Dynamic Corporate Default Predictions – Spot and Forward-Intensity Approaches

Jin-Chuan Duan

Risk Management Institute and Business School National University of Singapore

(June 2012)

JC Duan (NUS)

Dynamic Corporate Default Predictions ...

(6/2012) 1 / 33

Outline

- Introduction
- Spot and forward intensity approaches
 - Spot intensity and the likelihood function
 - Forward intensity and the pseudo-likelihood function
- Data and covariates
 - Data
 - Covariates

Empirical results

- Parameter estimates
- Aggregate number of defaults
- Prediction accuracy
- Case study: Lehman Brothers
- Comparing Duan, et al (2012) with Duffie, et al (2007)

Conclusion

References

(6/2012) 2 / 33

Questions of interest

- Single-obligor default prediction over different future periods (forward and cumulative)
 - Forward default probability

 $t-2 \quad t-1 \quad t \quad t+1 \quad t+2 \quad t+3 \quad t+4$ • Cumulative default probability $t-2 \quad t-1 \quad t \quad t+1 \quad t+2 \quad t+3 \quad t+4$

- Portfolio credit analysis
 - Frequencies of defaults over some horizon
 - Exposure-weighted default distribution over some horizon

Literature Review

- Choosing between structural and reduced-form modeling approaches
- Discriminant analysis
 - Beaver (1966, 1968), Altman (1968), etc.
 - Model output: credit scores
- Binary response models: logit/probit regressions
 - Ohlson (1980), Zmijewski (1984), etc.
 - Model output: default probability in the next one period

• Campbell, et al (2008): logit models for different periods ahead

Literature Review (Cont'd)

Recent development: duration analysis

- Shumway (2001), Chava and Jarrow (2004), etc.
- The model of Duffie, Saita and Wang (2007):
 - Two Poisson processes (conditionally independent)

- Default/bankruptcy
- Other exit: merger and acquisition, etc.
- Use spot intensities
 - Instantaneous rate of occurrence
 - Functions of the covariates (stochastic and deterministic)
- Need to specify the time-series dynamics for the stochastic covariates

イロト イポト イラト イラ

Literature Review (Cont'd)

• The model of Duan, Sun and Wang (2012):

- Two Poisson processes (conditionally independent)
 - Default/bankruptcy
 - Other exit: merger and acquisition, etc.
- Forward intensity
 - Instantaneous rate of occurrence
 - Functions of the covariates (stochastic and deterministic)
- No need to specify the time-series dynamics for the stochastic covariates

イロト イポト イラト イラ

Spot intensity model

- Let instantaneous default and other exit intensities for the *i*-th firm at time *t* be λ_{it} and ϕ_{it} , respectively.
- Define two stopping times τ_{Di} : default time of the *i*-th firm τ_{Ci} : combined exit time of the *i*-th firm
- The default probability over $[t, t + \tau]$ becomes $E_t \left(\int_t^{t+\tau} e^{-(\lambda_{is} + \phi_{is})(s-t)} \lambda_{is} ds \right).$

Spot intensity model (Cont'd)

- Model λ_{it} and ϕ_{it} as functions of state variables available at time *t*.
- $\lambda_{it} \geq 0$ and $\phi_{it} \geq 0$.
- $X_{it} = (x_{it,1}, x_{it,2}, \cdots, x_{it,k})$: the set of the state variables

$$\lambda_{it} = \exp\{\lambda \exp[-\delta(t - t_B)]\mathbf{1}_{t > t_B} \\ + \alpha_0 + \alpha_1 x_{it,1} + \alpha_2 x_{it,2} + \cdots + \alpha_k x_{it,k}\} \\ \phi_{it} = \exp(\beta_0 + \beta_1 x_{it,1} + \beta_2 x_{it,2} + \cdots + \beta_k x_{it,k})$$

where t_B is August 2008 (Note that the US government bailed out AIG in September 2008)

• Discretize the model for empirical implementation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The likelihood function

$$\begin{aligned} \mathscr{L}(\alpha,\beta;\tau_{C},\tau_{D},X) &= \prod_{i=1}^{N} \prod_{t=0}^{T-1} \mathscr{L}_{i,t}(\alpha,\beta) \\ \mathscr{L}_{i,t}(\alpha,\beta) &= \mathbf{1}_{\{t_{0i} \leq t,\tau_{Ci} > t + \Delta t\}} P_{t}(\tau_{Ci} > t + \Delta t) \\ &+ \mathbf{1}_{\{t_{0i} \leq t,\tau_{Di} = \tau_{Ci} = t + \Delta t\}} P_{t}(\tau_{Di} = \tau_{Ci} = t + \Delta t) \\ &+ \mathbf{1}_{\{t_{0i} \leq t,\tau_{Di} \neq \tau_{Ci},\tau_{Ci} = t + \Delta t\}} P_{t}(\tau_{Di} \neq \tau_{Ci} \& \tau_{Ci} = t + \Delta t) \\ &+ \mathbf{1}_{\{t_{0i} > t\}} + \mathbf{1}_{\{\tau_{Ci} \leq t\}} \end{aligned}$$

- *P_t*(τ_{Ci} > t + Δt): probability of surviving both forms of exit over the next period
- $P_t(\tau_{Di} = \tau_{Ci} = t + \Delta t)$: probability that firm defaults in the next period
- $P_t(\tau_{Di} \neq \tau_{Ci} \& \tau_{Ci} = t + \Delta t)$: probability that firm exits in the next period due to other reasons

JC Duan (NUS)

(6/2012) 9 / 33

The likelihood function (Cont'd)

$$P_t(\tau_{Ci} > t + \Delta t) = \exp\left[-(\lambda_{it} + \phi_{it})\Delta t\right]$$

$$P_t(\tau_{Di} = \tau_{Ci} = t + \Delta t) = 1 - \exp\left[-\lambda_{it}\Delta t\right]$$

$$P_t(\tau_{Di} \neq \tau_{Ci} \& \tau_{Ci} = t + \Delta t) = \exp\left[-\lambda_{it}\Delta t\right] - \exp\left[-(\lambda_{it} + \phi_{it})\Delta t\right]$$

with $\Delta t = 1/12$ (monthly data)

Note that the likelihood function is decomposable so that the parameters for the default and other exit intensity functions can be separately estimated.

< ロ > < 同 > < 回 > < 回 >

(6/2012)

10/33

Forward intensity model

 Spot combined exit intensity: "average" rate of combined exit occurrence

$$\psi_{it}(\tau) \equiv -\frac{\ln(1-F_{it}(\tau))}{\tau} = -\frac{\ln E_t \left[\exp\left(-\int_t^{t+\tau} (\lambda_{is} + \phi_{is}) ds\right)\right]}{\tau}$$

 $F_{it}(\tau)$: the time-*t* conditional distribution function of the combined exit time evaluated at $t + \tau$.

- λ_{is} : instantaneous intensity for default.
- ϕ_{is} : instantaneous intensity for other exit.

Forward intensity model (Cont'd)

• Forward exit intensity: forward rate of combined exit occurrence

$$g_{it}(au)\equiv rac{F_{it}'(au)}{1-F_{it}(au)}=\psi_{it}(au)+\psi_{it}'(au) au$$

Forward default intensity: forward rate of default occurrence

$$f_{it}(\tau) \equiv e^{\psi_{it}(\tau)\tau} \lim_{\Delta t \to 0} \frac{P_t(t + \tau < \tau_{Di} = \tau_{Ci} \le t + \tau + \Delta t)}{\Delta t}$$
$$= e^{\psi_{it}(\tau)\tau} \lim_{\Delta t \to 0} \frac{E_t \left[\int_{t+\tau}^{t+\tau+\Delta t} \exp\left(-\int_t^s (\lambda_{iu} + \phi_{iu}) du\right) \lambda_{is} ds\right]}{\Delta t}$$

- τ_{Di} : default time of the *i*-th firm.
- τ_{Ci} : combined exit time of the *i*-th firm.
- The default probability over $[t, t + \tau]$ becomes $\int_0^{\tau} e^{-\psi_{it}(s)s} f_{it}(s) ds$.

(6/2012) 12 / 33

Forward intensity model (Cont'd)

- Model *f_{it}(τ*) and *g_{it}(τ*) directly as functions of state variables available at time *t* and the horizon of interest, *τ*.
- $g_{it}(au) \geq f_{it}(au) \geq 0$
- $X_{it} = (x_{it,1}, x_{it,2}, \cdots, x_{it,k})$: the set of the state variables

$$f_{it}(\tau) = \exp\{\lambda(\tau)\exp[-\delta(\tau)(t-t_B)]\mathbf{1}_{t>t_B} \\ +\alpha_0(\tau) + \alpha_1(\tau)x_{it,1} + \alpha_2(\tau)x_{it,2} + \cdots + \alpha_k(\tau)x_{it,k}\} \\ g_{it}(\tau) = f_{it}(\tau) + \exp\left(\beta_0(\tau) + \beta_1(\tau)x_{it,1} + \beta_2(\tau)x_{it,2} + \cdots + \beta_k(\tau)x_{it,k}\right)$$

where t_B is August 2008 (Note that the US government bailed out AIG in September 2008)

Discretize the model for empirical implementation

(6/2012) 13 / 33

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The pseudo-likelihood function

$$\begin{aligned} \mathscr{L}_{\tau}(\alpha,\beta;\tau_{C},\tau_{D},X) &= \prod_{i=1}^{N} \prod_{t=0}^{T-1} \mathscr{L}_{\tau,i,t}(\alpha,\beta) \\ \mathscr{L}_{\tau,i,t}(\alpha,\beta) &= \mathbf{1}_{\{t_{0}i \leq t,\tau_{Ci} > t+\tau\}} P_{t}(\tau_{Ci} > t+\tau) \\ &+ \mathbf{1}_{\{t_{0}i \leq t,\tau_{Di} = \tau_{Ci} \leq t+\tau\}} P_{t}(\tau_{Ci};\tau_{Di} = \tau_{Ci} \leq t+\tau) \\ &+ \mathbf{1}_{\{t_{0}i \leq t,\tau_{Di} \neq \tau_{Ci},\tau_{Ci} \leq t+\tau\}} P_{t}(\tau_{Ci};\tau_{Di} \neq \tau_{Ci} \& \tau_{Ci} \leq t+\tau) \\ &+ \mathbf{1}_{\{t_{0}i > t\}} + \mathbf{1}_{\{\tau_{Ci} \leq t\}} \end{aligned}$$

- *P_t*(*τ_{Ci} > t + τ*): probability of surviving both forms of exit over the defined interval
- $P_t(\tau_{Ci}; \tau_{Di} = \tau_{Ci} \le t + \tau)$: probability that firm defaults at a particular period within the defined interval
- *P_t*(τ_{Ci}; τ_{Di} ≠ τ_{Ci}&τ_{Ci} ≤ t + τ): probability that firm exits due to other reasons at a particular period within the defined interval

The pseudo-likelihood function (Cont'd)

$$P_{t}(\tau_{Ci} > t + \tau) = \exp\left[-\sum_{s=0}^{\tau-1} g_{it}(s)\Delta t\right]$$

$$P_{t}(\tau_{Ci}; \tau_{Di} = \tau_{Ci} \le t + \tau)$$

$$= \begin{cases} 1 - \exp\left[-f_{it}(0)\Delta t\right], & \text{if } \tau_{Di} = t + 1 \\ \exp\left[-\sum_{s=0}^{\tau_{Di}-t-2} g_{it}(s)\Delta t\right] \{1 - \exp\left[-f_{it}(\tau_{Di} - t - 1)\Delta t\right]\}, & \text{if } t + 1 < \tau_{Di} \le t + \tau \end{cases}$$

$$P_{t}(\tau_{Ci}; \tau_{Di} \ne \tau_{Ci} \& \tau_{Ci} \le t + \tau)$$

$$= \begin{cases} \exp\left[-f_{it}(0)\Delta t\right] - \exp\left[-g_{it}(0)\Delta t\right], & \text{if } \tau_{Ci} = t + 1 \\ \exp\left[-\int_{s=0}^{\tau_{Ci}-t-2} g_{it}(s)\Delta t\right] \times \\ \{\exp\left[-f_{it}(\tau_{Ci} - t - 1)\Delta t\right] - \exp\left[-g_{it}(\tau_{Ci} - t - 1)\Delta t\right]\}, & \text{if } t + 1 < \tau_{Ci} \le t + \tau \end{cases}$$

with $\Delta t = 1/12$ (monthly data)

(6/2012) 15 / 33

Estimating the Forward Intensity Model

- It is an overlapped pseudo-likelihood function when the intended prediction horizon is greater than one basic time period (i.e., one month in our empirical implementation).
- The pseudo-likelihood function is decomposable so that estimation can be performed one forward period at a time.
- The pseudo-likelihood function continues to be decomposable to allow for separate estimations of the default intensity and the intensity for other form of exit.
- Because the numerical problem is non-sequential, it can be easily parallelized in computing.
- Note that the forward intensity function corresponding to $\tau = 0$ is the spot intensity function.

JC Duan (NUS)

Dynamic Corporate Default Predictions ...

(6/2012)

16/33

• Sample period: 1991-2011.

- Database:
 - Compustat
 - CRSP
 - Credit Research Initiative database
- 12,268 U.S. public companies (both industrial and financial), 1,104,963 firm-month observations.

Year	Active Firms	Defaults	(%)	Other Exit	(%)
1991	4012	32	0.80%	257	6.41%
1992	4009	28	0.70%	325	8.11%
1993	4195	25	0.60%	206	4.91%
1994	4433	24	0.54%	273	6.16%
1995	5069	19	0.37%	393	7.75%
1996	5462	20	0.37%	463	8.48%
1997	5649	44	0.78%	560	9.91%
1998	5703	64	1.12%	753	13.20%
1999	5422	77	1.42%	738	13.61%
2000	5082	104	2.05%	616	12.12%
2001	4902	160	3.26%	577	11.77%
2002	4666	81	1.74%	397	8.51%
2003	4330	61	1.41%	368	8.50%
2004	4070	25	0.61%	302	7.42%
2005	3915	24	0.61%	291	7.43%
2006	3848	15	0.39%	279	7.25%
2007	3767	19	0.50%	352	9.34%
2008	3676	59	1.61%	285	7.75%
2009	3586	67	1.87%	244	6.80%
2010	3396	25	0.74%	242	7.13%
2011	3224	21	0.65%	226	7.01%

Data

Data and covariates

JC Duan (NUS)

Dynamic Corporate Default Predictions ...

<u>/0 ≥ ○ へ</u>へ (6/2012) 18/33

Covariates

Covariates

- An exponential decaying term to capture the US intervention effect
- 3-month treasury rate
- Trailing 1-year S&P500 return
- Distance to default
- Cash and short-term investments/Total assets
- Net income/Total assets
- Relative size
- Market to book ratio
- Idiosyncratic volatility

Note: Refer to Duan and Wang (2012) for estimating DTDs for non-financial and financial firms.

(6/2012)19/33

A D N A B N A B N

Covariates (Cont'd)

Level and trend

20/33

Parameter Estimates

Dynamic Corporate Default Predictions ...

Parameter Estimates (Cont'd)

(6/2012) 22 / 33

Parameter Estimates (Cont'd)

Aggregate Number of Defaults

JC Duan (NUS)

Dynamic Corporate Default Predictions ...

In-Sample Accuracy

1 month 93.22%	3 months 91.30%	6 months 88.63%	12 months 83.52%	24 months 74.10%	36 months 66.67%	
				< • • • • •	(目) (目) (目) (目)	SQC
JC Duan (NUS)		Dynamic Corpora	ate Default Prediction	s	(6/2012)	25 / 33

Out-of-Sample (Cross-Section) Accuracy

1 month 93.77%	3 months 91.74%	6 months 88.88%	12 months 83.36%	24 months 73.37%	36 months 65.47%	
					(日)	n a(
JC Duan (NUS)		Dynamic Corporate Default Predictions .		s	(6/2012)	26 / 33

Out-of-Sample (Over Time) Accuracy

1 month 93.31%	3 months 91.81%	6 months 12 months 89.42% 85.16%		24 months 76.43%	36 months 72.45%	
				<	(日)	9
JC Duan (NUS)		Dynamic Corpora	ate Default Predictions	s	(6/2012)	27

33

Prediction accuracy

Accuracy Ratios with/without Smoothing

Panel A: In-sample result							
	1 month	3 months	6 months	12 months	24 months	36 months	
Full sample	93.22%	91.30%	88.63%	83.52%	74.10%	66.67%	
Full sample	93.29%	91.35%	88.65%	83.51%	74.07%	66.66%	
(smoothed)							
Non-financial	93.21%	91.18%	88.32%	82.99%	73.96%	66.98%	
Financial	93.03%	91.59%	90.57%	87.38%	74.18%	59.88%	
Panel B: Out-o	f-sample (ci	ross-section)	result				
	1 month	3 months	6 months	12 months	24 months	36 months	
Full sample	93.77%	91.74%	88.88%	83.36%	73.37%	65.47%	
Full sample	93.61%	91.69%	88.88%	83.39%	73.33%	65.43%	
(smoothed)							
Non-financial	93.69%	91.58%	88.50%	82.76%	73.16%	65.84%	
Financial	91.28%	89.42%	88.70%	85.64%	71.65%	55.57%	
Panel C: Out-o	f-sample (o	ver time) res	ult				
	1 month	3 months	6 months	12 months	24 months	36 months	
Full sample	93.31%	91.81%	89.42%	85.16%	76.43%	72.45%	
Full sample	93.51%	91.91%	89.37%	85.02%	76.52%	72.42%	
(smoothed)							
Non-financial	93.73%	92.27%	89.80%	85.37%	77.11%	73.03%	
Financial	92.70%	91.65%	91.06%	88.62%	78.04%	73.38%	
				۰ ۵		< ≣ > ≣ • ୭	

(6/2012) 28 / 33

Forward and Cumulative Term Structures of PDs

Dynamic Corporate Default Predictions ...

< 3

Forward and Cumulative Term Structures of PDs (Cont'd)

Dynamic Corporate Default Predictions ...

(6/2012) 30 / 33

Duan, et al (2012) vs. Duffie, et al (2007)

Apply 4 covariates (trailing 1-year S&P 500 index return, 3-month treasury rate, firms' distance-to-default and firms' 1-year stock return)

Panel A: In-sample result (1991-2011)							
	1 month	3 months	6 months	12 months	24 months	36 months	
Duffie, et al (2007)	91.95%	90.06%	88.14%	85.37%	80.54%	77.22%	
Duffie, et al (2007)	91.95%	89.96%	87.24%	81.72%	71.28%	63.85%	
(restricted)							
Duan, <i>et al</i> (2012)	91.95%	89.63%	86.78%	81.43%	71.43%	64.01%	
Panel B: In-sample r	esult (2001	-2011)					
	1 month	3 months	6 months	12 months	24 months	36 months	
Duffie, et al (2007)	92.26%	91.08%	89.19%	86.58%	81.22%	77.58%	
Duffie, et al (2007)	92.26%	91.12%	88.91%	84.58%	75.04%	68.98%	
(restricted)							
Duan, <i>et al</i> (2012)	92.26%	90.85%	88.56%	84.68%	76.15%	70.39%	
Panel C: Out-of-sam	ple (over tir	ne) result (20	01-2011)				
	1 month	3 months	6 months	12 months	24 months	36 months	
Duffie, et al (2007)	91.97%	91.38%	87.43%	77.50%	60.33%	51.87%	
Duffie, et al (2007)	91.97%	90.80%	88.44%	83.52%	71.66%	65.04%	
(restricted)							
Duan, <i>et al</i> (2012)	91.97%	90.50%	88.04%	83.77%	74.67%	70.31%	
					· · · · · · · · · · · · · · · · · · ·	E AAG	

Conclusion

- A forward intensity approach works better for the prediction of corporate defaults over different future periods.
- Several frequently used covariates are shown to be useful for prediction at both short and long horizons.
- The results confirm the bailout effect and the forward intensity models captures the Lehman Brothers episode remarkably well.
- The forward intensity model is amenable to aggregation, which allows analysts to assess default behavior at the portfolio and/or economy level.

< ロ > < 同 > < 回 > < 回 >

References

9

10

- Altman, E.I., 1968, Financial ratios, discriminant analysis and the prediction of corporate bankruptcy, *Journal of Finance* 23, 589-609.
- Beaver, W.H., 1966, Financial ratios as predictors of failure, Journal of Accounting Research 4, 71-111.
- Beaver, W.H., 1968, Market prices, financial ratios, and the prediction of failure, *Journal of Accounting Research* 6, 179-192.
 - Campbell, J. Y., J. Hilscher, and J. Szilagyi, 2008, In search of distress risk, Journal of Finance 63, 2899-2939.
- 6) Chava, S. and R.A. Jarrow, 2004, Bankruptcy prediction with industry effects, Review of Finance 8, 537-569.
- Duffie, D., L. Saita and K. Wang, 2007, Multi-period Corporate Default Prediction with Stochastic Covariates. *Journal of Financial Economics* 83(3): p. 635-665.
 - Duan, J.-C., J. Sun, and T. Wang, 2012, Multiperiod Corporate Default Prediction A Forward Intensity Approach. Journal of Econometrics, forthcoming.
- Ohlson, J. A., 1980, Financial ratios and the probabilistic prediction of bankruptcy, *Journal of Accounting Research* 18, 109-131.
 - Shumway, T., 2001, Forecasting bankruptcy more accurately: a simple hazard model, Journal of Business 74, 101-124.
 - Zmijewski, Mark E., 1984, Methodological issues related to the estimation of financial distress prediction models, *Journal of Accounting Research* 22, 59-82.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >