Inverse Polynomial Optimization

Jean B. Lasserre

LAAS-CNRS and Institute of Mathematics University of Toulouse, Toulouse, France lasserre@laas.fr

Let \mathbf{P} : min{ $f(\mathbf{x}) : \mathbf{x} \in \mathbf{K}$ } be a polynomial optimization problem where $\mathbf{K} \subset \mathbb{R}^n$ is a compact basic semi-algebraic set and $f \in \mathbb{R}[\mathbf{x}]$. The *inverse optimisation* problem associated with \mathbf{P} and a given feasible point $\mathbf{y} \in \mathbf{K}$, consists of solving :

INV-
$$\mathbf{P}$$
: $\min_{\tilde{f} \in \mathbb{R}[\mathbf{x}]} \{ \|\tilde{f} - f\| : \mathbf{y} = \arg\min_{\mathbf{x}} \{\tilde{f}(\mathbf{x}) : \mathbf{x} \in \mathbf{K} \} \},\$

where $\|\cdot\|$ is a norm of $\mathbb{R}[\mathbf{x}]$. That is, one searches for a polynomial $\tilde{f} \in \mathbb{R}[\mathbf{x}]$, as close to f as possible, and for which the given point $\mathbf{y} \in \mathbf{K}$ is a global optimal solution of $\min{\{\tilde{f}(\mathbf{x}) : \mathbf{x} \in \mathbf{K}\}}$.

• We first provide a numerical scheme for solving INV-**P**. In particular, one computes a polynomial \tilde{f}_d with a-priori fixed degree d (= deg f if desired) and with the following properties :

(a) $\mathbf{y} \in \mathbf{K}$ is a global optimal solution of $\min\{\tilde{f} : \mathbf{x} \in \mathbf{K}\}$, with a Putinar's certificate of optimality of size bounded a-priori.

(b) \tilde{f}_d minimizes ||g - f|| among all $g \in \mathbb{R}[\mathbf{x}]_d$ having property (a) :

• In addition, \tilde{f}_d is an optimal solution of an SDP whose size is controlled by the a-priori maximum size imposed to the Putinar's certificate of optimality. Finally, we show that when minimizing the ℓ_1 -norm $||g-f||_1$, one obtains a *canonical sparse* optimal solution \tilde{f}_d whose explicit form is provided.