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I. LP-representation of positive polynomials
II: Dual side: The K-moment problem

Recall the Global Optimization problem P:

f ∗ := min{ f (x) | gj(x) ≥ 0, j = 1, . . . ,m},

where f and gj are all POLYNOMIALS, and let

K := { x ∈ Rn | gj(x) ≥ 0, j = 1, . . . ,m}

be the feasible set (a compact basic semi-algebraic set)
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Putinar Positivstellensatz

Assumption 1:

For some M > 0, the quadratic polynomial M − ‖X‖2 belongs
to the quadratic module Q(g1, . . . ,gm)

Theorem (Putinar-Jacobi-Prestel)
Let K be compact and Assumption 1 hold. Then

[ f ∈ R[X] and f > 0 on K ] ⇒ f ∈ Q(g1, . . . ,gm), i .e.,

f (x) = σ0(x) +
m∑

j=1

σj(x)gj(x), ∀x ∈ Rn

for some s.o.s. polynomials {σj}mj=0.
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• If one fixes an a priori bound on the degree of the s.o.s.
polynomials {σj}, checking f ∈ Q(g1, . . . ,gm) reduces to
solving a SDP!!

• Moreover, Assumption 1 holds true if e.g. :
- all the gj ’s are linear (hence K is a polytope), or if
- the set { x | gj(x) ≥ 0} is compact for some j ∈ {1, . . . ,m}.

• If x ∈ K⇒ ‖x‖ ≤ M for some (known) M, then it suffices to
add the redundant quadratic constraint M2 − ‖X‖2 ≥ 0, in the
definition of K.
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Krivine-Handelman-Vasilescu Positivstellensatz

Assumption I:

With g0 = 1, the family {g0, . . . ,gm} generates the algebra R[x ],
that is, R[x1, . . . , xn] = R[g0, . . . ,gm].

Assumption II:
Recall that K is compact. Hence we also assume with no loss
of generality (but possibly after scaling) that for every
j = 1, . . . ,m:

0 ≤ gj(x) ≤ 1 ∀ x ∈ K.
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Notation: for α, β ∈ Nm, let

g(x)α = g1(x)α1 · · · gm(x)αm

(1− g(x))β = (1− g1(x))β1 · · · (1− gm(x))βm

Theorem (Krivine,Vasilescu Positivstellensatz)
Let Assumption I and Assumption II hold:

If f ∈ R[x1, . . . , xm] is POSITIVE on K then

f (x) =
∑

α,β∈Nm

cαβ g(x)α (1− g(x))β, ∀ x ∈ Rn,

for finitely many positive coefficients (cαβ).
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Testing whether

f (x) =
∑

α,β∈Nm

cαβ g(x)α (1− g(x))β, ∀ x ∈ Rn,

for finitely many positive coefficients (cαβ) and with∑
i αi + βi ≤ d

... reduces to solving a LP!.

Indeed, recall that f (x) =
∑

γ fγ xγ . So expand∑
α,β∈Nm

cαβ g(x)α (1− g(x))β =
∑
γ∈Nn

θγ(c) xγ

and state that

fγ = θγ(c), ∀γ ∈ Nn
2d ; c ≥ 0. → a linear system!
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DUAL side: The K-moment problem

Let {Xα} be a canonical basis for R[X ], and let y := {yα} be a
given sequence indexed in that basis.

Recall the K-moment problem

Given K⊂ Rn, does there exist a measure µ on K, such that

yα =

∫
K

Xα dµ, ∀α ∈ Nn ?

(where Xα = Xα1
1 · · ·X

αn
n ).
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Given y = {yα}, let Ly : R[X ]→ R, be the linear functional

f (=
∑
α

fα Xα) 7→ Ly (f ) :=
∑
α∈Nn

fα yα.

Moment matrix Md(y)

with rows and columns also indexed in the basis {Xα}.

Md(y)(α, β) := Ly (Xα+β) = yα+β, α, β ∈ Nn, |α|, |β| ≤ d .
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For instance in R2 : M1(y) =


1︷︸︸︷

y00 |
X1︷︸︸︷
y10

X2︷︸︸︷
y01

− − −
y10 | y20 y11
y01 | y11 y02


Importantly . . .

Md(y) � 0 ⇐⇒ Ly (h2) ≥ 0, ∀h ∈ R[X ]d
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Localizing matrix

The “Localizing matrix" Md(θy) w.r.t. a polynomial θ ∈ R[X ]

with X 7→ θ(X ) =
∑

γ θγ X γ , has its rows and columns also
indexed in the basis {Xα} of R[X ]d , and with entries:

Md(θ y)(α, β) = Ly (θXα+β)

=
∑
γ∈Nn

θγ yα+β+γ ,
{
α, β ∈ Nn

|α|, |β| ≤ d .
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For instance, in R2, and with X 7→ θ(X ) := 1− X 2
1 − X 2

2 ,

M1(θ y) =


1︷ ︸︸ ︷

y00 − y20 − y02,

X1︷ ︸︸ ︷
y10 − y30 − y12,

X2︷ ︸︸ ︷
y01 − y21 − y03

y10 − y30 − y12, y20 − y40 − y22, y11 − y21 − y12
y01 − y21 − y03, y11 − y21 − y12, y02 − y22 − y04

 .

Importantly . . .

Md(θ y) � 0 ⇐⇒ Ly (h2 θ) ≥ 0, ∀h ∈ R[X ]d
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Putinar’s dual conditions

Again K := { x ∈ Rn | gj(x) ≥ 0, j = 1, . . . ,m}.

Assumption 1: For some M > 0, the quadratic polynomial

M − ‖X‖2 is in the quadratic module Q(g1, . . . ,gm)

Theorem (Putinar: dual side)
Let K be compact, and Assumption 1 hold.

Then a sequence y = (yα), α ∈ Nn, has a representing
measure µ on K if and only if

(∗∗) Ly (f 2) ≥ 0; Ly (f 2 gj) ≥ 0, ∀j = 1, . . . ,m; ∀ f ∈ R[X ].
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Checking whether (**) holds for all f ∈ R[X ] with degree ≤ d

reduces to checking whether Md(y) � 0 and Md(gj y) � 0, for
all j = 1, . . . ,m!

→ m + 1 LMI conditions to verify!
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Krivine-Vasilescu: dual side

Theorem
Let K be compact, and Assumption I and II hold.

Then the sequence y = (yα), α ∈ Nn, has a representing
measure µ on K if and only if

Ly (gα (1− g)β) ≥ 0, ∀α, β ∈ Nm.
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LP-relaxations

With f ∈ R[x ], consider the hierarchy of LP-relaxations

ρd = min
y

Ly (f )

Ly (gα (1− g)β) ≥ 0, |α+ β| ≤ 2d

Ly (1) = 1

Jean B. Lasserre semidefinite characterization
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with associated sequence of dual LPs:

ρ∗d = max
λ,cαβ

λ

f − λ =
∑

α,β∈Nm

cαβ gα (1− g)β

cαβ ≥ 0, ∀ |α+ β| ≤ 2d

and of course ρd = ρ∗d for all d .
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Theorem
Assume that K is compact and Assumption I and II hold.
Then the LP-relaxations CONVERGE, that is,

ρd ↑ f ∗ as d →∞.

• The SHERALI-ADAMS RLT’s hierarchy is exactly this type of
LP-relaxations.
• Its convergence for 0/1 programs was proved with ah-hoc
arguments.
• In fact, the rationale behind such convergence if
Krivine-Vasilescu Positivstellensatz.
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Some remarks on LP-relaxations

1. Notice the presence of binomial coefficients in both primal
and dual LP-relaxations ... which yields numericall
ill-conditioning for relatively large d .

2. Let x∗ ∈ K be a global minimizer, and for x ∈ K, let J(x) be
the set of active constraints, i.e., g j(x) = 0 or ...1− gk (x) = 0.

Then FINITE convergence CANNOT occur if there exists
nonoptimal x ∈ K with J(x) ⊇ J(x∗)!

→ And so ... not possible for CONVEX problems in general!

For instance, if K is a Polytope then FINITE convergence is
possible only if every global minimizer is a vertex of K!
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Example

Consider the CONVEX problem:

f ∗ = min
x
{x(x − 1) : 0 ≤ x ≤ 1},

so that x∗ = 0.5 and f ∗ = −0.25.

One CANNOT write

f (x)− f ∗ = f (x) + 0.25 =
∑
i,j∈N

cij x i(1− x)j ,

because
0 = f (x∗) + 0.25 =

∑
i,j∈N

cij 2−i−j > 0.

In addition, the convergence ρd ↑ −0.25 is very slow...

ρ2 = ρ4 = −1/3; ρ6 = −0.3; ρ10 = −0.27, . . .

Jean B. Lasserre semidefinite characterization
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Consider now the CONCAVE minimization problem:

f ∗ = min
x
{x(1− x) : 0 ≤ x ≤ 1},

so that f ∗ = 0 and x∗ = 0 or x∗ = 1 (both vertices of K).

f (x)− f ∗ = x (1− x), x ∈ R,

so that the first LP-relaxation is exact!!

Hence we have the PARADOX that ...
the LP-relaxations behave much better for the (difficult)

concave problem than for the (easy) convex one!!

Jean B. Lasserre semidefinite characterization
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LP- and SDP-Relaxations with their dual
Primal LP-relaxation Primal SDP-relaxation

min
y

Ly (f )

Ly (gα (1− g)β) ≥ 0

∀α, β ∈ Nm, |α+ β| ≤ 2d

min
y

Ly (f )

Ly (h2 gj) ≥ 0, j = 1, . . . ,m

∀h, deg(h gj) ≤ 2d , j ≤ m

Dual LP-relaxation Dual SDP-relaxation

max
λ,{cαβ}

λ

f − λ =
∑

α,β∈Nm

cαβ gα(1− g)β

cαβ ≥ 0; |α+ β| ≤ 2d

max
λ,{σj}

λ

f − λ =
m∑

j=0

σj gj

deg(σj gj) ≤ 2d , j ≤ m
σj s.o.s., j ∈≤ mJean B. Lasserre semidefinite characterization
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