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Global Optimization

Recall the GLOBAL optimization problem P:

f ∗ := min
x
{ f (x) | gj(x) ≥ 0, j = 1, . . . ,m},

where f ,gj ∈ R[X ]. Hence, the feasible set

K := { x ∈ Rn | gj(x) ≥ 0, j = 1, . . . ,m}

is a basic semi-algebraic set.
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Putinar versus Karush-Kuhn-Tucker

Let f ∗ := min
x
{ f (x) : gj(x) ≥ 0, j = 1, . . . ,m} and let x∗ ∈ K

be a minimizer at a LOCAL minimum.

Karush-Kuhn-Tucker (KKT) OPTIMALITY CONDITIONS

There exist NONNEGATIVE SCALAR MULTIPLIERS λ ∈ Rm

such that:

∇[ f (x∗)−
m∑

j=1

λj gj(x∗) ] = 0. λj gj(x∗) = 0; λj ≥ 0
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Under some constraint qualifications:

I. The KKT-optimality conditions are necessary for x∗ to be a
LOCAL minimizer only.

II. If f and −gj are concave, the KKT-optimality conditions are
also sufficient for x∗ to be a GLOBAL minimizer.
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IN GENERAL, x∗ IS NOT a global minimizer of the
LAGRANGIAN

x 7→ L(x) := f (x)− f ∗ −
m∑

j=1

λj gj(x)

but ONLY a stationary point!

However, in the CONVEX case
x∗ is a global minimizer of the Lagrangian L and:

L ≥ 0 on Rn; L(x∗) = 0; ∇L(x∗) = 0
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Putinar’s representation theorem (Positivstellensatz)

f (x) = σ0(x) +
m∑

j=1

σj(x) gj(x), ∀x ∈ Rn,

(for some s.o.s. polynomials (σj)) ....

holds for polynomials f that are STRICTLY POSITIVE on K.

However, by recent results from Marshall (2009), Nie (2012)

it also holds GENERICALLY for polynomials f that are only
NONNEGATIVE on K!
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If Putinar’s Theorem holds for f − f ∗ (only ≥ 0 on K), then

the EXTENDED LAGRANGIAN polynomial

x 7→ Ψ(x) := f (x)− f ∗ −
m∑

j=1

σj(x) gj(x) (= σ0(x))

(with s.o.s. MULTIPLIERS σj ∈ R[X ] instead of scalar λ ∈ Rm)

is s.o.s.! (hence Ψ ≥ 0 on Rn), and satisfies:

∇Ψ(x∗) = ∇f (x∗)−
m∑

j=1

σj(x∗)︸ ︷︷ ︸
λ∗

j ≥0

∇gj(x∗) ] = 0

σj(x∗) gj(x∗) = 0 ∀j (and so Ψ(x∗) = 0)

→ (x∗, λ∗) is a KKT pair.
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That is ...
x∗ is a GLOBAL MINIMIZER

of the EXTENDED LAGRANGIAN Ψ on Rn!

So when Putinar’s representation holds
for the polynomial f − f ∗ (which is only nonnegative on K)

it provides a global optimality certificate for f ∗ and x∗ ∈ K

... the analogue
in nonconvex polynomial optimization

of the KKT-optimality conditions for the general convex case
....

a highly nontrivial extension ..!!!
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An important property

On non active constraints
Let (x∗, λ) ∈ K× Rm

+ be a KKT point with x∗ a global minimizer
of P and suppose that the constraint gj ≥ 0 is not active at x∗,
i.e., gj(x∗) > 0.

Then,
in contrast to KKT optimality conditions where the associated
scalar multiplier λj vanishes (λj = 0), ...

the s.o.s. “multiplier” σj of the extended Lagrangian Ψ does not
vanish in general, but ... σj(x∗) = 0 (= λj)!
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Indeed, even if NOT ACTIVE at x∗,
IN THE NONCONVEX case, the constraint gj(x) ≥ 0 MAY
STILL BE IMPORTANT because if deleted, the global optimum
f ∗ may strictly decrease to θ < f ∗.

Therefore in the case where θ < f ∗

the constraint gj(x) ≥ 0 MUST PLAY a ROLE in Putinar’s
representation of the polynomial f − f ∗, i.e., its associated s.o.s.
weight σj is NOT trivial.

Otherwise if σj = 0, i.e., if f − f ∗ = σ0 +
∑
k 6=j

σk gk then

θ = min
x
{f (x) : gk (x) ≥ 0, ∀ k 6= j} = f ∗.

However, its VALUE at x∗ VANISHES (σj(x∗) = 0)!
Jean B. Lasserre semidefinite characterization



Indeed, even if NOT ACTIVE at x∗,
IN THE NONCONVEX case, the constraint gj(x) ≥ 0 MAY
STILL BE IMPORTANT because if deleted, the global optimum
f ∗ may strictly decrease to θ < f ∗.

Therefore in the case where θ < f ∗

the constraint gj(x) ≥ 0 MUST PLAY a ROLE in Putinar’s
representation of the polynomial f − f ∗, i.e., its associated s.o.s.
weight σj is NOT trivial.

Otherwise if σj = 0, i.e., if f − f ∗ = σ0 +
∑
k 6=j

σk gk then

θ = min
x
{f (x) : gk (x) ≥ 0, ∀ k 6= j} = f ∗.

However, its VALUE at x∗ VANISHES (σj(x∗) = 0)!
Jean B. Lasserre semidefinite characterization



Indeed, even if NOT ACTIVE at x∗,
IN THE NONCONVEX case, the constraint gj(x) ≥ 0 MAY
STILL BE IMPORTANT because if deleted, the global optimum
f ∗ may strictly decrease to θ < f ∗.

Therefore in the case where θ < f ∗

the constraint gj(x) ≥ 0 MUST PLAY a ROLE in Putinar’s
representation of the polynomial f − f ∗, i.e., its associated s.o.s.
weight σj is NOT trivial.

Otherwise if σj = 0, i.e., if f − f ∗ = σ0 +
∑
k 6=j

σk gk then

θ = min
x
{f (x) : gk (x) ≥ 0, ∀ k 6= j} = f ∗.

However, its VALUE at x∗ VANISHES (σj(x∗) = 0)!
Jean B. Lasserre semidefinite characterization



Example: Consider the one-dimensional problem

P : f ∗ = min
x
{−x | x2 = 1; 1/2− x ≥ 0},

with X 7→ g1(X ) = X 2 − 1 and X 7→ g2(X ) := 0.5− X .

x∗ = −1 is a global minimizer with global minimum f ∗ = 1.

(x∗, λ) = (−1, (1/2,0)) is a KKT pair, and λ2 = 0 because the
constraint g2(x) ≥ 0 is not active at x∗ = −1.

Of course, x∗ is not a global minimum of the Lagrangian
f − λ1g1 − λ2g2 = −X − 1/2(X 2 − 1) = −X 2/2− X + 1/2.
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But we also have Putinar’s representation

f − f ∗ = −X − 1 = (X + 3/2)(X 2 − 1) + (X + 1)2(1/2− X ).

The s.o.s. (polynomial) multiplier x 7→ σ2(X ) := (X + 1)2

vanishes at x∗ = −1, also a global minimizer of the Lagrangian

f −σ1 g1−σ2 g2 = −X −(X + 3/2)(X 2−1)−(X + 1)2(1/2−X )

(here constant ≡ 1).

Even if not active at x∗, the constraint g2(x) ≥ 0 is important
because if deleted, f ∗ → −1 < 1. Therefore, it MUST have a
nontrivial s.o.s. multiplier in the representation of f − f ∗.
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