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Let C R” be closed

A basic question is:

Characterize the continuous functions / : R” — R that are
nonnegative on K
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.
I'M HAPPY !
|
if one obtains ...
a characterization amenable to practical computation!
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Positivstellensatze for basic semi-algebraic sets

LetK:={x eR" : gj(x) >0, j=1,...,mj},forsome
polynomials (g;) C R[x].

Here, knowledge on K is through its defining polynomials
(g7) C R[x]. }

Let C(K)y be the CONVEX cone of polynomials of degree at
most d, nonnegative on K, and 4 the CONVEX cone of
polynomials of degree at most d, nonnegative on R”".
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Let go(x) = 1 for all x.

The quadratic module associated with (g;) is the set

Q(9) = {Z g GZ[X]}
j=0

Of course every element of Q(g) is nonnegative on K, and the
(o) provide certificates of nonnegativity on K.
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Truncated versions

The k-truncated quadratic module

associated with the (gj) is the set

Qk(9) = {Z g+ 0, € X[x], dego;g; <2k}
j=0

And as one is interested in the cone of polynomials of degree at
most d, nonnegative on K,

... consider the d-truncated convex cone:

Qd(9) = Qk(g) N R[x]g
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Observe that

Qf(g) c C(K)g,  Vk,

and so, the convex cones (Q2(9)), k € N, provide nested inner
approximations of C(K)g.
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Q(9) cC(K)g, VK,

and so, the convex cones (Q2(9)), k € N, provide nested inner
approximations of C(K)g.

.. and ... TESTING whether f € Q¢(g)

reduces to SOLVING a
(a convex optimization problem that can be solved efficiently)

V.
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Q(9) cC(K)g, VK,

and so, the convex cones (Q2(9)), k € N, provide nested inner
approximations of C(K)g.

.. and ... TESTING whether f € Q¢(g)

reduces to SOLVING a
(a convex optimization problem that can be solved efficiently)

V.

... which provides the basis of

moment-sos relaxations for polynomial programming!
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Positivstellensatze

Recall the fundamental and powerful representation result:
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Positivstellensatze

Recall the fundamental and powerful representation result:

Putinar-Prestel-Jacobi Positivstellensatz

Assume that for some M > 0, the quadratic polynomial
X +— M — ||x||?isin Q(g) and let / € R[X]4. Then:

[Kcompactand / > Oon K] = € Q,‘j’(g)

for some integer k.
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In fact, Putinar’s Positivstellensatz can be re-stated as:

(U O;‘?(Q)) = ((K)q
k=0

(if x s M — ||x|? is in Q(g) )

Jean B. Lasserre semidefinite characterization



Optimization: Hierarchy of semidefinite relaxations

Consider the global optimization problem
*=min{/(x) : x € K}
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Optimization: Hierarchy of semidefinite relaxations

Consider the global optimization problem
*=min{/(x) : x € K}

and with 2ky > deg f, consider the semidefinite programs:

Pk = m)?.X{ A f=X€ Qk(g) }, k> ko

We have already seen:

Let K be compact and assume that the polynomial M — ||x||?
belongs to Q(g). Then pi 1 :=min{/(x) : xe K}.
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Another look at of nonnegativity




Let K C R" be an arbitrary closed set, and let / : R” — R be a
continuous function.

Support of a measure

On a separable metric space X, the support supp . of a Borel
measure 1 is the (unique) smallest closed set such that
w(X\ K)=0.

Here the knowledge on K is through a measure ;. with
supp 1 = K, and is independent of the representation of K.
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Let K C R" be an arbitrary closed set, and let / : R” — R be a
continuous function.

Support of a measure

On a separable metric space X, the support supp . of a Borel
measure 1 is the (unique) smallest closed set such that
w(X\ K)=0.

Here the knowledge on K is through a measure ;. with
supp 1 = K, and is independent of the representation of K.

Lemma (Let  be such that

A continuous function / : X — R is nonnegative on K if and only
if the signed Borel measure v(B) = [yg/di, Be B, is a
positive measure.
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The only if part is straightforward. For the if part, if v is a
positive measure then 7(x) > 0 for y-almost all x € K. That is,

there is a Borel set G C K such that ;/(G) = 0 and /(x) > 0 on
K\ G.
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The only if part is straightforward. For the if part, if v is a
positive measure then 7(x) > 0 for y-almost all x € K. That is,
there is a Borel set G C K such that ;/(G) = 0 and /(x) > 0 on
K\ G.

Next, observe that K\ G C K and x(K\ G) = 1(K). Therefore
K\ G = K by minimality of K.
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The only if part is straightforward. For the if part, if v is a
positive measure then 7(x) > 0 for y-almost all x € K. That is,
there is a Borel set G C K such that ;/(G) = 0 and /(x) > 0 on
K\ G.

Next, observe that K\ G C K and x(K\ G) = 1(K). Therefore
K\ G = K by minimality of K.

Hence, let x € K be fixed, arbitrary. As K=K\ G, there is a
sequence (xx) C K\ G, k € N, with x, — x as k — co. But
since 7 is continuous and /(x,) > 0 for every k € N, we obtain

the desired result /(x) > 0. [
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Moment and localizing matrix

Lety = (V.), @ € N, be the moment of a finite Borel measure
ponR" ie.,

ya:/ x*dp (:/ Xf”---X,?‘”d,u), Vo € N7,
Y Rn

The “Moment matrix" My(y) has its rows and columns

indexed in the basis {X“} of R[X]4, and with entries:

Ma(as8) = [ X
- .y(¥+ﬁ va?ﬂeNna |a|7’/8‘ Sd

Jean B. Lasserre semidefinite characterization



Yoo | Yio Yot

For instance in R2: M. = -
1) Yio | Yeo Y11

Yor | Y1 Yoz
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The “Localizing matrix" My(6y) w.r.t. a polynomial 6 € R[X]

with X — 6(X) = >_. 6, X7, has its rows and columns also
indexed in the basis {X*} of R[X]y, and with entries:

Ma(6)(e,f) = [ (X)X dp

B o, B eN
= 2 OyYarpen { laf, 8] < d.

yENN
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For instance, in R2, and with X — 0(X) :=1 — X2 — X2,

1 X Xo

A

Yoo — Y20 — Yo2, Yio — Y30 — Y12, Yo1 — Vo1 — Vo3
Mi(Oy) = | Y10 — Y30 — Y12, Yo0 — Yao — Yoo, Y11 — Yo1 — Y12
Yo1 — Yo1 — Yo3, Y11 — Y21 — Y12, Yoo — Voo — Yoa

Importantly ...

My(0y) =0 <+— W 0du>0, VheR[X]q
Rn
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Theorem

LetK C [—1,1]" be compact and let ;. be an arbitrary, fixed,
finite Borel measure on K with supp . = K and with moments

Y =Ya), « € N,
(a) F € R[x] is on K if and only if
My(7y) = 0, d=0,1,...
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Theorem

LetK C [—1,1]" be compact and let ;. be an arbitrary, fixed,
finite Borel measure on K with supp . = K and with moments

Y =Ya), « € N,

(a) F € R[x] is on K if and only if
My(7y) = 0, d=0,1,...

(b) If in addition,  is also concave on K, then one may replace
K with co (K).
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Sketch of proof

Consider the signed measure dv = f du. As K C [—1,1]",

|Za| = ‘/XO‘ du
K

and so z is the moment sequence of a finite (positive) Borel
measure v on [—1,1]".

< [Idu=1ls,  vaen
K
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|Za| = ‘/XO‘ du
K

and so z is the moment sequence of a finite (positive) Borel
measure v on [—1,1]".

< [Idu=1ls,  vaen
K

As K is compact this implies » = 1, and so, v is a positive Borel
measure, and with support equal to K.
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Sketch of proof

Consider the signed measure dv = f du. As K C [—1,1]",

|Za| = ‘/XO‘ du
K

and so z is the moment sequence of a finite (positive) Borel
measure v on [—1,1]".

< [Idu=1ls,  vaen
K

As K is compact this implies » = 1, and so, v is a positive Borel
measure, and with support equal to K.

By the Lemma that we have seen, f > 0on K. [
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Let identify 7 € R[x]4 with its vector of coefficient / € RS(@), with
s(d) = (")

Observe that, for every k =1, ..., the set

Ay = {f e RSD . My(fy) = 0},

is the feasible set associated with a ,
and so a (and in fact, here, a CONVEX CONE).
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Let identify 7 € R[x]4 with its vector of coefficient / € RS(@), with
s(d) = (")

Observe that, for every k =1, ..., the set

Ay = {f e RSD . My(fy) = 0},

is the feasible set associated with a ,
and so a (and in fact, here, a CONVEX CONE).

Indeed the entry (a, B) of Mk(7y) is just

§ Yot B+

~yeN"

and so Mk(7y) = 0 is a Linear Matrix Inequality (L)) on the
vector of coefficients of /.
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Example: Let f € R[x] be the polynomial:
X — f(X) := a+ bxixo.

ayoo+byi1, ayio+bys, ayor+by
Mi(fy)=| ayio+bys1, ayso+bysr, ayy1+bysn | =0
ayor +byo, ayi1 +bys, ayop+bys

Equivalently,
Yoo, Y10, Yot Y11, Ye1, Y12
al Y, Ye0, Yi1 | +b| yo1, ya1, Yoo | = 0.
Yo1, Y11, Yoo Y12, Yoo, Y13

which defines a CONVEX CONE in R? for the coefficients (a, b)
of polynomials of the form a + bxq xo.
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andso ...

one obtains a nested hierarchy of spectrahedra
Do DAy DAk DC(K)g,
with no lifting, which provide

tighter and tighter of C(K)g.

Jean B. Lasserre semidefinite characterization



So we get the sandwich QZ(g) C C( )g C A for all k, and

(U oz<g>> ) - (mAk)
k=0 k=0

1 4
Inner approximations Outer approximations
representation dependent independent of representation
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Application to optimization

Theorem (A hierarchy of upper bounds)

Let 7 € R[x]q be fixed and K C R" be closed. Let ;. be such that
supp 1 = K and with moment sequencey = (y,), o € N".
Consider the hierarchy of semidefinite programs:

Uy = min {/ du : / du=1; 0 € Z[x]d}

with dual:

up = max{\: M(F—\y)=0}
= max{\ : A M(y) 2 Mk(7,y) }

Then ug, ug | 7 = miny {7(x) : x € K}.
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Interpetation of ux and uj

e Computing uy is a problem!
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Interpetation of ux and uj

e Computing uy is a problem!

e Next, recall that

. min{/ di s (K) =1, 0(R"\ K) = 0}
4 K
whereas

= min([ __ ()=1 B\ )=0 e
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Interpetation of ux and uj

e Computing uy is a problem!

e Next, recall that

. min{/ di s (K) =1, 0(R"\ K) = 0}

4 K

whereas
Uy = min dip : v(K)y=1, »(R"\K)=0; 0 € ¥[x
o = min{ [ g 09 =1, (B =0 € Tl
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Interpetation of ux and uj

e Computing uy is a problem!

e Next, recall that

. min{/ dir: 0(K) =1, (R™\ K) = 0}
voJk
whereas
Uy = m]!n{ odp : v(K)=1, »(R"\ K) =0; 0 € Z[X]«}

K N———~
dv

that is, one optimizes over the subspace of Borel probability
measures absolutely continuous with respect to ., and with
density o € Z[X]x.
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Interpetation of ux and uj

e Computing uy is a problem!

e Next, recall that

. min{/ dir: 0(K) =1, (R™\ K) = 0}
voJk
whereas
Uy = m]!n{ odp : v(K)=1, »(R"\ K) =0; 0 € Z[X]«}

K ~~
dv

that is, one optimizes over the subspace of Borel probability
measures absolutely continuous with respect to ., and with
density o € Z[X]x.

Ideally, when k is large, (x) > 0 in a neighborhood of a global
minimizer x* € K.
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¢ Also works for non-compact closed sets but then 1 has to
satisfy a Carleman-type sufficient condition which limits the
growth of the moments. For example, take

du = e IXIP/2 gy,

where v is an arbitrary finite Borel measure with support K.
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¢ Also works for non-compact closed sets but then 1 has to
satisfy a Carleman-type sufficient condition which limits the
growth of the moments. For example, take

du = e IXIP/2 gy,

where v is an arbitrary finite Borel measure with support K.
e The sequences of upper bounds (ux, uj) complement the
sequences of lower bounds (p, pj) obtained from
SDP-relaxations.
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¢ Also works for non-compact closed sets but then 1 has to
satisfy a Carleman-type sufficient condition which limits the
growth of the moments. For example, take

du = e IXIP/2 gy,

where v is an arbitrary finite Borel measure with support K.
e The sequences of upper bounds (ux, uj) complement the
sequences of lower bounds (p, pj) obtained from
SDP-relaxations.

e Of course, for practical computation, the previous semidefinite
relaxations require knowledge of the moment sequence
Y= (Ya), « € N,
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This is possible for relatively simple sets K like a box, a simplex,
the discrete set, an ellipsoid, etc., where one can compute all
moments of a measure 1 whose support is K. For instance take
1 to be uniformly distributed, or K = R” (or K = R ) with

dp=e XP/2gx  K=R"

dp=e 2i%Xidx, K=RT

_ K = a1, b1] x--- x[an, bn]
du—dx,{K = {xeR]: Yl x <1}

ForK={-1,1}"or K= {0, 1}" take 1. to be uniformly
distributed.
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A sequence of eigenvalue problems
Practical calculation

If instead of the usual canonical basis of monomials (X¢),

a € N/ one now uses the basis of polynomials (P,), « € N”,
that are with respect to the known measure
1, then the moments matrix M (y) expressed in that basis is
the IDENTITY matrix! Indeed,

My)(@.8) = [ PaPsdn = das.
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A sequence of eigenvalue problems
Practical calculation

If instead of the usual canonical basis of monomials (X¢),

a € N/ one now uses the basis of polynomials (P,), « € N”,
that are with respect to the known measure
1, then the moments matrix M (y) expressed in that basis is
the IDENTITY matrix! Indeed,

My)(@.8) = [ PaPsdn = das.

Ug = max{\ : A M(y) = M(7,y),

i.e., ug is the of the matrix My (7, y)!
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Computing a basis of polynomials

(P,), a € N, with respect to 1. is easy if one
knows the moments of 1!
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Computing a basis of polynomials

(P,), a € N, with respect to 1. is easy if one
knows the moments of 1!

For instance: P, = 1, and

Yo Vio Yo Yio Yot
Pig = det ([ 1 x D ; Po1 = det Yio Yoo Y11
1 1 X5y X

)

etc., plus scaling so as to have [ P2 du = 1.
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Ex 1: With K =R and x - fa(x) :==x" x

for real symmetric matrices A € R™", one may thus provide
outer approximations of the convex cone of COPOSITIVE
matrices, that is, matrices A such that

x"Ax >0, VxeR?,

an important tool for 0/1 combinatorial optimization problems.
These outer approximations complement the
already obtained by Parrilo, and DeKlerk and

Pasechnik.

Ex 2: With K = {—1,1}7and x — fa(x) := x7 x

for real symmetric matrices A € R™", one may thus provide a
hierarchy of upper bounds for MAXCUT problem with matrix A.

Jean B. Lasserre semidefinite characterization



Some experiments

e K =R2 with dj; = e~ Zi%dx so that
yj = iljl,  Vij=0.1,...
X — [(X) := x2x3 (x2 + x5 — 1) with /* = —1/27 ~ —0.037.

Ug = 92; wu; =151, w4 =-0.011.
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Some experiments

e K =R2 with dj; = e~ Zi%dx so that
yj = itjl,  Vij=01,...
X — [(X) := x2x3 (x2 + x5 — 1) with /* = —1/27 ~ —0.037.
Up=92; us =151, us=-0.011.
e The same problem on the box K = [0, 1] now yields
up = 0.222; uy = —0.055; uy4 =—0.0311,

and some numerical problems occur.
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e Some randomly generated MAXCUT problems
f* = mxin {x@x : xe{-1,1}"}

with n = 11 variables.

[d fw| w [ w [ uw [ w [ |
Exi| 0 | -1.028 | -3.748 | -522 | 6.37 | -7.946
Ex2 | 0 | -1.56 | -3.103 | -4.314 | -5.282 | -6.863
Ex3 | 0 | -1.910 | -3.694 | -5.078 | -6.161 | -8.032
Ex4 | 0 | 2.164 | -4.1664 | 5.7971 | -7.06 | -9.198
Ex5 | 0 | -1.825 | -3560 | -4.945 | -5.924 | -7.467

Table: MAXCUT: n= 11; Q random.
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lllustrating duality

0.4

1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure: f(x) = 0.375 — 5x + 21x? — 32x3 + 16x* on [0, 1]
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Solving the dual yields the SOS polynomial density o with

Uk :/f(x) ok (x) dx
——
dvk(x)

Figure: The probability density o1o(x)dx on [0, 1]
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Preliminary conclusions

¢ Rapid decrease in first steps, but convergence is slow
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e Numerical stability problems to be expected.

e Use bases different from the monomial basis.
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Preliminary conclusions

¢ Rapid decrease in first steps, but convergence is slow
e Numerical stability problems to be expected.
e Use bases different from the monomial basis.

¢ Rather see this technique as a complement to lower bounds
obtained from semidefinite relaxations
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