a degree of precision 

that is not supplied by the constructivist approach, but that is in turn dependent on 

assuming a strong version of the Axiom of Choice to avoid the problem of algorithmic 

determination.  In its classical form the Hahn-Banach Theorem allows the extension of a 

bounded linear functional from a linear subset of a separable normed linear space to a 

functional on the whole space with identical norm, which will provide the price vector in 

the Second Welfare Theorem.  However, Velupillai notes that a constructive proof of the 
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Hahn-Banach Theorem introduces an element of approximation, only allowing for the 

differences in the norms of the two functionals to be less than some finite ε > 0, as 

discussed by Nerode, Metakides, and Constable [45] and further developed by Ishihara 

[34].  It only holds for subspaces of separable normed spaces.  The key difference is that 

while the classical approach asserts an exact solution, while not providing it, the 

constructive approach provides an actual solution, which is, however, not the exact 

solution asserted in the classical approach, although arbirtrarily close to it.5 

 A rather curious possibility that also arises from the Hahn-Banach Theorem has 

been pointed out by Velupillai ([74], p. 16, footnote 20).  This is from a result due to 

Pawlikowski [48] that the Hahn-Banach Theorem implies the Banach-Tarski paradox.  

This leads Velupillai to declare “tongue in cheek” that he is tempted to show that the 

Banach-Tarski paradox is implied by the Second Welfare Theorem, which would destroy 

the idea that “there is no such thing as a free lunch.”  The Banach-Tarski paradox shows 

that a ball can be cut up in certain ways and then reassembled after appropriate rotations 

and translations to form a larger ball [4], which has sometimes somewhat humorously 

been described as the idea that a pea could be cut up and reassembled to form the sun.  

Such an operation would make the busy beaver look like he is asleep.  However, it is 

understood that this is one of those theorems that only holds in “mathematical reality” 

and not in physical reality, in contrast with the serious reality that spacetime obeys non-

Euclidean geometry, which was originally conceived of as an odd mathematical trick.  

                                                 
5 Velupillai also notes that there is a great similarity between the constructive approach to proving the 
Hahn-Banach Theorem and the Intermediate Value Theorem, which in turn has indirect links with the 
Brouwer Fixed Point Theorem.  However, we shall not consider Vellupillai’s discusson of the intermediate 
value theorem further in this paper, as it is not tied to any specific economic application, nor does it involve 
any further mathematical concepts beyond what we deal with in the Hahn-Banach and Bolzano-Weierstrass 
theorems.  I thank Eric Bach for pointing out to me that the finite-dimensional version of the Hahn-Banach 
Theorem can be proven without any recourse to the Axiom of Choice or its weaker ultrafilter relatives. 
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This is because the Banach-Tarski paradox involves cutting the ball into a countably 

infinite set of subsets.6 

 C. The Existence of Equilibrium 

 There can be little question that the ultimate “crown jewel” of economic theory 

consists of the proofs of the existence of economic equilibrium, whether game theoretic 

or Walrasian general competitive.  Central to these has been the use of various fixed-

point theorems, with the first to be used being the original one, that due to L.E.J. Brouwer 

[9] and the second being its close cousin, that due to Kakutani [35].  In both cases the 

application was first made in game theory and then later to general Walrasian 

equilibrium.  It was von Neumann [46] who initiated this exercise in proving the 

existence of minimax equilibria for mixed strategies in certain games.  He would follow 

this by using it again to provide the first proof of the existence of a competitive 

equilibrium [47], although one in the rather particular form of a balanced-growth path.  

Following in the path of von Neumann, it would be John Nash [44] who would first apply 

the Kakutani variant [35] to prove the existence of equilibrium for non-cooperative 

games, which inspired Arrow and Debreu to use it in their proof of the existence of 

Walrasian general equilibrium [2]. 

  While Velupillai discusses contraction theorems and the Schauder fixed point 

theorem, most of his focus is on the foundational Brouwer fixed point theorem.  I shall 

focus my intention on it, especially given the contradictions and issues arising from 

Brouwer’s role in inventing intuitionist mathematics [8], which was in conflict with the 

                                                 
6 The pieces of a Banach-Tarski decomposition must be non-measurable; therefore by the celebrated result 
of Robert Solovay [63] such decompositions cannot be built without some use of the Axiom of Choice and 
hence lie outside constructive mathematics, suggesting that perhaps Velupillai is right to put his tongue into 
his cheek when referring to them. (I thank Adrian Mathias for clarifying this matter for me.)    
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methods he used (and those used by others since) to prove his most celebrated theorem.7  

Velupillai discusses the generally non-constructive nature of two different approaches to 

proving Brouwer’s fixed point theorem. 

 One that is used most frequently in mathematical economics (e.g. Scarf [58]) 

relies fundamentally upon the Bolzano-Weierstrass theorem that essentially states that 

every bounded sequence contains a convergent sequence.8  Ultimately these proofs end 

up selecting such a convergent sequence that conveniently ends up approaching the fixed 

point.  However, this involves invocation of strong versions of the Axiom of Choice to 

find this sequence.9  To add further to the problems with the Bolzano-Weierstrass 

theorem from the constructivist perspective, especially its intuitionist variant, the theorem 

also relies on proof by reductio ad absurdum, that is the law of the excluded middle, the 

very idea the rejection of which lies at the heart of the intuitionist philosophy {Dummett 

[25]). 

 The other main approach to proving the theorem is that of Brouwer himself [9].  

As noted by Velupillai, Brouwer went at this in a highly indirect way that ultimately 

relied upon the logical equivalence between a proposition and its contrapositive and the 

law of double negation.  So, first Brouwer showed that given a map of the disk onto itself 

with no fixed points there exists a continuous retraction of the disk to its boundary.  Then 

he showed its contrapositive that if there is no continuous retraction of the disk to its 

boundary then there is no continuous map of the disk to itself without a fixed point.  

                                                 
7 Brouwer [10] did eventually follow up to provide a correction to his proof to make it compatible with 
intuitionism. 
8 Often it is Sperner’s lemma that is invoked, but this depends on the Bolzano-Weierstrass theorem for its 
proof.  See Tompkins [66] for further discussion.  
9 Needless to say, there are economists who find showing how difficult it is to prove convergence to a fixed 
point to be quite uninteresting in the face of experimental evidence that at least in experimental double 
auction markets most agents are able to move to (partial) equilibrium solutions quite rapidly with little 
thought [62]. 
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When Brouwer developed intuitionism he fully understood how this proof did not 

correspond with it. 

 Brouwer’s intuitionism involved a strong form of constructivism very much in the 

tradition of Kronecker who had debated with Cantor in the 19th century.  While the law of 

the excluded middle was to be disavowed, the Axiom of Infinity was also denied, 

although potential infinity was allowed (that there is no upper limit to the natural 

numbers, even if there is no meaning to their aggregate constituting an infinite set).  

Many modern constructivists are more willing to allow the Axiom of Infinity, but then 

draw the line at higher levels or logics based on the existence of higher levels of infinity, 

the proof of whose existence by Cantor involved reduction ad absurdum.  However, in 

contrast to the computable emphasis of many constructivists, Brouwer’s concerns were 

ultimately more philosophical and even mystical [11].  His emphasis on possibly 

allowing for something to be both true and false can lead to the sort of transcendental 

perspective that is often argued to arise upon contemplating the apparently absurd Zen 

koans,10 (as well as possibly Marxist dialectics) even as it stands aside from the usual 

conflict between Aristotelianism (which asserts the Law of the Excluded Middle) and 

Platonism (which is rejected by all the constructivists). 

However, some theories thought to be related to intuitionism may simply involve 

probabilistic statements regarding degrees of truth, which may themselves still be 

                                                 
10 While most western works on Zen Buddhism emphasize this view of the koans, there is another more 
“classical” approach in which they have specific answers that the adept is expected to learn and repeat in a 
nearly rote way, once learned.  Hoffman [33] provides a “cheat sheet” of answers for some of the more 
famous ones, with, for example, the official answer for the most famous one of all, “what is the sound of 
one hand clapping?” being simply the act by the adept to stand correctly before the master and to thrust his 
hand forward decisively.  Thinking of this sort of Zen leads to understanding how it could be related to an 
authoritarian use of martial arts. 
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declared to be true or false, as in fuzzy set theory [76]11 or Boolean algebra [13].  In any 

case, while many view intuitionism as philosophically attractive, the formalism of Hilbert 

would dominate the leading mathematics journals from the 1920s on, leaving Brouwer 

and his main follower, Heyting [32], somewhat isolated until Kleene [39] and then 

Dummett [25] would come to their defense. 

 

 III. Can the Struggle within Mathematics be Resolved? 

 Much as economics is riven with vigorous debates between different schools of 

thought, so it is the case within mathematics, even if there is a dominant school that is 

often labeled “classical.”  Much as heterodox economics schools struggle with and 

against the dominance of neoclassical orthodoxy within economics, so do the 

constructivists struggle against this dominant classical approach within mathematics, 

even as this oversimplifies the lineup and classification of schools within mathematics.  

Indeed, within logic, the classical approach is usually thought to contain two schools, the 

“logicistic” of Russell and Whitehead and the ‘”formalistic” of Hilbert and von 

Neumann, with the intuitionists being the third school that is more on the outside within 

the broader constructivist camp ([39], pp. 46-53).  However, within mathematics more 

broadly there are other schools as well, just as the division between “heterodox” and 

“orthodox” within economics is a drastic oversimplification [20]. 

 Within this major paper [74], Velupillai makes the case for constructivism by 

appealing to certain mathematical ideas invented by physicists that were looked down 

                                                 
11 This is an interpretation that Gödel [28] appears to have accepted.  However, others distinguish more 
sharply between “many-valued logics” that assign definite truth values (interpretable as probabilities of 
truth), and intuitionism, which is seen as less definite on such truth values by Kleene [39] as well as  Rosser 
and Turquette [56].  More recently, Atanassov [3] has proposed a combination of the approaches in the 
theory of “intuitionistic fuzzy sets.” 
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upon by rigorous, classical mathematicians,12 but which in the end have come to be 

accepted, and were used by physicists and engineers before that happened because of 

their practicality.  One is the idea of path integrals developed by Feynman [26] and the 

other is the Dirac delta function [24].  Of these two, Feynman was more concerned with 

the practicalities involved rather than the philosophical or strictly mathematical 

implications compared to Dirac, who developed quite strong views about these latter 

matters.  However, for Velupillai the great appeal of both of them is their willingness to 

accept approximations that work rather than being obsessed with an unattainable idea of 

idealistic perfectionism. 

   Feynman’s sin was to solve for quantum mechanics an equation by 

simultaneously carrying out integrals over all space variables at each point in time, giving 

the “integral over all paths,” a concept that remains to this day non-axiomatized, with 

some labeling it as “mathematically meaningless” if still “impressive for the geniality of 

the physical intuition underlying it” and “one of the greatest achievements of 20th – 

century’s theoretical physics” ([61], p. 3).  Velupillai ([74], p. 9) argues that it is best 

interpreted as being a “rule of thumb algorithm.”  This certainly places it into the 

constructivist tradition, even if Feynman himself cared little about such debates. 

 Dirac’s delta function is perhaps even more troublesome from the standpoint of 

much of classical mathematics, derived as it is from the earlier (and also intuitive) 

Heaviside function (which is the integral of the Dirac function).  So, the Heaviside 

function is a flat function except for a discrete step at one point, while the Dirac delta 

function is zero everywhere except for at the point of the step in the Heaviside function, 

where it is infinite.  It does not look like a meaningful function at all, and it would be 
                                                 
12 The classical and rigorous approach to mathematical physics is codified in Courant and Hilbert [21]. 
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criticized by the likes of von Neumann [41] until it was rescued from non-respectability 

by Laurent Schwartz [60] inventing the concept of generalized functions and their 

distributions within which the delta function could fit.  Again, like Feynman after him 

and Oliver Heaviside before him, Dirac was driven by intuitions about physics rather than 

mathematical rigor.  Dirac was also motivated by aesthetics, preferring ideas that seemed 

possessed of beauty, thus perhaps agreeing with Hardy in being a follower of John Keats 

and his Ode on a Grecian Urn. 

 Curiously, besides interpreting the Dirac delta function as being generalized, yet 

another school of mathematical thought allows for the possibility of its being an exact 

and well-defined function, namely nonstandard analysis, with such a possibility being 

established by Todorov [65].  Developed by Abraham Robinson [50], nonstandard 

analysis looks on the surface to be the exact opposite of constructivist mathematics, and 

many consider this to be the case, with Errett Bishop [7] leading a charge specifically 

against using it in the teaching of elementary calculus as proposed by Keisler ([36], [37]).  

Bishop argued forcefully that it involved a debasement of numerical meaning, as well as 

an excessive reliance on the use of the Axiom of Choice in its development by Robinson. 

 Another problem is that whereas constructivism in its intuitionist formulation 

eschews the infinite, nonstandard analysis positively glories in it.  Not only are the 

transfinite cardinals accepted, but an entirely different set of infinite aggregates are 

allowed, hyperreal numbers that are infinite.  The real payoff for allowing these is that 

their reciprocals are infinitesimals, numbers arbitrarily close to zero, but not equal to it.  

Indeed, Robinson did not invent this idea, rather he resurrected it, arguing reasonably that 

when Leibniz originally developed his version of the calculus, he conceived of 
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derivatives as ratios of infinitesimals, rather than as limits of sequences of finite numbers.  

His great rival, Newton, apparently used both ideas in his development of “fluxions,” 

with Robinson ([50], p. 280) suggesting that Newton was reluctant to admit to 

infinitesimals in the face of attack from Berkeley who denied the existent of actual 

infinities.13  However, Robinson ([50], p. 281-282) notes that it is possible to use 

infinitesimals, which certainly appeal to the intuition of many introductory calculus 

students, without necessarily believing that they really exist, saying that “the intuitionists 

and other constructivists” might agree with Leibniz who declared regarding infinitely 

small and large numbers, “que ce n’étaient que des fictions, mais des fictions utiles.”  He 

then argues that while the “majority of mathematicians” agree with the “platonistic” 

classicism of Cantor that infinities are ontologically real, for a logical positivist the 

question is meaningless, even while one “would concede the historical importance of 

expressions involving the term ‘infinity’ and of the (possibly, subjective} ideas 

associated with such terms.” 

 Now it would appear in this paper by Velupillai [74] that he recognizes 

nonstandard analysis as a possible alternative to constructivism and computable 

approaches, but he does not provide any indication of any enthusiasm for it.  This may 

reflect how it has been used in the past in economics, largely for proving minor 

extensions of standard proofs of existence of general equilibrium, allowing for 

conceptually larger numbers of agents, but still based on such non-constructive concepts 

as the Axiom of Choice ([13], [12], [1]).  Nevertheless, in his paper Velupillai cites some 

                                                 
13 I thank David Levy for pointing out to me that almost certainly whatever ambiguities Newton may have 
entertained regarding the nature of his fluxions, they were not due to Bishop Berkeley’s jibes against them 
as the “ghosts of departed quantities,” as Berkeley did not make his arguments until 1734 in his The 
Analyst, whereas Newton died in 1727. 
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items that include some efforts to reconcile constructivism and nonstandard analysis, 

notably Schechter [59]. 

 Indeed, that effort has been a gradually building enterprise, perhaps initiated by 

Wattenberg [75], who noted that the effort at reconciliation was coming more from 

advocates of nonstandard analysis than from the harder line constructivists such as 

Bishop.  While Robinson and Keisler developed it to be essentially an extension of 

classical formalism, not contradicting the conventional view in any way, the newer 

efforts make this effort to be more consistent with constructivism, especially in its 

intuitionist formulation.  Thus, Geoffrey Hellman [31] points out that the essential 

argument about infinitesimals involves the very intuitionistic idea that they are both equal 

to zero while also not being equal to zero.  In the end, Hellman argues for a “pluralism” 

of mathematical systems, in this regard reflecting the arguments of some supporters of 

more heterodox approaches to economic theory. 

 

IV. The Position of J. Barkley Rosser [Sr.] 

“The main disadvantage of a system of symbolic logic is that it is a formal 

system divorced from intuition.” --- J. Barkley Rosser, Logic, (1978, [53], p. 10) . 

“One advantage of a symbolic logic is that it can be made very precise, but 

an even greater advantage is that it can be changed to fit the circumstances.” 

--- J. Barkley Rosser, Logic, (1978, [53], p. 522). 

 

 As promised at the beginning of this paper, we now arrive at the discussion 

Velupillai started his paper with, a consideration of the views of my late father, J. Barkley 



 19

Rosser [Sr.], on these matters as best I understand them. based both on reading his work 

and remembering discussions with him (he died in 1989), with some of the more 

revealing discussions involving his close friend and long associate, Stephen C. Kleene as 

well [40]14.  In this discussion we shall deal with the deeper foundational issues.. 

Velupillai suggests that Rosser was an ally of the constructivist position, and I have no 

disagreement whatsoever with his interpretation of the extension of the incompleteness 

theorem of Gödel made by Rosser in 1936 [51] as supporting the “classic trade-off that 

great mathematicians consciously make between weakening/strengthening conclusions 

and weakening/strengthening hypotheses” ([74]. p. 4).  Furthermore, although as time 

proceeds it is for his earlier more pure, logic work that he is mostly remembered, Rosser 

was a serious applied mathematician later on, indeed always had this orientation to some 

degree as he had a masters degree in physics before he earned his Ph.D. in mathematics at 

Princeton under Alonzo Church.15  That background would manifest itself during World 

War II when he was perhaps the leading expert on rocket ballistics in the U.S.,16 and his 

first book was The Mathematical Theory of Rocket Flight [55] (still in print), which 

reflected his deep fascination with the exploration of space by humans,17 later shown by 

                                                 
14 In this joint paper from 1935 [40], they showed that the λ-calculus is inconsistent, although modified 
versions of it have since been proven to be consistent.  They were among the developers of this system, 
much used later by computer scientists and artificial intelligence programmers.  Others closely involved in 
its initial development were Haskell Curry and Alonzo Church, the latter the major professor of both 
Kleene and Rosser. 
15 It may be that now the most intensively studied of his theorems is the one he proved with Church that 
shows the “diamond property” of recursive systems, the Church-Rosser theorem [18], which was very pure 
mathematics when they proved it prior to the invention of computers with memory, but is now viewed as 
deeply practical by computer scientists. 
16 Like his friend, John von Neumann, he continued to be involved with the military and intelligence after 
that war, receiving numerous commendations for his mostly classified work, including one for his solution 
of the water-to-air phase transition problem of the first submarine-launched missile, the Polaris.  Later, 
during the Vietnam War this work of his would become a matter of public controversy [5]. 
17 In 1929 he forecast to a group of highly skeptical friends that humans would land on the moon within 50 
years.  When this event occurred in 1969, he said that what he had not forecast was that he would be able to 
view it live on television (which he rarely watched otherwise, mostly considering it a “waste of time”). 
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his deep involvement in the space program of the U.S.18  Furthermore, this deep 

pragmatism as reflected in the quotation above regarding the importance of being able to 

“be changed to fit the circumstances” suggests that he may have been open to any 

viewpoint as long as it could satisfy this ultimate criterion. 

Without question he was a deep student of the controversies regarding the nature 

of the foundations of mathematics.  His acute awareness of these debates is given by the 

following summary of them by him regarding the Axiom of Choice. 

“X’s position:  Any finite number of choices is permissible, but not an 

infinite number. 

Y’s position:  A denumerable number of choices is permissible, but not for 

any larger number. 

Z’s position:  Any number of choices is permissible. 

Among actual mathematicians, perhaps a majority would applaud X’s 

position, certainly some would agree with Y, and others (who perhaps constitute a 

minority) agree wholeheartedly with Z.  However, many mathematicians who 

would like to espouse the positions of X or Y find that this would leave them with 

no means of proof for certain theorems which they need in their research.  

Accordingly, they accept the position of Z, but with reluctance and a hope that 

someone will one day find proofs of their key theorems which do not involve an 

infinity of choices.  Thus it comes about that we find papers written in which all 

                                                 
18 He played a crucial role in the first successful manned flight to the moon.  He solved a problem of 
astronauts landing on earth further from their planned rendezvous sites with longer flights as due to a 
discrepancy between the clocks on the ground and those in space, with the former on solar time and the 
latter on sidereal (star) time, off from each other by the roughly 1/365 due to the annual revolution of the 
earth about the sun.  If this had not been resolved, the first flight to the moon would have gone into deep 
space without hope of return.  



 21

the results of the paper depend on a theorem whose only known proof involves an 

infinity of choices; nevertheless, throughout the paper the author is careful to 

avoid the use of an infinity of choices.”  --- Rosser, (Logic, 1978 [53], p. 491). 

 

Velupillai and his allies in the program to constructivize the foundations of 

mathematical economics have argued precisely this last point at some length, that 

mathematical economist after mathematical economist has sought to prove the existence 

of general equilibrium and other crown jewels of economic theory, while assiduously 

avoiding mentioning the fact that their proofs are relying on unmentioned axioms that are 

not at all agreed upon universally.  In this regard Rosser certainly had sympathy with 

these constructivist arguments, and his extensive research in numerical analysis and 

computer science more generally reinforces this perception. 

However, we are now coming to the more difficult point of ascertaining his real 

position, and here I shall report my own personal observations of him.  Something that 

makes things difficult is that while he often had strong views regarding things, he also 

tended to avoid specifically declaring his position, indeed enjoyed not doing so.  To make 

matters worse, he would sometimes play the “devil’s advocate” and brilliantly argue for a 

position he disagreed with just to provoke his interlocuters.19  In the area of politics he 

strongly asserted the right of the citizen to secrecy of the ballot, and I never heard him 

actually state whom he had voted for in any election, although I generally had a good 

idea whom he favored. 

                                                 
19 While he often enjoyed confounding others, he could also be reassuring when it suited him.  Thus, during 
a public presentation, a young woman asked him if zero was a real number.  Ever the perfect southern 
gentleman, he replied, “One of the finest, my dear, one of the finest.” 
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There is a non-trivial relationship between these attitudes and the implications of 

the Gödel theorems with which he was so deeply associated.  So within a system, both a 

statement and its opposite may be able to be proven.  One response to this might well be 

intuitionism: overturning the law of the excluded middle can allow us to assert that both 

are true.  However, another view, implied by the quote by Gödel at the end of 

Velupillai’s paper, is that there may be a definitely correct answer, a definite truth, but 

that it can only be known by moving to a “higher type,” that at a higher level of 

perspective the answer can be known.  It was his hard pragmatism that inclines me to the 

view that he was not a post-modernist with regard to reality: he had a very hard 

appreciation of the very hard reality of the very hard facts that make themselves 

unavoidable to us, even if there are higher order things that we do not know or perceive 

whose reality or lack thereof remains a mystery. 

So, while he never expressed his bottom line opinion on these matters, I have a 

sense of where he stood on some of them, especially compared to his old and close 

friend, the late Steve Kleene.  I think that Kleene was more the constructivist, indeed 

even an intuitionist, whereas my father was in his heart of hearts a classical 

mathematician who accepted the law of the excluded middle, and who agreed with Hardy 

that mathematical reality truly exists outside of us.  Let me deal with these issues in 

order. 

Regarding the law of the excluded middle, one piece of evidence, exhibited 

throughout his writings, is that he had no hesitation in using reductio ad absurdum 

arguments.  I think that he viewed it as a matter of beauty implying truth, with a good 

proof by contradiction being the highest form of mathematical aestheticism.  When I was 
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13, he sat me down one day and worked through the proof that there is no highest level of 

infinity.  This is a diagonal proof by contradiction in which one assumes that one has 

found a set that possess the highest possible level of transfinite cardinality, and then one 

examines its power set, the set of all its subsets, and shows that one cannot establish a 

one-to-one correspondence between this set and the one that was assumed to be at the 

highest level of infinity, with the failure of the one-to-one correspondence amounting to 

there always being at least one member of the power set that is left over not being 

associated with a member of the original set, just as in Cantor’s proof that the real 

number continuum is at a higher level of infinity than the denumerable natural numbers. 

In this he contrasted with his friend Kleene.  At a certain point I became 

fascinated by arguments regarding Zen koans and the possible reality of apparent 

contradictions holding simultaneously.  When I asked my father about this he told me to 

ask Steve Kleene about it.  When I did, Kleene told me about intuitionism, the first time I 

heard about it.  Now, while my father makes frequent references to “intuition” in his 

works, he never used the term “intuitionism” that I am aware of.  I think that in the end 

he simply did not buy it, although I suspect that it also involved the view of Keats, and 

that it was fundamentally an aesthetic judgment: he found a good proof by contradiction 

to be supremely elegant and beautiful, and intuitionism rules them out.   

The question reappears implicitly in his 1969 book, Simplified Independence 

Proofs [52].  There he redoes the forcing proof by Paul Cohen [19] of the independence 

of the continuum hypothesis into Boolean algebraic terms.  As noted earlier, like fuzzy 

logic, Boolean algebra admits of truth values that are not just one or zero.  This would 

follow the approach developed by Rosser and Turquette [56] in their work on multiple-
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valued logic.  This looks on the surface like it could be consistent with the possible 

intuitionistic assertion that A may be both true and not true at the same time.  But this is 

not the case in the original formulations.  The Boolean formulation can sometimes be 

interpreted as asserting probabilistic truth, as in the many-valued logic.20  Thus the 

statement that “there is a 30 percent chance of rain today” can be viewed as an 

Aristotelian assertion: it may be definitely true or false (although it may not be easy to 

establish if it is or not, as the appearance of rain today does not disprove it).  Booleanism 

and Aristotelianism are perfectly consistent, if considered within the penumbra of many-

valued logic.21 

Another piece of this is the matter of whether or not one “invents” or “discovers” 

theorems.  Are theorems “constructed” (invented), or are they expositions about a real 

mathematical reality outside of us that the mathematician discovers?  I can report that my 

father always used the latter terminology: for him, for all his willingness to consider 

many different possible systems of logic and mathematics, theorems were “discovered.”  

They are sitting out there somewhere for the brilliant mathematician to find them.  Thus, 

while he never expressed a per se opinion on the matter, I think that he ultimately agreed 

with Hardy that mathematical reality is a real Platonic reality.22 

                                                 
20 Adrian Mathias has pointed out to me that more properly speaking the Boolean valued model approach to 
forcing assigns truth values in a complete Boolean algebra to sentences of the forcing language.  This may 
have nothing to do with probabilities of truthfulness per se. 
21 However, Atanassov [3] has more recently developed an intuitionistic extension of fuzzy set logic.  See 
also [14]. 
22 A sideshow to this discussion involves theology.  Does believing in an ideal, Platonic, mathematical 
reality imply that one must believe in a deity?  Hardy is proof that this is not necessarily the case, as he was 
both a publicly confirmed and vigorous atheist, while also accepting that mathematical reality is a Platonic 
ideal outside of us.  As for my father’s theological views, I will note that while he attended church regularly 
with my very religious mother, he never definitively stated his position on these matters in my hearing, and 
I am less certain of his ultimate position regarding them than I am about what his political views were. 
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 Yet another piece of evidence is that he was quite an admirer of nonstandard 

analysis, supporting the tenuring of Robinson’s strong ally, H. Jerome Keisler, in the 

mathematics department at the University of Wisconsin-Madison (Kleene also was 

involved as well, initially hiring Keisler when he was department chairman,).  In the 

second edition of his Logic for Mathematicians (which was simply entitled, Logic for the 

second edition), he added several appendices [53].  The final one (D) is about 

nonstandard analysis and is quite sympathetic to its arguments.  In the next to last 

paragraph of the entire book ([53], p. 560), he cites its ability to provide an easy solution 

for the Dirac delta function, and in the final paragraph he approvingly cites Keisler’s 

book, Elementary Calculus [36] which Errett Bishop had strongly criticized [7].  Of 

course, as noted above, Hellman and others see nonstandard analysis as ultimately 

consistent with a constructivist approach,23 and Abraham Robinson himself fell back on a 

pragmatic approach,  ultimately arguing that the ontological status of infinitesimals was 

meaningless, even as they might be useful, if only for understanding the history of 

mathematics. 

However, in the end, I think that for my father it all came together.  I believe that 

he agreed with “Z” above from his Logic, but like Hellman he saw a consistency between 

the pragmatic and computable aspect of constructivism in its broader perspective with 

there being a real existence of a higher mathematical reality that includes infinitesimals 

and transfinite cardinals, even inaccessible ones.  More than once I heard him repudiate 

Hardy’s clam that “real” mathematics was ultimately “useless,” noting that theorems that 

he proved when he was young and thought to be strictly part of totally pure mathematics, 

                                                 
23 I thank Jerome Keisler for informing me that the understanding of this consistency and the tradeoffs 
involved has now proceeded very far. 
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turned out later to have practical applications.  Thus, I think he believed in the ultimate 

unification of the Platonic ideal with the Aristotelian material reality somehow.  If there 

was a deity for him, that being was somehow connected with that level of inaccessible 

transinfinity that he seemed to be trying to reveal to me without saying it when he 

showed me the proof that there is no highest level of infinity, when I reached the age that 

a young man is supposed to decide his religious identity, but which he may have seen as 

also manifesting itself somehow in the most concrete reality that we live in. 

 

 V. Conclusions 

 Kumaraswamy Vela Velupillai has provided us with a stunning tour de force in 

his paper [74] that shows how one may move to redefine the foundations of mathematical 

economics upon constructivist principles.  He successfully invokes arguments of J. 

Barkley Rosser [Sr.] in this effort and highlights the crucial theorems upon which the 

“crown jewels” of economic theory rest that depend upon non-constructivist arguments.  

He takes us through the arguments regarding mathematics and the relevant theorems, 

finally bringing us to the economics itself.  This is quite an achievement.  It may be that 

the person he invoked would argue that he should extend this approach to include a 

constructivist application of nonstandard analysis as well, but he hints at this possibility.  

To honor Vela’s commitment to the reconstruction of the foundations of economic theory 

upon a constructivist methodology, I shall conclude this paper by quoting a poem that I 

believe is consistent with this view.   

 

  “She was the single artificer of the world 
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  In which she sang.  And when she sang, the sea, 

  Whatever self it had, became the self 

  That was her song, for she was the maker.  Then we, 

  As we beheld her striding there alone, 

  Knew that there never was a world for her 

  Except the one she sang, and singing, made.” 

  --- Wallace Stevens, The Idea of Order at Key West, 1934. 

 

        

References 

[1]  Anderson, Robert M. (1991),  Non-standard Analysis with Applications to 
       Economics, in Handbook of Mathematical Economics, Vol. 4, pp. 2145-2208, 
       edited by Kenneth J. Arrow, Michael D. Intriligator, Werner Hildenbrand, and Hugo 
       Sonnenschein, Elsevier, Amsterdam.  
 
[2]  Arrow, Kenneth J. & Gérard Debreu (1954), Existence of an Equilibrium for a 
       Competitive Economy, Econometrica, Vol. 22, pp. 265-290. 
 
[3]  Atanassov, Krassimir T. (1999), Intuitionistic Fuzzy Sets, Springer-Verlag, 
       Heidelberg. 
 
[4]  Banach, Stefan & Alfred Tarski (1924), Sur la Décomposition des Ensembles de 
       Points en Parties Respectivement Congruentes, Fundamenta Mathematicae, Vol. 
       6, pp. 244-277. 
 
[5]  Bates, Tom (1992), Rads: The 1970 Bombing of the Army Math Research Center 
       at the University of Wisconsin and its Aftermath, HarperCollins, New York. 
 
[6]  Bishop, Errett A. (1967), Foundations of Constructive Analysis, McGraw-Hill, 
       New York. 
 
[7]  Bishop, Errett A. (1977), Review: H. Jerome Keisler, Elementary Calculus, Bulletin 
       of the American Mahematical Society, Vol. 83, #2, pp. 1007-1011. 
 
[8]  Brouwer, L.E.J. (1908), De Onbetrouwbaarheid der Logische  Principes, Tijdschrift 
       voor wijsbegeerte, Vol. 2, pp. 152-158. 



 28

 
[9]  Brouwer, L.E.J. (1910), Uber eineindeutige statige trans-formationen von Flachen in 
       sich, Mathematische Annalen, Vol. 69, pp. 176-180. 
 
[10]  Brouwer, L.E.J. (1952), An Intuitionist Correction of the Fixed-Point Theorem on 
         the  Sphere, Proceedings of the Royal Society London, Vol. 213 (5 June 1952), 
         pp. 1-2. 
 
[11]  Brouwer, L.E.J. (1996), Life, Art, and Mysticism, Notre Dame Journal of Formal 
         Logic, Vol. 37, pp. 289-429 [translated by W.P. van Stigl from the 1905 original]. 
 
[12]  Brown, Donald J. (1976), Existence of a Competitive General Equilibrium in a 
         Nonstandard Exchange Economy, Econometrica, Vol. 44, #3, May, pp. 537-546. 
 
[13]  Brown, Donald J. & Abraham Robinson (1975), Nonstandard Exchange 
         Economies, Econometrica, Vol. 43, #1, January, pp. 41-56. 
 
[14]  Cattaneo, Giorgievo & Davide Ciucci (2006), Basic Intuitioniistic Principles in 
         Fuzzy Set Theories and its Extensions (a Terminological Debate), Fuzzy Sets and 
         Systems, Vol. 157, #24 (16 December 2006), pp. 3198-3218.  
 
[15]  Chaitin, Gregory J. (1990), Computing the Busy Beaver Function, in: Information, 
         Randomness & Incompleteness – Paper on Algorithmic Information Theory 
         (Second Edition), World Scientific, Singapore. 
 
[16]  Chaitin, Gregory J. (1995), The Berry Paradox, Complexity, Vol. 1, #1, pp. 26-30. 
 
[17]  Chomsky, Noam (1959), On Certain Formal Properties of Grammars, Information 
         and Control, Vol. 2, pp. 11-54. 
 
[18]  Church, Alonzo & J. Barkley Rosser (1936), Some Properties of Conversion, 
         Transactions of the American Mathematical Society, Vol. 39, #3, May, pp. 472 
         -482.  
 
[19]  Cohen, Paul J. (1963), The Independence of the Continuum Hypothesis, 
         Proceedings of the National Academy of Sciences U.S.A., Vol. 50, pp. 1143 
         -1148, Vol. 51, pp. 105-110. 
 
[20]  Colander, David, Richard P.F. Holt, and J. Barkley Rosser, Jr. (2004), The 
         Changing Face of Economics: Conversations with Cutting Edge Economists, 
          University of Michigan Press, Ann Arbor. 
 
[21]   Courant, Richard & David Hilbert (1962), Methods of Mathematical Physics,  
          Vols. I & II, John Wiley & Sons, New York. 
 
[22]  Davis, Martin, ed. (1965), The Undecidable: Basic Papers on Undecidable 



 29

         Propositions, Unsolvable Problems and Computable Functions, Raven Press, 
         New York. 
 
[23]   Dewdney, Alexander K. (1984), A Computer Trap for the Busy Beaver, the  
         Hardest-Working Turing Machine, Scientific American, Vol 251, #2, August, pp. 
         10-17. 
 
[24]  Dirac, Paul A.M. (1930), The Principles of Quantum Mechanics, Oxford 
         Scientific Publications, Oxford. 
 
[25]  Dummett, Michael E.A. (1977), Elements of Intuitionism, Clarendon Press, 
         Oxford. 
 
[26]  Feynman, Richard P. & Albert R. Hibbs (1965), Quantum Mechanics and Path 
         Integrals, McGraw-Hill, New York. 
 
[27]  Gödel, Kurt (1931), Über Formal Unentscheidbare Sätze der Principia 
         Mathematica und verwandter Systeme I, Monatshefte für Mathematik und 
         Physik, Vol. 38, #1, December, pp. 173-198. 
 
[28]  Gödel, Kurt (1932), Zum intuitionistischen Aussagenkalkül, Akademie des 
          Wissenschaften in Wien, Mathematisch-naturwissenschaftliche Klasse, 
          Anzeiger, Vol. 69, pp. 65-66. 
 
[29]  Greenleaf, Newcomb (1991), Algorithmic Languages and the Computability of  
        Functions, in: The Mathematical Revolution Inspired by Computing, pp. 221-  
        232, edited by J.H. Johnson & M.J. Loomis, Clarendon Press, Oxford. 
 
[30]  Hardy, G.H. (1969), A Mathematician’s Apology, (Foreword by C.P. Snow), 
         Cambridge University Press, London (originally published, 1940). 
 
[31]  Hellman, Geoffrey (2008), Interview, in: Philosophy of Mathematics: 5 
         Questions, edited by Vincent F. Hendricks & Hannes Leitgeb, Automatic 
          Press/VIP, Copenhagen. 
 
[32]  Heyting, Arend (1931-32), Die Intuitionistische Grundlagen der Mathematik, 
         Erkenntnis, Vol. 2, pp. 106-115. 
 
[33]  Hoffman, Yoel (1975), The Sound of the One Hand: 281 Zen Koans with 
         Answers, Basic Books, New York. 
 
[34]  Ishihara, Hajime (1989), On the Constructive Hahn-Banach Theorem, Bulletin of 
         the London Mathematical Society, Vol. 21, pp. 79-81. 
 
[35]  Kakutani, Shizuo (1941), A Generalization of Brouwer’s Fixed Point Theorem, 
         Duke Mathematical Journal, Vol. 8, #3, pp. 457-459.  



 30

 
[36]  Keisler, H. Jerome (1976a), Elementary Calculus, Prindle, Weber & Schmidt, 
         Boston. 
 
[37]  Keisler, H. Jerome (1976b), Foundations of Infinitesimal Calculus, Prindle, 
         Weber & Schmidt, Boston. 
 
[38]  Keynes, John Maynard (1936), The General Theory of Employment, Interest 
         And Money, Macmillan, London. 
 
[39]  Kleene, Stephen Cole (1952), Introduction to Metamathematics, D. van 
         Nostrand, New York. 
 
[40]  Kleene, Stephen C. & J. Barkley Rosser (1935), The Inconsistency of Certain 
         Formal Logics, Annals of Mathematics, Second Series, Vol. 36, pp. 630-636. 
 
[41]  Kragh, Helge (1990), Dirac: A Scientific Biography, Cambridge Univesity Press, 
         Cambridge. 
 
[42]  Lucas, Robert E., Jr., Nancy L. Stokey with Edward C. Prescott (1989), Recursive 
         Macroeconomic Theory (Second Edition), MIT Press, Cambridge. 
 
[43]  Mirowski, Philip (2007), Markets Come to Bits: Evolution, Computation, and 
         Markomata, Journal of Economic Behavior and Organization, Vol. 63, #2, June, 
          pp. 209-242. 
 
[44]  Nash, John F. (1950), Equilibrium Points in N-Person Games, Proceedings of the 
          National Academy of Sciences U.S.A., Vol. 36, #1, pp. 48-49. 
 
[45]  Nerode, Anil, George Metakides and Robert Constable (1985), Recursive Limits on 
         the Hahn-Banach Theorem, in: Errett Bishop – Reflections on Him and His 
          Research, pp. 85-91, edited by Murray Rosenblatt, Contemporary Mathematics, 
          Vol. 39, American Mathematical Society, Providence. 
 
[46]  Neumann, John von (1928), Zur Theorie der Gessellshaftspiele, Mathematische 
         Annalen, Vol. 100, pp. 295-320. 
 
[47]  Neumann, John von (1937), Über ein Ökonomisches Gleichungssystem und eine 
         Verallgemeinerung des Brouwerschen Fixpunktsatzes, Ergebnisse eines 
          mathematischen Kolloquiums, Vol. 8, pp. 73-83. (English translation, 1945, A 
          Model of General Equilibrium, Review of Economic Studies, Vol. 13, pp. 1-9). 
 
[48]  Pawlikowski, Janusz (1991), The Hahn-Banach Theorem Implies the Banach-Tarski 
         Paradox, Fundamenta Mathematicae, Vol. 138, pp. 13-19. 
 
[49]  Radó, Tibor (1962), On Non-Computable Functions, The Bell System Technical 



 31

        Journal, Vol. 41, #3, May, pp. 877-884. 
 
[50]  Robinson, Abraham (1966), Non-standard Analysis, North-Holland, Amsterdam. 
 
[51]  Rosser, J. Barkley (1936), Extensions of Some Theorems of Gödel and Church, 
         Journal of Symbolic Logic, Vol. 1, #3, September, pp. 87-91. 
 
[52]  Rosser, J. Barkley (1969), Simplified Independence Proofs: Boolean Valued 
         Methods of Set Theory, Academic Press, New York. 
 
[53]  Rosser, J. Barkley (1978), Logic, Second Edition, Chelsea Publishing, New York 
         (First Edition, 1953, published as Logic for Mathematicians, McGraw-Hill, New 
         York). 
 
[54]  Rosser, J. Barkley & Carl de Boor (1979), Pocket Calculator Supplement for For 
         Calculus, Addison-Wesley, Reading. 
 
[55]  Rosser, J. Barkley with Robert R. Newton and George L. Gross (1947), The 
         Mathematical Theory of Rocket Flight, McGraw-Hill, New York. 
 
[56]  Rosser, J. Barkley & Atwell R. Turquette (1952), Many-Valued Logics, North 
         -Holland, Amsterdam. 
 
[57]  Russell, Bertrand (1908), Mathematical Logic Based on the Theory of Types, 
         American Journal of Mathematics, Vol. 30, pp. 223-262. 
 
[58]  Scarf, Herbert E. with Terje Hansen (1973), The Computation of Economic 
         Equilibria, Yale University Press, New Haven. 
 
[59]  Schechter, Eric (1997), Handbook of Analysis and its Foundations, Academic 
         Press, San Diego. 
 
[60]  Schwartz, Laurent (1950-51), Théorie des Distributions, I-II, Hermann & Cie, 
         Paris. 
 
[61]  Serge, Gavriel (2007), The Mathematical Role of (Commutative and Non 
         -commutative) infinitesimal random walks over (Commutative and non 
         -commutative) Riemannian Manifolds in Quantum Physics, 
         http://arxiv.org/abs/math-ph/0703011v4. 
 
[62]  Smith, Vernon L. (1962), An Experimental Study of Competitive Market Behavior, 
         Journal of Political Economy, Vol. 70, pp. 111-137. 
 
[63]  Solovay, Robert M. (1970), A Model of Set-Theory in which Every Set of Reals is 
          Lebesgue Measurable, Annals of Mathematics, Second Series, Vol. 92, pp. 1-56. 
 



 32

[64]  Specker, E.P. (1953), The Axiom of Choice in Quine’s New Foundations for 
         Mathematical Logic, Proceedings of the National Academy of Sciences U.S.A., 
          Vol. 39, pp. 972-975. 
 
[65]  Todorov, Todor (1990), A Nonstandard Delta Function, Proceedings of the 
         American Mathematical Society, Vol. 110, #4, pp. 1143-1144. 
 
[66]  Tompkins, Charles B. (1964), Sperner’s Lemma and Some Extensions, in: Applied 
         Combinatorial Mathematics, pp. 416-455, edited by Edward F. Beckenbach, 
         Wiley & Sons, New York. 
 
[67]  Velupillai, Kumaraswamy, editor (1989), Nonlinearities and Multisectoral 
         Macrodynamics: Essays in Honour of Richard M. Goodwin, Macmillan, 
         London. 
 
[68]  Velupillai, Kumaraswamy (1995), The Computable Approach to Economics, 
          Taiwan Journal of Political Economy, Vol. 1, #1, September, pp. 53-110. 
 
[69]  Velupillai, Kumaraswamy (2000), Computable Economics, Oxford University 
          Press, Oxford. 
 
[70]  Velupillai, K. Vela (2002), Effectivity and Constructivity in Economic Theory, 
         Journal of Economic Behavior and Organization, Vol. 49, #3, November, pp. 
         307-325. 
 
[71]  Velupillai, K. Vela, editor (2005), Computability, Complexity and Constructivity 
          in Economic Analysis, Blackwell, Oxford. 
 
[72]  Velupillai, K. Vela (2006), Algorithmic Foundations of Computable General 
         Equilibrium Theory, Applied Mathematics and Computation, Vol. 179, pp. 360 
          -369. 
 
[73]  Velupillai, K. Vela (2008), Sraffa’s Mathematical Economics: A Constructive 
          Interpretation, Journal of Economic Methodology, Vol. 15, #4, pp. 325-342. 
 
[74]  Velupillai, K. Vela (2009), Taming the Incomputable, Reconstructing the 
         Nonconstructive and Deciding the Undecidable in Mathematical Economics, New 
         Mathematics and Natural Computation, this issue. 
 
[75]  Wattenberg, Frank (1988), Nonstandard Analysis and Constructivism, Studia 
          Logica, Vol. 47, #3, pp. 303-309. 
 
[76]  Zadeh, Lofti A. (1965), Fuzzy Sets, Information and Control, Vol. 8, pp. 338-353. 
 
[77]  Zambelli, Stefano (2004), Production of Ideas by Means of Ideas, 
         Metroeconomica, Vol. 55, #2&3, May/September, pp. 155-179. 



 33

 
[78]  Zambelli, Stefano (2005), Computable Knowledge and Undecidability: A Turing 
         Machine Metaphor Applied to Endogenous Growth Models, in: [71], pp. 233-263. 
 
[79]   Zorn, Max (1935), A Remark on Method in Transfinite Algebra, Bulletin of the 
         Ameican Mathematical Society, Vol. 41, #10, pp. 667-670. 


