# Moments and positive polynomials for optimization IV: 

Another look at nonnegativity and optimization

Jean B. Lasserre

LAAS-CNRS and Institute of Mathematics, Toulouse, France
Tutorial, IMS, Singapore, November 2012

- Positivstellensatze for semi-algebraic sets $K \subset \mathbb{R}^{n}$ from the knowledge of defining polynomials
- $\rightarrow$ inner approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite relaxations yield lower bounds
- Another look at nonnegativity from knowledge of a measure supported on K.
- $\rightarrow$ outer approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite approximations yield upper bounds
- Positivstellensatze for semi-algebraic sets $K \subset \mathbb{R}^{n}$ from the knowledge of defining polynomials
- $\rightarrow$ inner approximations of the cone of polynomials nonnegative on $\mathbf{K}$
- Optimization: Semidefinite relaxations yield lower bounds
- Another look at nonnegativity from knowledge of a measure supported on K.
- $\rightarrow$ outer approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite approximations yield upper bounds
- Positivstellensatze for semi-algebraic sets $K \subset \mathbb{R}^{n}$ from the knowledge of defining polynomials
- $\rightarrow$ inner approximations of the cone of polynomials nonnegative on $\mathbf{K}$
- Optimization: Semidefinite relaxations yield lower bounds
- Another look at nonnegativity from knowledge of a measure supported on K.
- $\rightarrow$ outer approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite approximations yield upper
- Positivstellensatze for semi-algebraic sets $K \subset \mathbb{R}^{n}$ from the knowledge of defining polynomials
- $\rightarrow$ inner approximations of the cone of polynomials nonnegative on $\mathbf{K}$
- Optimization: Semidefinite relaxations yield lower bounds
- Another look at nonnegativity from knowledge of a measure supported on K.
- $\rightarrow$ outer approximations of the cone of polynomials
nonnegative on $\mathbf{K}$
- Optimization: Semidefinite approximations yield upper
- Positivstellensatze for semi-algebraic sets $K \subset \mathbb{R}^{n}$ from the knowledge of defining polynomials
- $\rightarrow$ inner approximations of the cone of polynomials nonnegative on $\mathbf{K}$
- Optimization: Semidefinite relaxations yield lower bounds
- Another look at nonnegativity from knowledge of a measure supported on K.
- $\rightarrow$ outer approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite approximations yield upper
bounds
- Positivstellensatze for semi-algebraic sets $K \subset \mathbb{R}^{n}$ from the knowledge of defining polynomials
- $\rightarrow$ inner approximations of the cone of polynomials nonnegative on $\mathbf{K}$
- Optimization: Semidefinite relaxations yield lower bounds
- Another look at nonnegativity from knowledge of a measure supported on K.
- $\rightarrow$ outer approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite approximations yield upper bounds
- Positivstellensatze for semi-algebraic sets $K \subset \mathbb{R}^{n}$ from the knowledge of defining polynomials
- $\rightarrow$ inner approximations of the cone of polynomials nonnegative on $\mathbf{K}$
- Optimization: Semidefinite relaxations yield lower bounds
- Another look at nonnegativity from knowledge of a measure supported on K.
- $\rightarrow$ outer approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite approximations yield upper bounds


A basic question is:

## Characterize the continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that are nonnegative on K

AND .....


## if one obtains ...

a characterization amenable to practical computation!

## Positivstellensatze for basic semi-algebraic sets

Let $\mathbf{K}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geq 0, \quad j=1, \ldots, m\right\}$, for some polynomials $\left(g_{j}\right) \subset \mathbb{R}[\mathbf{x}]$.

Here, knowledge on $\mathbf{K}$ is through its defining polynomials $\left(g_{j}\right) \subset \mathbb{R}[\mathbf{x}]$.

Let $\mathcal{C}(\mathbf{K})_{d}$ be the CONVEX cone of polynomials of degree at most $d$, nonnegative on $\mathbf{K}$, and $\mathcal{C}_{d}$ the CONVEX cone of polynomials of degree at most $d$, nonnegative on $\mathbb{R}^{n}$.

Let $g_{0}(x)=1$ for all $x$.
The quadratic module associated with $\left(g_{j}\right)$ is the set

$$
Q(g):=\left\{\sum_{j=0}^{m} \sigma_{j} g_{j}: \sigma_{j} \in \Sigma[\mathbf{x}]\right\}
$$

Of course every element of $Q(g)$ is nonnegative on $\mathbf{K}$, and the $\left(\sigma_{j}\right)$ provide certificates of nonnegativity on $\mathbf{K}$.

## Truncated versions

The $k$-truncated quadratic module associated with the $\left(g_{j}\right)$ is the set

$$
Q_{k}(g):=\left\{\sum_{j=0}^{m} \sigma_{j} g_{j}: \sigma_{j} \in \Sigma[\mathbf{x}], \quad \operatorname{deg} \sigma_{j} g_{j} \leq 2 k\right\}
$$

And as one is interested in the cone of polynomials of degree at most $d$, nonnegative on $\mathbf{K}$,
... consider the $d$-truncated convex cone:

$$
Q_{k}^{d}(g):=Q_{k}(g) \cap \mathbb{R}[\mathbf{x}]_{d}
$$

## Observe that

$$
Q_{k}^{d}(g) \subset \mathcal{C}(\mathbf{K})_{d}, \quad \forall k,
$$

and so, the convex cones $\left(Q_{k}^{d}(g)\right), k \in \mathbb{N}$, provide nested inner approximations of $\mathcal{C}(\mathbf{K})_{d}$.

## and ... TESTING whether $f \in Q_{k}^{d}(g)$ <br> reduces to SOLVING a <br> (a convex optimization problem that can be solved efficiently)

## which provides the basis of

moment-sos relaxations for polynomial proarémming!

## Observe that

$$
Q_{k}^{d}(g) \subset \mathcal{C}(\mathbf{K})_{d}, \quad \forall k
$$

and so, the convex cones $\left(Q_{k}^{d}(g)\right), k \in \mathbb{N}$, provide nested inner approximations of $\mathcal{C}(\mathbf{K})_{d}$.

## ... and.. TESTING whether $f \in Q_{k}^{d}(g)$

## reduces to SOLVING a SEMIDEFINITE PROGRAM

(a convex optimization problem that can be solved efficiently)

## which provides the basis of

Observe that

$$
Q_{k}^{d}(g) \subset \mathcal{C}(\mathbf{K})_{d}, \quad \forall k
$$

and so, the convex cones $\left(Q_{k}^{d}(g)\right), k \in \mathbb{N}$, provide nested inner approximations of $\mathcal{C}(\mathbf{K})_{d}$.

## $\ldots$ and.. TESTING whether $f \in Q_{k}^{d}(g)$

reduces to SOLVING a SEMIDEFINITE PROGRAM
(a convex optimization problem that can be solved efficiently)
... which provides the basis of
moment-sos relaxations for polynomial programming!

## Positivstellensätze

Recall the fundamental and powerful representation result:

> Putinar-Preste-Jacobi Positivstelensatz
> Assume that for some $M>0$, the quadratic polynomial $\mathbf{x} \mapsto M-\|\mathbf{x}\|^{2}$ is in $Q(g)$ and let $f \in \mathbb{R}[X]_{d}$. Then: [K compact and $f>0$ on K$] \Rightarrow f \in Q_{k}^{d}(g)$

for some integer $k$.

## Positivstellensätze

Recall the fundamental and powerful representation result:

## Putinar-Prestel-Jacobi Positivstellensatz

Assume that for some $M>0$, the quadratic polynomial $\mathbf{x} \mapsto M-\|\mathbf{x}\|^{2}$ is in $Q(g)$ and let $f \in \mathbb{R}[X]_{d}$. Then:

$$
[\mathbf{K} \text { compact and } f>0 \text { on } \mathbf{K}] \Rightarrow f \in Q_{k}^{d}(g)
$$

for some integer $k$.

## Positivstellensätze

Recall the fundamental and powerful representation result:

## Putinar-Prestel-Jacobi Positivstellensatz

Assume that for some $M>0$, the quadratic polynomial $\mathbf{x} \mapsto M-\|\mathbf{x}\|^{2}$ is in $Q(g)$ and let $f \in \mathbb{R}[X]_{d}$. Then:

$$
[\mathbf{K} \text { compact and } f>0 \text { on } \mathbf{K}] \Rightarrow f \in Q_{k}^{d}(g)
$$

for some integer $k$.

In fact, Putinar's Positivstellensatz can be re-stated as:

$$
\overline{\left(\bigcup_{k=0}^{\infty} Q_{k}^{d}(g)\right)}=C(\mathbf{K})_{d}
$$

( if $\mathbf{x} \mapsto M-\|\mathbf{x}\|^{2}$ is in $Q(g)$ )

## Optimization: Hierarchy of semidefinite relaxations

Consider the global optimization problem

$$
f^{*}=\min \{f(\mathbf{x}): \mathbf{x} \in \mathbf{K}\}
$$

and with $2 k_{0} \geq \operatorname{deg} f$, consider the semidefinite programs:

We have already seen:
Theorem
Let K be compact and assume that the polynomial M - \|x $\|^{2}$
belongs to $Q(g)$. Then

## Optimization: Hierarchy of semidefinite relaxations

Consider the global optimization problem

$$
f^{*}=\min \{f(\mathbf{x}): \mathbf{x} \in \mathbf{K}\}
$$

and with $2 k_{0} \geq \operatorname{deg} f$, consider the semidefinite programs:

$$
\rho_{k}:=\max _{\lambda}\left\{\lambda: f-\lambda \in Q_{k}(g)\right\}, \quad k \geq k_{0}
$$

We have already seen:
Theorem
Let K be compact and assume that the polynomial $M-\|x\|^{2}$ belongs to $Q(g)$. Then

## Optimization: Hierarchy of semidefinite relaxations

Consider the global optimization problem

$$
f^{*}=\min \{f(\mathbf{x}): \mathbf{x} \in \mathbf{K}\}
$$

and with $2 k_{0} \geq \operatorname{deg} f$, consider the semidefinite programs:

$$
\rho_{k}:=\max _{\lambda}\left\{\lambda: f-\lambda \in Q_{k}(g)\right\}, \quad k \geq k_{0}
$$

We have already seen:

## Theorem

Let K be compact and assume that the polynomial $M-\|\mathbf{x}\|^{2}$ belongs to $Q(g)$. Then $\rho_{k} \uparrow f^{*}:=\min \{f(\mathbf{x}): \mathbf{x} \in \mathbf{K}\}$.

## Another look at of nonnegativity



Let $\mathbf{K} \subseteq \mathbb{R}^{n}$ be an arbitrary closed set, and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function.

## Support of a measure

On a separable metric space $X$, the support supp $\mu$ of a Borel measure $\mu$ is the (unique) smallest closed set such that $\mu(X \backslash \mathbf{K})=0$.

Here the knowledge on $\mathbf{K}$ is through a measure $\mu$ with supp $\mu=\mathbf{K}$, and is independent of the representation of $\mathbf{K}$.
$\square$

Let $\mathbf{K} \subseteq \mathbb{R}^{n}$ be an arbitrary closed set, and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function.

## Support of a measure

On a separable metric space $X$, the support supp $\mu$ of a Borel measure $\mu$ is the (unique) smallest closed set such that $\mu(X \backslash \mathbf{K})=0$.

Here the knowledge on $\mathbf{K}$ is through a measure $\mu$ with supp $\mu=\mathbf{K}$, and is independent of the representation of $\mathbf{K}$.

Lemma (Let be such that supp $\mu=\mathrm{K}$ )
A continuous function $f: X \rightarrow \mathbb{R}$ is nonnegative on $\mathbf{K}$ if and only if the signed Borel measure $\nu(B)=\int_{\mathbf{K} \cap \boldsymbol{B}} f d \mu, B \in \mathcal{B}$, is a positive measure.

The only if part is straightforward. For the if part, if $\nu$ is a positive measure then $f(\mathbf{x}) \geq 0$ for $\mu$-almost all $\mathbf{x} \in \mathbf{K}$. That is, there is a Borel set $G \subset \mathbf{K}$ such that $\mu(\mathbf{G})=0$ and $f(\mathbf{x}) \geq 0$ on $\mathbf{K} \backslash G$.

Next, observe that $\bar{K} \backslash \mathbf{G} \subset \mathbf{K}$ and $\mu(\overline{\mathbf{K} \backslash \mathbf{G}})=\mu(\mathbf{K})$. Therefore $\overline{\mathrm{K} \backslash \mathrm{G}}=\mathbf{K}$ by minimality of $\mathbf{K}$.

Hence, let $\boldsymbol{x} \in \mathbb{K}$ be fixed, arbitrary. As $K=\bar{K} \backslash \bar{G}$, there is a sequence $\left(\mathrm{x}_{k}\right) \subset \mathrm{K} \backslash G, k \in \mathbb{N}$, with $\mathrm{x}_{k} \rightarrow \mathrm{x}$ as $k \rightarrow \infty$. But since $f$ is continuous and $f\left(\mathbf{x}_{k}\right) \geq 0$ for every $k \in \mathbb{N}$, we obtain the desired result $f(\mathbf{x}) \geq 0$.

The only if part is straightforward. For the if part, if $\nu$ is a positive measure then $f(\mathbf{x}) \geq 0$ for $\mu$-almost all $\mathbf{x} \in \mathbf{K}$. That is, there is a Borel set $G \subset \mathbf{K}$ such that $\mu(\mathbf{G})=0$ and $f(\mathbf{x}) \geq 0$ on $\mathbf{K} \backslash G$.

Next, observe that $\overline{\mathbf{K} \backslash \mathbf{G}} \subset \mathbf{K}$ and $\mu(\overline{\mathbf{K} \backslash \mathbf{G}})=\mu(\mathbf{K})$. Therefore $\overline{\mathbf{K} \backslash \boldsymbol{G}}=\mathbf{K}$ by minimality of $\mathbf{K}$.

Hence, let $x \in K$ be fixed, arbitrary. As $K=\overline{K \backslash G}$, there is a sequence $\left(\mathbf{x}_{k}\right) \subset \mathbf{K} \backslash G, k \in \mathbb{N}$, with $\mathbf{x}_{k} \rightarrow \mathbf{x}$ as $k \rightarrow \infty$. But since $f$ is continuous and $f\left(\mathbf{x}_{k}\right) \geq 0$ for every $k \in \mathbb{N}$, we obtain the desired result $f(\mathbf{x}) \geq 0$.

The only if part is straightforward. For the if part, if $\nu$ is a positive measure then $f(\mathbf{x}) \geq 0$ for $\mu$-almost all $\mathbf{x} \in \mathbf{K}$. That is, there is a Borel set $G \subset \mathbf{K}$ such that $\mu(\mathbf{G})=0$ and $f(\mathbf{x}) \geq 0$ on $K \backslash G$.

Next, observe that $\overline{\mathbf{K} \backslash \mathbf{G}} \subset \mathbf{K}$ and $\mu(\overline{\mathbf{K} \backslash \mathbf{G}})=\mu(\mathbf{K})$. Therefore $\overline{\mathbf{K} \backslash \boldsymbol{G}}=\mathbf{K}$ by minimality of $\mathbf{K}$.

Hence, let $\mathbf{x} \in \mathbf{K}$ be fixed, arbitrary. As $\mathbf{K}=\overline{\mathbf{K} \backslash \mathcal{G}}$, there is a sequence $\left(\mathbf{x}_{k}\right) \subset \mathbf{K} \backslash G, k \in \mathbb{N}$, with $\mathbf{x}_{k} \rightarrow \mathbf{x}$ as $k \rightarrow \infty$. But since $f$ is continuous and $f\left(\mathbf{x}_{k}\right) \geq 0$ for every $k \in \mathbb{N}$, we obtain the desired result $f(\mathbf{x}) \geq 0$.

## Moment and localizing matrix

Let $\mathbf{y}=\left(y_{\alpha}\right), \alpha \in \mathbb{N}^{n}$, be the moment of a finite Borel measure $\mu$ on $\mathbb{R}^{n}$, i.e.,

$$
y_{\alpha}=\int_{\mathbb{R}^{n}} x^{\alpha} d \mu \quad\left(=\int_{\mathbb{R}^{n}} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} d \mu\right), \quad \forall \alpha \in \mathbb{N}^{n}
$$

The "Moment matrix" $M_{d}(y)$ has its rows and columns indexed in the basis $\left\{X^{\alpha}\right\}$ of $\mathbb{R}[X]_{d}$, and with entries:

$$
\begin{aligned}
M_{d}(y)(\alpha, \beta) & =\int_{\mathbb{R}^{n}} X^{\alpha+\beta} d \mu \\
& =y_{\alpha+\beta} \quad \forall \alpha, \beta \in \mathbb{N}^{n}, \quad|\alpha|,|\beta| \leq d
\end{aligned}
$$

For instance in $\mathbb{R}^{2}: \quad M_{1}(y)=\overbrace{\left[\begin{array}{cccc}y_{00} & y_{10} & y_{01} \\ - & - & - \\ y_{10} & y_{20} & y_{11} \\ y_{01} & y_{11} & y_{02}\end{array}\right]}^{x_{1}} x_{2}$
Importantly ...

$$
M_{d}(y) \succeq 0 \quad \Longleftrightarrow \quad \int_{\mathbb{R}^{n}} h^{2} d \mu \geq 0, \quad \forall h \in \mathbb{R}[X]_{d}
$$

## The "Localizing matrix" $M_{d}(\theta y)$ w.r.t. a polynomial $\theta \in \mathbb{R}[X]$

 with $X \mapsto \theta(X)=\sum_{\gamma} \theta_{\gamma} X^{\gamma}$, has its rows and columns also indexed in the basis $\left\{X^{\alpha}\right\}$ of $\mathbb{R}[X]_{d}$, and with entries:$$
\begin{aligned}
M_{d}(\theta y)(\alpha, \beta) & =\int_{\mathbb{R}^{n}} \theta(X) X^{\alpha+\beta} d \mu \\
& =\sum_{\gamma \in \mathbb{N}^{n}} \theta_{\gamma} y_{\alpha+\beta+\gamma}, \quad\left\{\begin{array}{l}
\alpha, \beta \in \mathbb{N}^{n} \\
|\alpha|,|\beta| \leq d
\end{array}\right.
\end{aligned}
$$

For instance, in $\mathbb{R}^{2}$, and with $X \mapsto \theta(X):=1-X_{1}^{2}-X_{2}^{2}$,
$M_{1}(\theta y)=\overbrace{\left[\begin{array}{lll}y_{00}-y_{20}-y_{02}, & y_{10}-y_{30}-y_{12}, & y_{01}-y_{21}-y_{03} \\ y_{10}-y_{30}-y_{12}, & y_{20}-y_{40}-y_{22}, & y_{11}-y_{21}-y_{12} \\ y_{01}-y_{21}-y_{03}, & y_{11}-y_{21}-y_{12}, & y_{02}-y_{22}-y_{04}\end{array}\right]}^{x_{2}}$.

## Importantly ...

$$
M_{d}(\theta y) \succeq 0 \quad \Longleftrightarrow \quad \int_{\mathbb{R}^{n}} h^{2} \theta d \mu \geq 0, \quad \forall h \in \mathbb{R}[X]_{d}
$$

## Theorem

Let $\mathrm{K} \subseteq[-1,1]^{n}$ be compact and let $\mu$ be an arbitrary, fixed, finite Borel measure on $\mathbf{K}$ with supp $\mu=\mathbf{K}$ and with moments $y=\left(y_{\alpha}\right), \alpha \in \mathbb{N}^{n}$.
(a) $f \in \mathbb{R}[\mathbf{x}]$ is nonnegative on $\mathbf{K}$ if and only if

$$
M_{d}(f \mathbf{y}) \succeq 0, \quad d=0,1, \ldots
$$

(b) If in addition, f is also concave on K, then one may replace

## Theorem

Let $\mathrm{K} \subseteq[-1,1]^{n}$ be compact and let $\mu$ be an arbitrary, fixed, finite Borel measure on $\mathbf{K}$ with supp $\mu=\mathbf{K}$ and with moments $y=\left(y_{\alpha}\right), \alpha \in \mathbb{N}^{n}$.
(a) $f \in \mathbb{R}[\mathbf{x}]$ is nonnegative on $\mathbf{K}$ if and only if

$$
M_{d}(f \mathbf{y}) \succeq 0, \quad d=0,1, \ldots
$$

(b) If in addition, $f$ is also concave on $\mathbf{K}$, then one may replace $\mathbf{K}$ with co (K).

## Sketch of proof

Consider the signed measure $d \nu=f d \mu$. As $\mathbf{K} \subseteq[-1,1]^{n}$,

$$
\left|z_{\alpha}\right|=\left|\int_{\mathbf{K}} \mathbf{x}^{\alpha} f d \mu\right| \leq \int_{\mathbf{K}}|f| d \mu=\|f\|_{1}, \quad \forall \alpha \in \mathbb{N}^{n} .
$$

and so $z$ is the moment sequence of a finite (positive) Borel measure $\psi$ on $[-1,1]^{n}$.
As K is compact this implies $\nu=\psi$, and $\mathrm{so}, \nu$ is a positive Borel measure, and with support equal to K.

By the Lemma that we have seen,

## Sketch of proof

Consider the signed measure $d \nu=f d \mu$. As $\mathbf{K} \subseteq[-1,1]^{n}$,

$$
\left|z_{\alpha}\right|=\left|\int_{\mathbf{K}} \mathbf{x}^{\alpha} f d \mu\right| \leq \int_{\mathbf{K}}|f| d \mu=\|f\|_{1}, \quad \forall \alpha \in \mathbb{N}^{n} .
$$

and so $z$ is the moment sequence of a finite (positive) Borel measure $\psi$ on $[-1,1]^{n}$.
As $\mathbf{K}$ is compact this implies $\nu=\psi$, and so, $\nu$ is a positive Borel measure, and with support equal to K .

By the Lemma that we have seen,

## Sketch of proof

Consider the signed measure $d \nu=f d \mu$. As $\mathbf{K} \subseteq[-1,1]^{n}$,

$$
\left|z_{\alpha}\right|=\left|\int_{\mathbf{K}} \mathbf{x}^{\alpha} f d \mu\right| \leq \int_{\mathbf{K}}|f| d \mu=\|f\|_{1}, \quad \forall \alpha \in \mathbb{N}^{n} .
$$

and so $z$ is the moment sequence of a finite (positive) Borel measure $\psi$ on $[-1,1]^{n}$.
As $\mathbf{K}$ is compact this implies $\nu=\psi$, and so, $\nu$ is a positive Borel measure, and with support equal to K .

By the Lemma that we have seen, $f \geq 0$ on $\mathbf{K} . \quad \square$

Let identify $f \in \mathbb{R}[\mathbf{x}]_{d}$ with its vector of coefficient $f \in \mathbb{R}^{s(d)}$, with $s(d)=\binom{n+d}{n}$.

## Observe that, for every $k=1, \ldots$, the set

$$
\Delta_{k}:=\left\{f \in \mathbb{R}^{s(d)}: M_{k}(f \mathbf{y}) \succeq 0\right\}
$$

is the feasible set associated with a Linear Matrix Inequality, and so a CONVEX SET (and in fact, here, a CONVEX CONE).

Indeed the entry $(\alpha, \beta)$ of $M_{k}(f y)$ is just
and so $M_{k}(f \mathbf{y}) \succeq 0$ is a Linear Matrix Inequality (LMI) on the vector of coefficients of

Let identify $f \in \mathbb{R}[\mathbf{x}]_{d}$ with its vector of coefficient $f \in \mathbb{R}^{s(d)}$, with $s(d)=\binom{n+d}{n}$.

## Observe that, for every $k=1, \ldots$, the set

$$
\Delta_{k}:=\left\{f \in \mathbb{R}^{s(d)}: M_{k}(f \mathbf{y}) \succeq 0\right\}
$$

is the feasible set associated with a Linear Matrix Inequality, and so a CONVEX SET (and in fact, here, a CONVEX CONE).

Indeed the entry $(\alpha, \beta)$ of $M_{k}(f \mathbf{y})$ is just

$$
\sum_{\gamma \in \mathbb{N}^{n}} f_{\gamma} y_{\alpha+\beta+\gamma}
$$

and so $M_{k}(f \mathbf{y}) \succeq 0$ is a Linear Matrix Inequality (LMI) on the vector of coefficients of $f$.

Example: Let $f \in \mathbb{R}[\mathbf{x}]$ be the polynomial:

$$
\mathbf{x} \mapsto f(\mathbf{x}):=a+b x_{1} x_{2} .
$$

$M_{1}(f \mathbf{y})=\left[\begin{array}{lll}a y_{00}+b y_{11}, & a y_{10}+b y_{21}, & a y_{01}+b y_{12} \\ a y_{10}+b y_{21}, & a y_{20}+b y_{31}, & a y_{11}+b y_{22} \\ a y_{01}+b y_{12}, & a y_{11}+b y_{22}, & a y_{02}+b y_{13}\end{array}\right] \succeq 0$.
Equivalently,

$$
a\left[\begin{array}{lll}
y_{00}, & y_{10}, & y_{01} \\
y_{10}, & y_{20}, & y_{11} \\
y_{01}, & y_{11}, & y_{02}
\end{array}\right]+b\left[\begin{array}{lll}
y_{11}, & y_{21}, & y_{12} \\
y_{21}, & y_{31}, & y_{22} \\
y_{12}, & y_{22}, & y_{13}
\end{array}\right] \succeq 0
$$

which defines a CONVEX CONE in $\mathbb{R}^{2}$ for the coefficients $(a, b)$ of polynomials of the form $a+b x_{1} x_{2}$.

## and so .. .

one obtains a nested hierarchy of spectrahedra

$$
\Delta_{0} \supset \Delta_{1} \cdots \supset \Delta_{k} \cdots \supset \mathcal{C}(\mathbf{K})_{d}
$$

with no lifting, which provide tighter and tighter outer approximations of $\mathcal{C}(\mathbf{K})_{d}$.

## So we get the sandwich $Q_{k}^{d}(g) \subset \mathcal{C}(K)_{d} \subset \Delta_{k}$ for all $k$, and

$$
\begin{array}{rc}
\overline{\left(\bigcup_{k=0}^{\infty} Q_{k}^{d}(g)\right)} & =C(\mathbf{K})_{d} \\
& \downarrow
\end{array}
$$

Inner approximations representation dependent

Outer approximations independent of representation

## Application to optimization

## Theorem (A hierarchy of upper bounds)

Let $f \in \mathbb{R}[\mathbf{x}]_{d}$ be fixed and $\mathbf{K} \subset \mathbb{R}^{n}$ be closed. Let $\mu$ be such that supp $\mu=\mathbf{K}$ and with moment sequence $\mathbf{y}=\left(\mathbf{y}_{\alpha}\right), \alpha \in \mathbb{N}^{n}$.
Consider the hierarchy of semidefinite programs:

$$
u_{k}=\min _{\sigma}\{\int_{\mathbf{K}} f \underbrace{\sigma d \mu}_{d \nu}: \int_{\mathbf{K}} \underbrace{\sigma d \mu}_{d \nu}=1 ; \sigma \in \Sigma[\mathbf{x}]_{d}\}
$$

with dual:

$$
\begin{aligned}
u_{k}^{*} & =\max _{\lambda}\left\{\lambda: M_{k}(f-\lambda, \mathbf{y}) \succeq 0\right\} \\
& =\max _{\lambda}\left\{\lambda: \lambda \boldsymbol{M}_{k}(\mathbf{y}) \preceq \boldsymbol{M}_{k}(f, \mathbf{y})\right\}
\end{aligned}
$$

Then $u_{k}^{*}, u_{k} \downarrow f^{*}=\min _{\mathbf{x}}\{f(\mathbf{x}): \mathbf{x} \in \mathbf{K}\}$.

## Interpetation of $u_{k}$ and $u_{k}^{*}$

- Computing $u_{k}^{*}$ is a generalized eigenvalue problem!
- Next, recall that



## Interpetation of $u_{k}$ and $u_{k}^{*}$

- Computing $u_{k}^{*}$ is a generalized eigenvalue problem!
- Next, recall that

$$
f^{*}=\min _{\psi}\left\{\int_{\mathbf{K}} f d \psi: \psi(\mathbf{K})=1, \psi\left(\mathbb{R}^{n} \backslash \mathbf{K}\right)=0\right\}
$$

$u_{k}=\min \{\int_{K} \underbrace{d^{\prime}}:(K)=1, \quad\left(\mathbb{R}^{n} \backslash K\right)=0 ; \quad \in \Sigma[\mathbf{x}]_{k}\}$
that is, one optimizes over the subspace of Borel probability measures absolutely continuous with respect to $\mu$, and with density $\sigma \in \Sigma[x]_{k}$.

Ideally, when $k$ is large, $\sigma(\mathbf{x})>0$ in a neighborhood of a global minimizer $\mathbf{x}^{*} \in \mathbf{K}$.

## Interpetation of $u_{k}$ and $u_{k}^{*}$

- Computing $u_{k}^{*}$ is a generalized eigenvalue problem!
- Next, recall that

$$
\begin{aligned}
& f^{*}=\min _{\psi}\left\{\int_{\mathbf{K}} f d \psi: \psi(\mathbf{K})=1, \psi\left(\mathbb{R}^{n} \backslash \mathbf{K}\right)=0\right\} \\
& \text { whereas }
\end{aligned}
$$

$u_{k}=\min _{\nu}\{\int_{\mathbf{K}} f \underbrace{\sigma d \mu}_{d \nu}: \nu(\mathbf{K})=1, \nu\left(\mathbb{R}^{n} \backslash \mathbf{K}\right)=0 ; \sigma \in \Sigma[\mathbf{x}]_{k}\}$
that is, one optimizes over the subspace of Borel probability measures absolutely continuous with respect to $\mu$, and with density $\sigma \in \Sigma[\mathbf{x}]_{k}$.

Ideally, when $k$ is large, $\sigma(\mathbf{x})>0$ in a neighborhood of a global minimizer $\mathbf{x}^{*} \in \mathbf{K}$.

## Interpetation of $u_{k}$ and $u_{k}^{*}$

- Computing $u_{k}^{*}$ is a generalized eigenvalue problem!
- Next, recall that

$$
\begin{aligned}
f^{*}= & \min _{\psi}\left\{\int_{\mathbf{K}} f d \psi: \psi(\mathbf{K})=1, \psi\left(\mathbb{R}^{n} \backslash \mathbf{K}\right)=0\right\} \\
& \text { whereas } \\
u_{k}= & \min _{\nu}\{\int_{\mathbf{K}} f \underbrace{\sigma d \mu}_{d \nu}: \nu(\mathbf{K})=1, \nu\left(\mathbb{R}^{n} \backslash \mathbf{K}\right)=0 ; \sigma \in \Sigma[\mathbf{x}]_{k}\}
\end{aligned}
$$

that is, one optimizes over the subspace of Borel probability measures absolutely continuous with respect to $\mu$, and with density $\sigma \in \Sigma[\mathbf{x}]_{k}$.

Ideally, when $k$ is large, $\sigma(\mathbf{x})>0$ in a neighborhood of a global minimizer $\mathbf{x}^{*} \in \mathbf{K}$.

## Interpetation of $u_{k}$ and $u_{k}^{*}$

- Computing $u_{k}^{*}$ is a generalized eigenvalue problem!
- Next, recall that

$$
\begin{aligned}
f^{*}= & \min _{\psi}\left\{\int_{\mathbf{K}} f d \psi: \psi(\mathbf{K})=1, \psi\left(\mathbb{R}^{n} \backslash \mathbf{K}\right)=0\right\} \\
& \text { whereas } \\
u_{k}= & \min _{\nu}\{\int_{\mathbf{K}} f \underbrace{\sigma d \mu}_{d \nu}: \nu(\mathbf{K})=1, \nu\left(\mathbb{R}^{n} \backslash \mathbf{K}\right)=0 ; \sigma \in \Sigma[\mathbf{x}]_{k}\}
\end{aligned}
$$

that is, one optimizes over the subspace of Borel probability measures absolutely continuous with respect to $\mu$, and with density $\sigma \in \Sigma[\mathbf{x}]_{k}$.

Ideally, when $k$ is large, $\sigma(\mathbf{x})>0$ in a neighborhood of a global minimizer $\mathbf{x}^{*} \in \mathbf{K}$.

- Also works for non-compact closed sets but then $\mu$ has to satisfy a Carleman-type sufficient condition which limits the growth of the moments. For example, take

$$
d \mu=\mathrm{e}^{-\|\mathbf{x}\|^{2} / 2} d \nu
$$

where $\nu$ is an arbitrary finite Borel measure with support $\mathbf{K}$.

- The sequences of upper bounds ( $u_{k}, u_{k}^{*}$ ) complement the sequences of lower bounds $\left(\rho_{k}, \rho_{k}^{*}\right)$ obtained from SDP-relaxations.
- Of course, for practical computation, the previous semidefinite relaxations require knowledge of the moment sequence $\mathbf{y}=\left(\mathbf{y}_{\alpha}\right), \alpha \in \mathbb{N}^{n}$.
- Also works for non-compact closed sets but then $\mu$ has to satisfy a Carleman-type sufficient condition which limits the growth of the moments. For example, take

$$
d \mu=\mathrm{e}^{-\|\mathbf{x}\|^{2} / 2} d \nu
$$

where $\nu$ is an arbitrary finite Borel measure with support $\mathbf{K}$. - The sequences of upper bounds $\left(u_{k}, u_{k}^{*}\right)$ complement the sequences of lower bounds ( $\rho_{k}, \rho_{k}^{*}$ ) obtained from SDP-relaxations.

- Of course, for practical computation, the previous semidefinite relaxations require knowledge of the moment sequence
- Also works for non-compact closed sets but then $\mu$ has to satisfy a Carleman-type sufficient condition which limits the growth of the moments. For example, take

$$
d \mu=\mathrm{e}^{-\|\mathbf{x}\|^{2} / 2} d \nu
$$

where $\nu$ is an arbitrary finite Borel measure with support $\mathbf{K}$.

- The sequences of upper bounds $\left(u_{k}, u_{k}^{*}\right)$ complement the sequences of lower bounds ( $\rho_{k}, \rho_{k}^{*}$ ) obtained from SDP-relaxations.
- Of course, for practical computation, the previous semidefinite relaxations require knowledge of the moment sequence $\mathbf{y}=\left(\mathbf{y}_{\alpha}\right), \alpha \in \mathbb{N}^{n}$.

This is possible for relatively simple sets K like a box, a simplex, the discrete set, an ellipsoid, etc., where one can compute all moments of a measure $\mu$ whose support is $\mathbf{K}$. For instance take $\mu$ to be uniformly distributed, or $\mathbf{K}=\mathbb{R}^{n}\left(\right.$ or $\left.\mathbf{K}=\mathbb{R}_{+}^{n}\right)$ with

$$
\left.\begin{array}{c}
d \mu=\mathrm{e}^{-\|\mathbf{x}\|^{2} / 2} d \mathbf{x}, \quad \mathbf{K}=\mathbb{R}^{n} \\
d \mu=\mathrm{e}^{-\sum_{i} x_{i}} d \mathbf{x}, \quad \mathbf{K}=\mathbb{R}_{+}^{n}
\end{array}\right] \begin{aligned}
& \mathbf{K}=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right] \\
& \mathbf{K}=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n}: \sum_{i=1}^{n} x_{i} \leq 1\right\}
\end{aligned}
$$

For $\mathbf{K}=\{-1,1\}^{n}$ or $\mathbf{K}=\{0,1\}^{n}$ take $\mu$ to be uniformly distributed.

## A sequence of eigenvalue problems

## Practical calculation

If instead of the usual canonical basis of monomials ( $X^{\alpha}$ ), $\alpha \in \mathbb{N}^{n}$, one now uses the basis of polynomials $\left(P_{\alpha}\right), \alpha \in \mathbb{N}^{n}$, that are ORTHONORMAL with respect to the known measure $\mu$, then the moments matrix $M_{k}(\mathbf{y})$ expressed in that basis is the IDENTITY matrix! Indeed,

$$
M_{k}(\mathbf{y})(\alpha, \beta)=\int_{\mathbb{R}^{n}} P_{\alpha} P_{\beta} d \mu=\delta_{\alpha=\beta}
$$

i.e., $u_{k}^{*}$ is the
of the matrix $M_{k}(f, y)$ !

## A sequence of eigenvalue problems

## Practical calculation

If instead of the usual canonical basis of monomials $\left(X^{\alpha}\right)$, $\alpha \in \mathbb{N}^{n}$, one now uses the basis of polynomials $\left(P_{\alpha}\right), \alpha \in \mathbb{N}^{n}$, that are ORTHONORMAL with respect to the known measure $\mu$, then the moments matrix $M_{k}(\mathbf{y})$ expressed in that basis is the IDENTITY matrix! Indeed,

$$
M_{k}(\mathbf{y})(\alpha, \beta)=\int_{\mathbb{R}^{n}} P_{\alpha} P_{\beta} d \mu=\delta_{\alpha=\beta}
$$

## Then ...

$$
u_{k}^{*}=\max _{\lambda}\left\{\lambda: \lambda M_{k}(\mathbf{y}) \preceq M_{k}(f, \mathbf{y}),\right.
$$

i.e., $u_{k}^{*}$ is the smallest eigenvalue of the matrix $M_{k}(f, \mathbf{y})$ !

## Computing a basis of polynomials

$\left(P_{\alpha}\right), \alpha \in \mathbb{N}^{n}$, orthonormal with respect to $\mu$ is easy if one knows the moments of $\mu$ !

For instance: $P_{0}=1$, and

etc., plus scaling so as to have $\int P_{\alpha}{ }^{2} d \mu=1$.

## Computing a basis of polynomials

$\left(P_{\alpha}\right), \alpha \in \mathbb{N}^{n}$, orthonormal with respect to $\mu$ is easy if one knows the moments of $\mu$ !

For instance: $P_{0}=1$, and
$P_{10}=\operatorname{det}\left(\left[\begin{array}{cc}y_{0} & y_{10} \\ 1 & x_{1}\end{array}\right]\right) ; \quad P_{01}=\operatorname{det}\left(\left[\begin{array}{ccc}y_{0} & y_{10} & y_{01} \\ y_{10} & y_{20} & y_{11} \\ 1 & x_{1} & x_{2}\end{array}\right]\right)$,
etc., plus scaling so as to have $\int P_{\alpha}{ }^{2} d \mu=1$.

## Ex 1: With $\mathbf{K}=\mathbb{R}_{+}^{n}$ and $\mathbf{x} \mapsto f_{\mathrm{A}}(\mathbf{x}):=\mathbf{x}^{T} \mathrm{~A} \mathbf{x}$

for real symmetric matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$, one may thus provide outer approximations of the convex cone of COPOSITIVE matrices, that is, matrices A such that

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0, \quad \forall \mathbf{x} \in \mathbb{R}_{+}^{n}
$$

an important tool for $0 / 1$ combinatorial optimization problems. These outer approximations complement the inner approximations already obtained by Parrilo, and DeKlerk and Pasechnik.

$$
\text { Ex 2: With } \mathbf{K}=\{-1,1\}^{n} \text { and } \mathbf{x} \mapsto f_{\mathbf{A}}(\mathbf{x}):=\mathbf{x}^{T} \mathbf{A} \mathbf{x}
$$

for real symmetric matrices $A \in \mathbb{R}^{n \times n}$, one may thus provide a hierarchy of upper bounds for MAXCUT problem with matrix A.

## Some experiments

- $\mathbf{K}=\mathbb{R}_{+}^{2}$ with $d \mu=\mathrm{e}^{-\sum_{i} x_{i}} d \mathbf{x}$ so that

$$
\mathbf{y}_{i j}=i!j!, \quad \forall i, j=0,1, \ldots
$$

$\mathbf{x} \mapsto f(\mathbf{x}):=x_{1}^{2} x_{2}^{2}\left(x_{1}^{2}+x_{2}^{2}-1\right)$ with $f^{*}=-1 / 27 \approx-0.037$.

$$
u_{0}=92 ; \quad u_{1}=1.51 ; \quad u_{14}=-0.011
$$

- The same problem on the box $K=[0,1]$ now yields

$$
u_{0}=0.222 ; \quad u_{1}=-0.055 ; \quad u_{14}=-0.0311
$$

and some numerical problems occur.

## Some experiments

- $\mathbf{K}=\mathbb{R}_{+}^{2}$ with $d \mu=\mathrm{e}^{-\sum_{i} x_{i}} d \mathbf{x}$ so that

$$
\mathbf{y}_{i j}=i!j!, \quad \forall i, j=0,1, \ldots
$$

$\mathbf{x} \mapsto f(\mathbf{x}):=x_{1}^{2} x_{2}^{2}\left(x_{1}^{2}+x_{2}^{2}-1\right)$ with $f^{*}=-1 / 27 \approx-0.037$.

$$
u_{0}=92 ; \quad u_{1}=1.51 ; \quad u_{14}=-0.011
$$

- The same problem on the box $\mathbf{K}=[0,1]$ now yields

$$
u_{0}=0.222 ; \quad u_{1}=-0.055 ; \quad u_{14}=-0.0311
$$

and some numerical problems occur.

## Some experiments

- $\mathbf{K}=\mathbb{R}_{+}^{2}$ with $d \mu=\mathrm{e}^{-\sum_{i} x_{i}} d \mathbf{x}$ so that

$$
\mathbf{y}_{i j}=i!j!, \quad \forall i, j=0,1, \ldots
$$

$\mathbf{x} \mapsto f(\mathbf{x}):=x_{1}^{2} x_{2}^{2}\left(x_{1}^{2}+x_{2}^{2}-1\right)$ with $f^{*}=-1 / 27 \approx-0.037$.

$$
u_{0}=92 ; \quad u_{1}=1.51 ; \quad u_{14}=-0.011
$$

- The same problem on the box $\mathbf{K}=[0,1]$ now yields

$$
u_{0}=0.222 ; \quad u_{1}=-0.055 ; \quad u_{14}=-0.0311
$$

and some numerical problems occur.

- Some randomly generated MAXCUT problems

$$
f^{*}=\min _{x}\left\{\mathbf{x} Q \mathbf{x}: x \in\{-1,1\}^{n}\right\}
$$

with $n=11$ variables.

| $d$ | $u_{0}$ | $u_{1}$ | $u_{2}$ | $u_{3}$ | $u_{4}$ | $f^{*}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Ex1 | 0 | -1.928 | -3.748 | -5.22 | -6.37 | -7.946 |
| Ex2 | 0 | -1.56 | -3.103 | -4.314 | -5.282 | -6.863 |
| Ex3 | 0 | -1.910 | -3.694 | -5.078 | -6.161 | -8.032 |
| Ex4 | 0 | -2.164 | -4.1664 | -5.7971 | -7.06 | -9.198 |
| Ex5 | 0 | -1.825 | -3.560 | -4.945 | -5.924 | -7.467 |

Table: MAXCUT: $n=11 ; Q$ random.

## Illustrating duality



Figure: $f(x)=0.375-5 x+21 x^{2}-32 x^{3}+16 x^{4}$ on $[0,1]$

Solving the dual yields the SOS polynomial density $\sigma_{k}$ with

$$
u_{k}=\int f(\mathbf{x}) \underbrace{\sigma_{k}(\mathbf{x}) d \mathbf{x}}_{d \nu_{k}(\mathbf{x})}
$$



Figure: The probability density $\sigma_{10}(x) d x$ on $[0,1]$

## Preliminary conclusions

- Rapid decrease in first steps, but convergence is slow
- Numerical stability problems to be expected.
- Use bases different from the monomial basis.
- Rather see this technique as a complement to lower bounds obtained from semidefinite relaxations


## Preliminary conclusions

- Rapid decrease in first steps, but convergence is slow
- Numerical stability problems to be expected.
- Use bases different from the monomial basis.
- Rather see this technique as a complement to lower bounds obtained from semidefinite relaxations


## Preliminary conclusions

- Rapid decrease in first steps, but convergence is slow
- Numerical stability problems to be expected.
- Use bases different from the monomial basis.
- Rather see this technique as a complement to lower bounds obtained from semidefinite relaxations


## Preliminary conclusions

- Rapid decrease in first steps, but convergence is slow
- Numerical stability problems to be expected.
- Use bases different from the monomial basis.
- Rather see this technique as a complement to lower bounds obtained from semidefinite relaxations

