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During the last decade the interface between set theory and operator algebras
advanced from virtually nonexistent to a lively area of research. I will focus my
attention to two rather different topics in this area.

Concrete C*-algebra is a norm-closed, self-adjoint algebra of bounded operators
on a complex Hilbert space. An abstract C*-algebra is a Banach algebra with
involution that is isomorphic to a concrete C*-algebra. Essentially by a 1942 result
of Gelfand–Naimark–Segal, C*-algebras are axiomatizable in the logic of metric
structures ([1], see [10]). The category of abelian C*-algebras is equivalent to the
category of locally compact Hausdorff spaces, and therefore the study of C*-algebras
is sometimes called ‘noncommutative’ or ‘quantized’ topology (cf. [3])

0.1. Classification of nuclear, separable C*-algebras. Elliott’s program of
classification of separable nuclear C*-algebras by K-theoretic invariants has enjoyed
tremendous success and achieved a number of spectacular results ([19]). However,
counterexamples constructed by Rørdam and Toms have shown that the program
in its original formulation needs to be revised (see [6]).

Set-theoretic analysis of the Elliott program was initiated in [12] and [11] as a
continuation of the broad endeavour to study the comparative complexity of classi-
fication problems (see [15] and [14]). I will present the current (rapidly changing!)
state of the art on this subject.

0.2. Rigidity of corona algebras. The multiplier algebra M(A) of a C*-algebra A
is the non-commutative analogue of the Čech–Stone compactification and it is the
maximal C*-algebra that has A as an essential ideal. The quotient M(A)/A is
called corona algebra (or outer multiplier algebra) and is a noncommutative ana-
logue of the Čech–Stone remainder of a topological space. Calkin algebra is the
simplest non-commutative corona and the simplest non-commutative instance of
the rigidity problem for corona algebras is the 1977 question of Brown, Douglas
and Fillmore whether Calkin algebra has outer automorphisms. By [18] and [8],
the answer to this question is independent from ZFC. I will present known results
and open problems on this question (see [9], [4]).

0.3. References. Only the basic knowledge of descriptive set theory and functional
analysis will be assumed. Prerequisites for §0.1 and §0.2 roughly correspond to the
prerequisites for [12] and [8], respectively. I shall nevertheless list some suggested
readings. For the general theory of C*-algebras see [2], [17], or [5]. For their set-
theoretic aspects see [20] and [13]. An excellent reference for descriptive set theory
is [16], see also [14]. In §0.2 I will use model theory of metric structures ([1], [10]),
combinatorial set theory, and what not (see [8], [7]).
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