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Let K ⊆ Rn be closed

A basic question is:

Characterize the continuous functions f : Rn → R that are
nonnegative on K
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AND .....

if one obtains ...
a characterization amenable to practical computation!
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Positivstellensatze for basic semi-algebraic sets

Let K := {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m}, for some
polynomials (gj) ⊂ R[x].

Here, knowledge on K is through its defining polynomials
(gj) ⊂ R[x].

Let C(K)d be the CONVEX cone of polynomials of degree at
most d , nonnegative on K, and Cd the CONVEX cone of
polynomials of degree at most d , nonnegative on Rn.
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Let g0(x) = 1 for all x .

The quadratic module associated with (gj) is the set

Q(g) :=


m∑

j=0

σj gj : σj ∈ Σ[x]


Of course every element of Q(g) is nonnegative on K, and the
(σj) provide certificates of nonnegativity on K.

Jean B. Lasserre semidefinite characterization



Truncated versions

The k -truncated quadratic module
associated with the (gj) is the set

Qk (g) :=


m∑

j=0

σj gj : σj ∈ Σ[x], degσj gj ≤ 2k


And as one is interested in the cone of polynomials of degree at
most d , nonnegative on K,

. . . consider the d-truncated convex cone:

Qd
k (g) := Qk (g) ∩ R[x]d
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Observe that

Qd
k (g) ⊂ C(K)d , ∀k ,

and so, the convex cones (Qd
k (g)), k ∈ N, provide nested inner

approximations of C(K)d .

... and ... TESTING whether f ∈ Qd
k (g)

reduces to SOLVING a SEMIDEFINITE PROGRAM

(a convex optimization problem that can be solved efficiently)

. . . which provides the basis of
moment-sos relaxations for polynomial programming!
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Positivstellensätze

Recall the fundamental and powerful representation result:

Putinar-Prestel-Jacobi Positivstellensatz
Assume that for some M > 0, the quadratic polynomial
x 7→ M − ‖x‖2 is in Q(g) and let f ∈ R[X ]d . Then:

[ K compact and f > 0 on K ] ⇒ f ∈ Qd
k (g)

for some integer k .

Jean B. Lasserre semidefinite characterization



Positivstellensätze

Recall the fundamental and powerful representation result:

Putinar-Prestel-Jacobi Positivstellensatz
Assume that for some M > 0, the quadratic polynomial
x 7→ M − ‖x‖2 is in Q(g) and let f ∈ R[X ]d . Then:

[ K compact and f > 0 on K ] ⇒ f ∈ Qd
k (g)

for some integer k .

Jean B. Lasserre semidefinite characterization



Positivstellensätze

Recall the fundamental and powerful representation result:

Putinar-Prestel-Jacobi Positivstellensatz
Assume that for some M > 0, the quadratic polynomial
x 7→ M − ‖x‖2 is in Q(g) and let f ∈ R[X ]d . Then:

[ K compact and f > 0 on K ] ⇒ f ∈ Qd
k (g)

for some integer k .

Jean B. Lasserre semidefinite characterization



In fact, Putinar’s Positivstellensatz can be re-stated as:( ∞⋃
k=0

Qd
k (g)

)
= C(K)d

( if x 7→ M − ‖x‖2 is in Q(g) )
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Optimization: Hierarchy of semidefinite relaxations

Consider the global optimization problem

f ∗ = min{f (x) : x ∈ K}

and with 2k0 ≥ deg f , consider the semidefinite programs:

ρk := max
λ
{ λ : f − λ ∈ Qk (g) }, k ≥ k0

We have already seen:

Theorem

Let K be compact and assume that the polynomial M − ‖x‖2
belongs to Q(g). Then ρk ↑ f ∗ := min {f (x) : x ∈ K }.
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Another look at of nonnegativity
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Let K ⊆ Rn be an arbitrary closed set, and let f : Rn → R be a
continuous function.

Support of a measure
On a separable metric space X , the support suppµ of a Borel
measure µ is the (unique) smallest closed set such that
µ(X \ K) = 0.

Here the knowledge on K is through a measure µ with
suppµ = K, and is independent of the representation of K.

Lemma (Let µ be such that suppµ = K)
A continuous function f : X → R is nonnegative on K if and only
if the signed Borel measure ν(B) =

∫
K∩B f dµ, B ∈ B, is a

positive measure.
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proof

The only if part is straightforward. For the if part, if ν is a
positive measure then f (x) ≥ 0 for µ-almost all x ∈ K. That is,
there is a Borel set G ⊂ K such that µ(G) = 0 and f (x) ≥ 0 on
K \G.

Next, observe that K \G ⊂ K and µ(K \G) = µ(K). Therefore
K \G = K by minimality of K.

Hence, let x ∈ K be fixed, arbitrary. As K = K \G, there is a
sequence (xk ) ⊂ K \G, k ∈ N, with xk → x as k →∞. But
since f is continuous and f (xk ) ≥ 0 for every k ∈ N, we obtain
the desired result f (x) ≥ 0.
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Moment and localizing matrix

Let y = (yα), α ∈ Nn, be the moment of a finite Borel measure
µ on Rn, i.e.,

yα =

∫
Rn

xα dµ
(

=

∫
Rn

xα1
1 · · · x

αn
n dµ

)
, ∀α ∈ Nn.

The “Moment matrix" Md (y) has its rows and columns

indexed in the basis {Xα} of R[X ]d , and with entries:

Md (y)(α, β) =

∫
Rn

Xα+β dµ

= yα+β ∀α, β ∈ Nn, |α|, |β| ≤ d .
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For instance in R2 : M1(y) =

1 X1 X2︷ ︸︸ ︷
y00 | y10 y01
− − −

y10 | y20 y11
y01 | y11 y02


Importantly . . .

Md (y) � 0 ⇐⇒
∫
Rn

h2 dµ ≥ 0, ∀h ∈ R[X ]d
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The “Localizing matrix" Md (θy) w.r.t. a polynomial θ ∈ R[X ]

with X 7→ θ(X ) =
∑

γ θγ X γ , has its rows and columns also
indexed in the basis {Xα} of R[X ]d , and with entries:

Md (θ y)(α, β) =

∫
Rn
θ(X ) Xα+β dµ

=
∑
γ∈Nn

θγ yα+β+γ ,
{
α, β ∈ Nn

|α|, |β| ≤ d .
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For instance, in R2, and with X 7→ θ(X ) := 1− X 2
1 − X 2

2 ,

M1(θ y) =

1 X1 X2︷ ︸︸ ︷ y00 − y20 − y02, y10 − y30 − y12, y01 − y21 − y03
y10 − y30 − y12, y20 − y40 − y22, y11 − y21 − y12
y01 − y21 − y03, y11 − y21 − y12, y02 − y22 − y04

 .
Importantly . . .

Md (θ y) � 0 ⇐⇒
∫
Rn

h2 θ dµ ≥ 0, ∀h ∈ R[X ]d

Jean B. Lasserre semidefinite characterization



Theorem
Let K ⊆ [−1,1]n be compact and let µ be an arbitrary, fixed,
finite Borel measure on K with suppµ = K and with moments
y = (yα), α ∈ Nn.

(a) f ∈ R[x] is nonnegative on K if and only if

Md (f y) � 0, d = 0,1, . . .

(b) If in addition, f is also concave on K, then one may replace
K with co (K).
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Sketch of proof

Consider the signed measure dν = f dµ. As K ⊆ [−1,1]n,

|zα| =

∣∣∣∣∫
K

xαf dµ
∣∣∣∣ ≤ ∫

K
|f |dµ = ‖f‖1, ∀α ∈ Nn.

and so z is the moment sequence of a finite (positive) Borel
measure ψ on [−1,1]n.

As K is compact this implies ν = ψ, and so, ν is a positive Borel
measure, and with support equal to K.

By the Lemma that we have seen, f ≥ 0 on K.

Jean B. Lasserre semidefinite characterization



Sketch of proof

Consider the signed measure dν = f dµ. As K ⊆ [−1,1]n,

|zα| =

∣∣∣∣∫
K

xαf dµ
∣∣∣∣ ≤ ∫

K
|f |dµ = ‖f‖1, ∀α ∈ Nn.

and so z is the moment sequence of a finite (positive) Borel
measure ψ on [−1,1]n.

As K is compact this implies ν = ψ, and so, ν is a positive Borel
measure, and with support equal to K.

By the Lemma that we have seen, f ≥ 0 on K.

Jean B. Lasserre semidefinite characterization



Sketch of proof

Consider the signed measure dν = f dµ. As K ⊆ [−1,1]n,

|zα| =

∣∣∣∣∫
K

xαf dµ
∣∣∣∣ ≤ ∫

K
|f |dµ = ‖f‖1, ∀α ∈ Nn.

and so z is the moment sequence of a finite (positive) Borel
measure ψ on [−1,1]n.

As K is compact this implies ν = ψ, and so, ν is a positive Borel
measure, and with support equal to K.

By the Lemma that we have seen, f ≥ 0 on K.

Jean B. Lasserre semidefinite characterization



Let identify f ∈ R[x]d with its vector of coefficient f ∈ Rs(d), with
s(d) =

(n+d
n

)
.

Observe that, for every k = 1, . . ., the set

∆k := {f ∈ Rs(d) : Mk (f y) � 0},

is the feasible set associated with a Linear Matrix Inequality,
and so a CONVEX SET (and in fact, here, a CONVEX CONE).

Indeed the entry (α, β) of Mk (f y) is just∑
γ∈Nn

fγ yα+β+γ

and so Mk (f y) � 0 is a Linear Matrix Inequality (LMI) on the
vector of coefficients of f .

Jean B. Lasserre semidefinite characterization



Let identify f ∈ R[x]d with its vector of coefficient f ∈ Rs(d), with
s(d) =

(n+d
n

)
.

Observe that, for every k = 1, . . ., the set

∆k := {f ∈ Rs(d) : Mk (f y) � 0},

is the feasible set associated with a Linear Matrix Inequality,
and so a CONVEX SET (and in fact, here, a CONVEX CONE).

Indeed the entry (α, β) of Mk (f y) is just∑
γ∈Nn

fγ yα+β+γ

and so Mk (f y) � 0 is a Linear Matrix Inequality (LMI) on the
vector of coefficients of f .

Jean B. Lasserre semidefinite characterization



Example: Let f ∈ R[x] be the polynomial:

x 7→ f (x) := a + b x1x2.

M1(f y) =

 a y00 + b y11, a y10 + b y21, a y01 + b y12
a y10 + b y21, a y20 + by31, a y11 + b y22
a y01 + b y12, a y11 + b y22, a y02 + b y13

 � 0.

Equivalently,

a

 y00, y10, y01
y10, y20, y11
y01, y11, y02

 + b

 y11, y21, y12
y21, y31, y22
y12, y22, y13

 � 0.

which defines a CONVEX CONE in R2 for the coefficients (a,b)
of polynomials of the form a + bx1x2.
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and so . . .
one obtains a nested hierarchy of spectrahedra

∆0 ⊃ ∆1 · · · ⊃ ∆k · · · ⊃ C(K)d ,

with no lifting, which provide

tighter and tighter outer approximations of C(K)d .
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So we get the sandwich Qd
k (g) ⊂ C(K)d ⊂ ∆k for all k , and

( ∞⋃
k=0

Qd
k (g)

)
= C(K)d =

( ∞⋂
k=0

∆k

)
↓ ↓

Inner approximations Outer approximations
representation dependent independent of representation
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Application to optimization

Theorem (A hierarchy of upper bounds)

Let f ∈ R[x]d be fixed and K ⊂ Rn be closed. Let µ be such that
suppµ = K and with moment sequence y = (yα), α ∈ Nn.
Consider the hierarchy of semidefinite programs:

uk = min
σ


∫

K
f σ dµ︸︷︷︸

dν

:

∫
K
σ dµ︸︷︷︸

dν

= 1; σ ∈ Σ[x]d

 ,

with dual:

u∗k = max
λ
{λ : Mk (f − λ,y) � 0 }

= max
λ
{λ : λMk (y) � Mk (f ,y) }

Then u∗k ,uk ↓ f ∗ = minx {f (x) : x ∈ K}.
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Interpetation of uk and u∗k

• Computing u∗k is a generalized eigenvalue problem!

• Next, recall that

f ∗ = min
ψ
{
∫

K
f dψ : ψ(K) = 1, ψ(Rn \ K) = 0}

whereas

uk = min
ν
{
∫

K
f σdµ︸︷︷︸

dν

: ν(K) = 1, ν(Rn \ K) = 0; σ ∈ Σ[x]k}

that is, one optimizes over the subspace of Borel probability
measures absolutely continuous with respect to µ, and with
density σ ∈ Σ[x]k .

Ideally, when k is large, σ(x) > 0 in a neighborhood of a global
minimizer x∗ ∈ K.
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• Also works for non-compact closed sets but then µ has to
satisfy a Carleman-type sufficient condition which limits the
growth of the moments. For example, take

dµ = e−‖x‖
2/2 dν

where ν is an arbitrary finite Borel measure with support K.
• The sequences of upper bounds (uk ,u∗k ) complement the
sequences of lower bounds (ρk , ρ

∗
k ) obtained from

SDP-relaxations.

• Of course, for practical computation, the previous semidefinite
relaxations require knowledge of the moment sequence
y = (yα), α ∈ Nn.
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This is possible for relatively simple sets K like a box, a simplex,
the discrete set, an ellipsoid, etc., where one can compute all
moments of a measure µ whose support is K. For instance take
µ to be uniformly distributed, or K = Rn (or K = Rn

+) with

dµ = e−‖x‖
2/2 dx, K = Rn

dµ = e−
∑

i xi dx, K = Rn
+

dµ = dx,
{

K = [a1,b1]× · · · × [an,bn]
K = {x ∈ Rn

+ :
∑n

i=1 xi ≤ 1}

For K = {−1,1}n or K = {0,1}n take µ to be uniformly
distributed.
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A sequence of eigenvalue problems

Practical calculation
If instead of the usual canonical basis of monomials (Xα),
α ∈ Nn, one now uses the basis of polynomials (Pα), α ∈ Nn,
that are ORTHONORMAL with respect to the known measure
µ, then the moments matrix Mk (y) expressed in that basis is
the IDENTITY matrix! Indeed,

Mk (y)(α, β) =

∫
Rn

Pα Pβ dµ = δα=β.

Then . . .

u∗k = max
λ
{λ : λMk (y) � Mk (f , y),

i.e., u∗k is the smallest eigenvalue of the matrix Mk (f , y)!
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Computing a basis of polynomials

(Pα), α ∈ Nn, orthonormal with respect to µ is easy if one
knows the moments of µ!

For instance: P0 = 1, and

P10 = det
([

y0 y10
1 X1

])
; P01 = det

 y0 y10 y01
y10 y20 y11
1 X1 X2

 ,

etc., plus scaling so as to have
∫

Pα2 dµ = 1.
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Ex 1: With K = Rn
+ and x 7→ fA(x) := xT A x

for real symmetric matrices A ∈ Rn×n, one may thus provide
outer approximations of the convex cone of COPOSITIVE
matrices, that is, matrices A such that

xT A x ≥ 0, ∀x ∈ Rn
+,

an important tool for 0/1 combinatorial optimization problems.
These outer approximations complement the inner
approximations already obtained by Parrilo, and DeKlerk and
Pasechnik.

Ex 2: With K = {−1,1}n and x 7→ fA(x) := xT A x

for real symmetric matrices A ∈ Rn×n, one may thus provide a
hierarchy of upper bounds for MAXCUT problem with matrix A.
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Some experiments

• K = R2
+ with dµ = e−

∑
i xi dx so that

yij = i! j!, ∀i , j = 0,1, . . .

x 7→ f (x) := x2
1 x2

2 (x2
1 + x2

2 − 1) with f ∗ = −1/27 ≈ −0.037.

u0 = 92; u1 = 1.51; u14 = −0.011.

• The same problem on the box K = [0,1] now yields

u0 = 0.222; u1 = −0.055; u14 = −0.0311,

and some numerical problems occur.
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• Some randomly generated MAXCUT problems

f ∗ = min
x
{xQx : x ∈ {−1,1}n }

with n = 11 variables.

d u0 u1 u2 u3 u4 f ∗

Ex1 0 -1.928 -3.748 -5.22 -6.37 -7.946
Ex2 0 -1.56 -3.103 -4.314 -5.282 -6.863
Ex3 0 -1.910 -3.694 -5.078 -6.161 -8.032
Ex4 0 -2.164 -4.1664 -5.7971 -7.06 -9.198
Ex5 0 -1.825 -3.560 -4.945 -5.924 -7.467

Table: MAXCUT: n = 11; Q random.
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Illustrating duality
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Figure: f (x) = 0.375− 5x + 21x2 − 32x3 + 16x4 on [0,1]
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Solving the dual yields the SOS polynomial density σk with

uk =

∫
f (x) σk (x) dx︸ ︷︷ ︸

dνk (x)
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Figure: The probability density σ10(x)dx on [0,1]
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Preliminary conclusions

• Rapid decrease in first steps, but convergence is slow

• Numerical stability problems to be expected.

• Use bases different from the monomial basis.

• Rather see this technique as a complement to lower bounds
obtained from semidefinite relaxations
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