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|. LP-representation of positive polynomials

Recall the Global Optimization problem P:

f*:=min{ f(x) | gi(x)>0,j=1,...,m},
where f and g; are all POLYNOMIALS, and let

K:={xeR"| gi(x) >0, j=1,...,m}

be the feasible set (a compact basic semi-algebraic set)
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|. LP-representation of positive polynomials

Putinar Positivstellensatz

Assumption 1:

For some M > 0, the quadratic polynomial M — || X||?> belongs
to the Q91,---,9m)
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|. LP-representation of positive polynomials

Putinar Positivstellensatz

Assumption 1:

For some M > 0, the quadratic polynomial M — || X||?> belongs
to the Q91,---,9m)

Theorem (Putinar-dacobi-Prestel)
Let K be compact and Assumption 1 hold. Then

[feR[X] and f>00nK] = fcQ(g1,...,9m), i.e.,

m

f(x) = oo(X)+ > _ 0j(x)gi(x),  Vx€ER"
j=1

for some s.o.s. polynomials {o;} 7" ,.
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|. LP-representation of positive polynomials

e If one fixes an on the degree of the s.o.s.
{o}}, checking f € Q(g1,...,9m) reduces to
solving a SDP!!
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|. LP-representation of positive polynomials

e If one fixes an on the degree of the s.o.s.
{o}}, checking f € Q(g1,...,9m) reduces to
solving a SDP!!

¢ Moreover, Assumption 1 holds true if e.g. :

- all the g;'s are linear (hence K is a polytope), or if
- the set { x| gj(x) > 0} is compact for some j € {1,..., m}.
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|. LP-representation of positive polynomials

e If one fixes an on the degree of the s.o.s.
{o}}, checking f € Q(g1,...,9m) reduces to
solving a SDP!!

¢ Moreover, Assumption 1 holds true if e.g. :
- all the g;'s are linear (hence K is a polytope), or if
- the set { x| gj(x) > 0} is compact for some j € {1,..., m}.

e If x € K= ||x|| < M for some (known) M, then it suffices to

add the redundant quadratic constraint M? — || X||? > 0, in the
definition of K.
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|. LP-representation of positive polynomials

Krivine-Handelman-Vasilescu Positivstellensatz

Assumption [:

With go = 1, the family {go, . .., gm} generates the algebra R[x],
that is, R[x1,...,Xn] = R[90,- - -, gm]-
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|. LP-representation of positive polynomials

Krivine-Handelman-Vasilescu Positivstellensatz

Assumption [:

With go = 1, the family {go, . .., gm} generates the algebra R[x],
that is, R[x1,...,Xn] = R[90,- - -, gm]-

Assumption II:

Recall that K is compact. Hence we also assume with no loss
of generality (but possibly after scaling) that for every
f=1,...,m:

0 <g(x) <1 Vxek
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|. LP-representation of positive polynomials

Notation: for o, 8 € N, let

gx)*
(1-9(x)° =

91(X)* - gm(X)*™
(1= 01(x)% (1 = gm(x))°
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|. LP-representation of positive polynomials

Notation: for o, 8 € N, let

gx)* = g1 (X)* - gm(x)*"
(1-9(x)° = (1=gi1(x)" (1= gm(x))’m

Theorem (Krivine,Vasilescu Positivstellensatz)
Let Assumption | and Assumption Il hold:

Iff € R[xq,...,Xm| is POSITIVE on K then

fx) = > cpg(x)*(1-g(x))’, VxeR”,

a,fENT

for finitely many positive coefficients (C,z).
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Testing whether

f(x) = > cpg(x)*(1-g(x))’, VxeR”,

avﬁENm

for finitely many positive coefficients (c,z3) and with
Yiai+Bi<d
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Testing whether

f(x) = > cpg(x)*(1-g(x))’, VxeR”,

avﬁENm

for finitely many positive coefficients (c,z3) and with
Yiai+Bi<d

... reduces to solving a LP!.
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|. LP-representation of positive polynomials

Testing whether
) = 3 capgx)*(1-g(x)’, ¥xeR",

a,fENM

for finitely many positive coefficients (c,z3) and with
Yiai+Bi<d

... reduces to solving a LP!.

Indeed, recall that f(x) = >__ , x7. So expand

Yo s g (1=g(x)’ = Y 6,(c)x

a,BeENM yEN"
and state that

f, = 6,(c), VyeNzy;; c¢>0. — alinearsystem!
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II: Dual side: The K-moment problem

DUAL side: The K-moment problem

Let {X*} be a canonical basis for R[X], and let y := {y.} be a
given sequence indexed in that basis.

Recall the K-moment problem

Given Kc R”, 1 on K, such that

Yo = /Xo‘du, Va e N" 7
K

(Where X« = X' - Xg").
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II: Dual side: The K-moment problem

Given y = {y.}, let L, : R[X] — R, be the linear functional

F(=) LX) = L) =) fia

aeN"

Moment matrix My(y)

with rows and columns also indexed in the basis {X“}.

Md(y)(aaﬁ) = L,V(XOH_/B) = }’a+/37 Oé,/B € Nnv ’CV’, ’/8‘ < d.
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II: Dual side: The K-moment problem

1 X X
~ =~ N
Yoo | Vio Yot

Forinstance inR?: M(y) = | — T

Yio | Yeo o Y11
Yor | Yi1 Yoo
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II: Dual side: The K-moment problem

Localizing matrix

The “Localizing matrix" My(6y) w.r.t. a polynomial 6 € R[X]

with X — 6(X) = >_ 6, X7, has its rows and columns also
indexed in the basis {X*} of R[X]q, and with entries:

Ma(0y) (e, B) = Ly(6X**7)

_ a,BeN"
= 2 O¥eran { jal, 8] < d.

~yEN?
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II: Dual side: The K-moment problem

For instance, in R2, and with X — 0(X) := 1 — X2 — X2,

1 X Xo

My (0y) = Yoo — Y20 — Yo2, Y10 — YVa0 — Y12, Yo1 — Y21 — Vo3
Y10 — Y30 — V12, Yoo — Yao — Yoo, Y11 — Vo1 — Y12
Yo1 — Y21 — Y03, Y11 — Yo1 — V12, Yoo — Vo2 — Yoa

Importantly ...

My(0y) =0 <= Ly,(h*0) >0, VheR[X]q
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II: Dual side: The K-moment problem

Putinar’s dual conditions

AgainK := { xeR" | gj(x) >0,j=1,...,m}.

Assumption 1: For some M > 0, the quadratic polynomial

M — || X||? is in the quadratic module Q(gy, ..., gm)
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II: Dual side: The K-moment problem

Putinar’s dual conditions

AgainK := { xeR" | gj(x) >0,j=1,...,m}.

Assumption 1: For some M > 0, the quadratic polynomial

M — || X||? is in the quadratic module Q(gy, ..., gm)

Theorem (Putinar: dual side)
Let K be compact, and Assumption 1 hold.

Then a sequence y = (y..), « € N, has a representing
measure ;. on K if and only if

(#x) Ly(7")>0; Ly(/"g)=0, Vi=1,....m; VI ecR[X].
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II: Dual side: The K-moment problem

Checking whether (**) holds for all f € R[X] with degree < d

reduces to checking whether My(y) = 0 and My(g; y) = 0, for
allj=1,....m!

— m+ 1 LMI conditions to verify!
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II: Dual side: The K-moment problem

Krivine-Vasilescu: dual side

Let K be compact, and Assumption | and Il hold.

Then the sequence y = (y..), « € N", has a representing
measure 1. on K if and only if

Ly(g“(1— 9)’) > 0o, Va, 3 € N7,
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II: Dual side: The K-moment problem

LP-relaxations

With f € R[x], consider the hierarchy of LP-relaxations

pd = myin Ly(f)

L(g*(1-9)%) >0, |a+p8]<2d
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II: Dual side: The K-moment problem

with associated sequence of dual LPs:

4 *
=max A\
pd /\7Cnﬁ

f-A= > cpg*(1-9)

OL,BEN”]

Cop >0,  V]a+pB <2d

and of course py = p}; for all d.
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II: Dual side: The K-moment problem

Assume that K is compact and Assumption | and Il hold.
Then the CONVERGE, that is,

pg T 7 asd— oc.
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II: Dual side: The K-moment problem

Assume that K is compact and Assumption | and Il hold.
Then the CONVERGE, that is,

pg T 7 asd— oc.

e The SHERALI-ADAMS RLT’s is exactly this type of
LP-relaxations.
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Assume that K is compact and Assumption | and Il hold.
Then the CONVERGE, that is,

pg T 7 asd— oc.

e The SHERALI-ADAMS RLT’s is exactly this type of
LP-relaxations.

e Its convergence for 0/1 programs was proved with ah-hoc
arguments.
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II: Dual side: The K-moment problem

Assume that K is compact and Assumption | and Il hold.
Then the CONVERGE, that is,

pg T 7 asd— oc.

e The SHERALI-ADAMS RLT’s is exactly this type of
LP-relaxations.

e Its convergence for 0/1 programs was proved with ah-hoc
arguments.

e In fact, the behind such convergence if
Krivine-Vasilescu Positivstellensatz.
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II: Dual side: The K-moment problem

Some remarks on LP-relaxations

1. Notice the presence of binomial coefficients in both primal
and dual LP-relaxations ... which yields numericall
ill-conditioning for relatively large d.
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II: Dual side: The K-moment problem

Some remarks on LP-relaxations

1. Notice the presence of binomial coefficients in both primal
and dual LP-relaxations ... which yields numericall
ill-conditioning for relatively large d.

2. Let x* € K be a global minimizer, and for x € K, let J(x) be
the set of constraints, i.e., gj(x) =0or..1 — gk(x) = 0.

Then FINITE convergence CANNOT occur if there exists
nonoptimal x € K with J(x) O J(x*)!

— And so ... not possible for CONVEX problems in general!

For instance, if K is a Polytope then FINITE convergence is
possible only if every global minimizer is a vertex of K!
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II: Dual side: The K-moment problem
Example

Consider the CONVEX problem:
fr = mXin{x(x—1) 0<x <1},

so that x* = 0.5 and f* = —0.25.

Jean B. Lasserre semidefinite characterization



II: Dual side: The K-moment problem
Example

Consider the CONVEX problem:
F::mp{ﬂx—1):0§x§1h
so that x* = 0.5 and /* = —0.25.
One CANNQOT write
f(x)— = f(x) +0.25 = Y ¢;x'(1 - xY,

i,jeN
because o
0=f(x")+025= ) ¢;27"/ > 0.
ijeN
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II: Dual side: The K-moment problem
Example

Consider the CONVEX problem:
fr = mXin{x(x—1) 0<x <1},
so that x* = 0.5 and /* = —0.25.
One CANNQOT write
f(x)— = f(x) +0.25 = Y ¢;x'(1 - xY,

ijeN
because o
0=1f(x)+025="> ¢;2"7/ > 0.
ijeN
In addition, the convergence pq T —0.25 is very slow...
p2 = ps = —1/3; pe=-03; pio=-027,
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II: Dual side: The K-moment problem

Consider now the CONCAVE minimization problem:
fr = mXin{x(1 —x) : 0<x<1},

so that /* = 0 and x* = 0 or x* = 1 (both vertices of K).
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II: Dual side: The K-moment problem

Consider now the CONCAVE minimization problem:
ff=min{x(1-x) : 0<x <1}

so that /* = 0 and x* = 0 or x* = 1 (both vertices of K).
f(x)—f = x(1-x), x R,

so that the first LP-relaxation is exact!!
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II: Dual side: The K-moment problem

Consider now the CONCAVE minimization problem:
f* = mXin{x(1 —X): 0<x< 1},

so that /* = 0 and x* = 0 or x* = 1 (both vertices of K).
f(x)—f = x(1-x), x R,

so that the first LP-relaxation is exact!!

Hence we have the PARADOX that ...

the LP-relaxations behave much better for the (difficult)
concave problem than for the (easy) convex one!!
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II: Dual side: The K-moment problem

LP- and SDP-Relaxations with their dual

Primal LP-relaxation

Primal SDP-relaxation

myin Ly(f)
Ly(g*(1—9)°) >0
Va,3 e NT  Ja+ 8] <2d

myin Ly(f)
L}/(hzg]) Zoaj: 17>m

Vh, deg(hgj) <2d,j<m

Dual LP-relaxation

Dual SDP-relaxation

max A\

)\,-{C(xﬁ}
f—A = Z Cop ga(1 — g)ﬁ
o,BENT

Cop > O; |05+6‘ §2d

Jean B. Lasserre

max A

)‘ﬁ{Uj’}
m
=2 99
j=0

f—A
deg(o;g)) - < 2d, j<m
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