Moments and Positive Polynomials for Optimization III: PUTINAR VERSUS KARUSH-KUHN-TUCKER

Jean B. Lasserre

LAAS-CNRS and Institute of Mathematics, Toulouse, France

Tutorial, IMS, SINGAPORE, November 2012

Recall the GLOBAL optimization problem P:

$$f^* := \min_{x} \{ f(x) \mid g_j(x) \ge 0, j = 1, ..., m \},$$

where $f, g_j \in \mathbb{R}[X]$. Hence, the feasible set
$$K := \{ x \in \mathbb{R}^n \mid g_j(x) \ge 0, j = 1, ..., m \}$$

is a basic semi-algebraic set

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Let $f^* := \min_{x} \{ f(x) : g_j(x) \ge 0, j = 1, ..., m \}$ and let $x^* \in \mathbf{K}$ be a minimizer at a LOCAL minimum.

Karush-Kuhn-Tucker (KKT) OPTIMALITY CONDITIONS

There exist NONNEGATIVE SCALAR MULTIPLIERS $\lambda \in \mathbb{R}^m$ such that:

$$abla [f(x^*) - \sum_{j=1}^m \lambda_j g_j(x^*)] = 0.$$
 $\lambda_j g_j(x^*) = 0;$ $\lambda_j \ge 0$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Under some constraint qualifications:

I. The KKT-optimality conditions are necessary for x^* to be a LOCAL minimizer only.

II. If f and $-g_j$ are concave, the KKT-optimality conditions are also sufficient for x^* to be a GLOBAL minimizer.

通 とう ほう う ほうし

Under some constraint qualifications:

I. The KKT-optimality conditions are necessary for x^* to be a LOCAL minimizer only.

II. If *f* and $-g_j$ are concave, the KKT-optimality conditions are also sufficient for x^* to be a GLOBAL minimizer.

直 とう かい うちょう

IN GENERAL, *x** IS NOT a global minimizer of the LAGRANGIAN

$$x \mapsto L(x) := f(x) - f^* - \sum_{j=1}^m \lambda_j g_j(x)$$

but ONLY a stationary point!

However, in the CONVEX case * is a global minimizer of the Lagrangian *L* and

 $L \ge 0$ on \mathbb{R}^n ; $L(x^*) = 0$; $\nabla L(x^*) = 0$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

IN GENERAL, *x** IS NOT a global minimizer of the LAGRANGIAN

$$x \mapsto L(x) := f(x) - f^* - \sum_{j=1}^m \lambda_j g_j(x)$$

but ONLY a stationary point!

However, in the CONVEX case

 x^* is a global minimizer of the Lagrangian L and:

 $L \ge 0$ on \mathbb{R}^n ; $L(x^*) = 0$; $\nabla L(x^*) = 0$

Putinar's representation theorem (Positivstellensatz)

$$f(x) = \sigma_0(x) + \sum_{j=1}^m \sigma_j(x) g_j(x), \quad \forall x \in \mathbb{R}^n,$$

(for some s.o.s. polynomials (σ_j))

holds for polynomials f that are STRICTLY POSITIVE on K.

However, by recent results from Marshall (2009), Nie (2012)

it also holds GENERICALLY for polynomials *f* that are only NONNEGATIVE on K!

<ロ> <四> <四> <四> <三</td>

Putinar's representation theorem (Positivstellensatz)

$$f(x) = \sigma_0(x) + \sum_{j=1}^m \sigma_j(x) g_j(x), \quad \forall x \in \mathbb{R}^n,$$

(for some s.o.s. polynomials (σ_j))

holds for polynomials f that are STRICTLY POSITIVE on K.

However, by recent results from Marshall (2009), Nie (2012)

it also holds GENERICALLY for polynomials *f* that are only NONNEGATIVE on K!

◆□> ◆◎> ◆注> ◆注>

If **Putinar's** Theorem holds for $f - f^*$ (only ≥ 0 on **K**), then

the EXTENDED LAGRANGIAN polynomial

$$x\mapsto \Psi(x):=f(x)-f^*-\sum_{j=1}^m\sigma_j(x)g_j(x)\quad (=\sigma_0(x))$$

(with s.o.s. MULTIPLIERS $\sigma_j \in \mathbb{R}[X]$ instead of scalar $\lambda \in \mathbb{R}^m$)

is s.o.s.! (hence $\Psi \ge 0$ on \mathbb{R}^n), and satisfies:

$$\nabla \Psi(x^*) = \nabla f(x^*) - \sum_{j=1}^m \underbrace{\sigma_j(x^*)}_{\lambda_j^* \ge 0} \nabla g_j(x^*) = 0$$

$$\sigma_j(x^*) g_j(x^*) = 0 \quad \forall j \quad (\text{and so } \Psi(x^*) = 0)$$

 $ightarrow (x^*,\lambda^*)$ is a KKT pair.

If **Putinar's** Theorem holds for $f - f^*$ (only ≥ 0 on **K**), then

the EXTENDED LAGRANGIAN polynomial

$$x\mapsto \Psi(x):=f(x)-f^*-\sum_{j=1}^m\sigma_j(x)\,g_j(x)\quad (=\sigma_0(x))$$

(with s.o.s. MULTIPLIERS $\sigma_j \in \mathbb{R}[X]$ instead of scalar $\lambda \in \mathbb{R}^m$)

is s.o.s.! (hence $\Psi \ge 0$ on \mathbb{R}^n), and satisfies:

$$\nabla \Psi(x^*) = \nabla f(x^*) - \sum_{j=1}^m \underbrace{\sigma_j(x^*)}_{\lambda_j^* \ge 0} \nabla g_j(x^*) = 0$$

$$\sigma_j(x^*) g_j(x^*) = 0 \quad \forall j \quad (\text{and so } \Psi(x^*) = 0)$$

 $ightarrow (x^*,\lambda^*)$ is a KKT pair.

If **Putinar's** Theorem holds for $f - f^*$ (only ≥ 0 on **K**), then

the EXTENDED LAGRANGIAN polynomial

$$x\mapsto \Psi(x):=f(x)-f^*-\sum_{j=1}^m\sigma_j(x)\,g_j(x)\quad (=\sigma_0(x))$$

(with s.o.s. MULTIPLIERS $\sigma_j \in \mathbb{R}[X]$ instead of scalar $\lambda \in \mathbb{R}^m$)

is s.o.s.! (hence $\Psi \ge 0$ on \mathbb{R}^n), and satisfies:

$$\nabla \Psi(x^*) = \nabla f(x^*) - \sum_{j=1}^m \underbrace{\sigma_j(x^*)}_{\lambda_j^* \ge 0} \nabla g_j(x^*) = 0$$

$$\sigma_j(x^*) g_j(x^*) = 0 \quad \forall j \quad (\text{and so } \Psi(x^*) = 0)$$

 $ightarrow (x^*, \lambda^*)$ is a KKT pair.

< 回 > < 回 > < 回 > … 回

That is ...

x^* is a GLOBAL MINIMIZER of the EXTENDED LAGRANGIAN Ψ on \mathbb{R}^n !

So when Putinar's representation holds

for the polynomial $f - f^*$ (which is only nonnegative on **K**)

it provides a global optimality certificate for f^* and $x^* \in \mathbf{K}$

... the analogue

in nonconvex polynomial optimization

of the KKT-optimality conditions for the general convex case

a highly nontrivial extension ..!!!

That is ...

x^* is a GLOBAL MINIMIZER of the EXTENDED LAGRANGIAN Ψ on \mathbb{R}^n !

So when Putinar's representation holds

for the polynomial $f - f^*$ (which is only nonnegative on **K**)

it provides a global optimality certificate for f^* and $x^* \in \mathbf{K}$

... the analogue

in nonconvex polynomial optimization

of the KKT-optimality conditions for the general convex case

a highly nontrivial extension ..!!!

Jean B. Lasserre semidefinite characterization

That is ...

x^* is a GLOBAL MINIMIZER of the EXTENDED LAGRANGIAN Ψ on \mathbb{R}^n !

So when Putinar's representation holds

for the polynomial $f - f^*$ (which is only nonnegative on **K**)

it provides a global optimality certificate for f^* and $x^* \in \mathbf{K}$

... the analogue

in nonconvex polynomial optimization

of the KKT-optimality conditions for the general convex case

a highly nontrivial extension ..!!!

Jean B. Lasserre semidefinite characterization

On non active constraints

Let $(x^*, \lambda) \in \mathbf{K} \times \mathbb{R}^m_+$ be a KKT point with x^* a global minimizer of **P** and suppose that the constraint $g_j \ge 0$ is not active at x^* , i.e., $g_j(x^*) > 0$.

Then,

in contrast to KKT optimality conditions where the associated scalar multiplier λ_j vanishes ($\lambda_j = 0$), ...

the s.o.s. "multiplier" σ_j of the extended Lagrangian Ψ does not vanish in general, but ... $\sigma_j(x^*) = 0 \ (= \lambda_j)!$

・ 同 ト ・ ヨ ト ・ ヨ ト

On non active constraints

Let $(x^*, \lambda) \in \mathbf{K} \times \mathbb{R}^m_+$ be a KKT point with x^* a global minimizer of **P** and suppose that the constraint $g_j \ge 0$ is not active at x^* , i.e., $g_j(x^*) > 0$.

Then,

in contrast to KKT optimality conditions where the associated scalar multiplier λ_j vanishes ($\lambda_j = 0$), ...

the s.o.s. "multiplier" σ_j of the extended Lagrangian Ψ does not vanish in general, but ... $\sigma_j(x^*) = 0 \ (= \lambda_j)!$

▲御 ▶ ▲ 恵 ▶ ▲

Indeed, even if NOT ACTIVE at x^* ,

IN THE NONCONVEX case, the constraint $g_j(x) \ge 0$ MAY STILL BE IMPORTANT because if deleted, the global optimum f^* may strictly decrease to $\theta < f^*$.

Therefore in the case where $heta < f^*$

the constraint $g_j(x) \ge 0$ MUST PLAY a ROLE in Putinar's representation of the polynomial $f - f^*$, i.e., its associated s.o.s. weight σ_i is NOT trivial.

Otherwise if
$$\sigma_j = 0$$
, i.e., if $f - f^* = \sigma_0 + \sum_{k \neq j} \sigma_k g_k$ then

$$\theta = \min_{x} \left\{ f(x) : g_k(x) \ge 0, \forall k \neq j \right\} = f^*$$

However, its VALUE at x^* VANISHES ($\sigma_i(x^*) = 0$)!

Indeed, even if NOT ACTIVE at x^* ,

IN THE NONCONVEX case, the constraint $g_j(x) \ge 0$ MAY STILL BE IMPORTANT because if deleted, the global optimum f^* may strictly decrease to $\theta < f^*$.

Therefore in the case where $\theta < f^*$

the constraint $g_j(x) \ge 0$ MUST PLAY a ROLE in Putinar's representation of the polynomial $f - f^*$, i.e., its associated s.o.s. weight σ_j is NOT trivial.

Otherwise if
$$\sigma_j = 0$$
, i.e., if $f - f^* = \sigma_0 + \sum_{k \neq j} \sigma_k g_k$ then

$$\theta = \min_{x} \{f(x) : g_k(x) \ge 0, \forall k \neq j\} = f^*.$$

However, its VALUE at x^* VANISHES ($\sigma_i(x^*) = 0$)!

Indeed, even if NOT ACTIVE at x^* ,

IN THE NONCONVEX case, the constraint $g_j(x) \ge 0$ MAY STILL BE IMPORTANT because if deleted, the global optimum f^* may strictly decrease to $\theta < f^*$.

Therefore in the case where $\theta < f^*$

the constraint $g_j(x) \ge 0$ MUST PLAY a ROLE in Putinar's representation of the polynomial $f - f^*$, i.e., its associated s.o.s. weight σ_j is NOT trivial.

Otherwise if
$$\sigma_j = 0$$
, i.e., if $f - f^* = \sigma_0 + \sum_{k \neq j} \sigma_k g_k$ then

$$\theta = \min_{x} \left\{ f(x) : g_k(x) \ge 0, \forall k \neq j \right\} = f^*.$$

However, its VALUE at x^* VANISHES ($\sigma_i(x^*) = 0$)!

$$\mathbf{P}: \quad f^* = \min_{x} \{-x \mid x^2 = 1; \ 1/2 - x \ge 0\},$$

with $X \mapsto g_1(X) = X^2 - 1$ and $X \mapsto g_2(X) := 0.5 - X$.

 $x^* = -1$ is a global minimizer with global minimum $f^* = 1$.

 $(x^*, \lambda) = (-1, (1/2, 0))$ is a KKT pair, and $\lambda_2 = 0$ because the constraint $g_2(x) \ge 0$ is not active at $x^* = -1$.

Of course, x^* is not a global minimum of the Lagrangian $f - \lambda_1 g_1 - \lambda_2 g_2 = -X - 1/2(X^2 - 1) = -X^2/2 - X + 1/2$.

$$\mathbf{P}: \quad f^* = \min_{x} \{-x \mid x^2 = 1; \ 1/2 - x \ge 0\},$$

with $X \mapsto g_1(X) = X^2 - 1$ and $X \mapsto g_2(X) := 0.5 - X$.

 $x^* = -1$ is a global minimizer with global minimum $f^* = 1$.

 $(x^*, \lambda) = (-1, (1/2, 0))$ is a KKT pair, and $\lambda_2 = 0$ because the constraint $g_2(x) \ge 0$ is not active at $x^* = -1$.

Of course, x^* is not a global minimum of the Lagrangian $f - \lambda_1 g_1 - \lambda_2 g_2 = -X - 1/2(X^2 - 1) = -X^2/2 - X + 1/2$.

$$\mathbf{P}: \quad f^* = \min_{x} \{-x \mid x^2 = 1; \ 1/2 - x \ge 0\},$$

with $X \mapsto g_1(X) = X^2 - 1$ and $X \mapsto g_2(X) := 0.5 - X$.

 $x^* = -1$ is a global minimizer with global minimum $f^* = 1$.

 $(x^*, \lambda) = (-1, (1/2, 0))$ is a KKT pair, and $\lambda_2 = 0$ because the constraint $g_2(x) \ge 0$ is not active at $x^* = -1$.

Of course, x^* is not a global minimum of the Lagrangian $f - \lambda_1 g_1 - \lambda_2 g_2 = -X - 1/2(X^2 - 1) = -X^2/2 - X + 1/2$.

$$\mathbf{P}: \quad f^* = \min_{x} \{-x \mid x^2 = 1; \ 1/2 - x \ge 0\},$$

with $X \mapsto g_1(X) = X^2 - 1$ and $X \mapsto g_2(X) := 0.5 - X$.

 $x^* = -1$ is a global minimizer with global minimum $f^* = 1$.

 $(x^*, \lambda) = (-1, (1/2, 0))$ is a KKT pair, and $\lambda_2 = 0$ because the constraint $g_2(x) \ge 0$ is not active at $x^* = -1$.

Of course, x^* is not a global minimum of the Lagrangian $f - \lambda_1 g_1 - \lambda_2 g_2 = -X - 1/2(X^2 - 1) = -X^2/2 - X + 1/2.$

But we also have Putinar's representation

 $f - f^* = -X - 1 = (X + 3/2)(X^2 - 1) + (X + 1)^2(1/2 - X).$

The s.o.s. (polynomial) multiplier $x \mapsto \sigma_2(X) := (X + 1)^2$ vanishes at $x^* = -1$, also a global minimizer of the Lagrangian

 $f - \sigma_1 g_1 - \sigma_2 g_2 = -X - (X + 3/2)(X^2 - 1) - (X + 1)^2(1/2 - X)$

(here constant \equiv 1).

Even if not active at x^* , the constraint $g_2(x) \ge 0$ is important because if deleted, $f^* \to -1 < 1$. Therefore, it MUST have a nontrivial s.o.s. multiplier in the representation of $f - f^*$.

・ 同 ト ・ ヨ ト ・ ヨ ト

But we also have Putinar's representation

 $f - f^* = -X - 1 = (X + 3/2)(X^2 - 1) + (X + 1)^2(1/2 - X).$

The s.o.s. (polynomial) multiplier $x \mapsto \sigma_2(X) := (X+1)^2$ vanishes at $x^* = -1$, also a global minimizer of the Lagrangian

 $f - \sigma_1 g_1 - \sigma_2 g_2 = -X - (X + 3/2)(X^2 - 1) - (X + 1)^2(1/2 - X)$

(here constant \equiv 1).

Even if not active at x^* , the constraint $g_2(x) \ge 0$ is important because if deleted, $f^* \to -1 < 1$. Therefore, it MUST have a nontrivial s.o.s. multiplier in the representation of $f - f^*$.

But we also have Putinar's representation

 $f - f^* = -X - 1 = (X + 3/2)(X^2 - 1) + (X + 1)^2(1/2 - X).$

The s.o.s. (polynomial) multiplier $x \mapsto \sigma_2(X) := (X+1)^2$ vanishes at $x^* = -1$, also a global minimizer of the Lagrangian

 $f - \sigma_1 g_1 - \sigma_2 g_2 = -X - (X + 3/2)(X^2 - 1) - (X + 1)^2(1/2 - X)$

(here constant \equiv 1).

Even if not active at x^* , the constraint $g_2(x) \ge 0$ is important because if deleted, $f^* \to -1 < 1$. Therefore, it MUST have a nontrivial s.o.s. multiplier in the representation of $f - f^*$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●