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What is it?

Let X := Sm0 × IRm×n (m ≤ n) be the Cartesian product of a symmetric
matrix space and an m× n real matrix space.

The spectral operator G : X → X with respect to a given function
g = (g1, g2), g1 : IRm0 × IRm → IRm0 , g2 : IRm0 × IRm → IRm, is defined by

G(X) = (G1(X), G2(X)) ∈ X , X = (Y,Z) ∈ X ,

with {
G1(X) = Pdiag

(
g1(κ(X))

)
PT ,

G2(X) = U
[
diag

(
g2(κ(X))

)
0
]
V T ,

where κ(X) := (λ(Y ), σ(Z))

— λ1(Y ) ≥ λ2(Y ) ≥ . . . ≥ λm0
(Y ) are the eigenvalues of Y

— σ1(Z) ≥ σ2(Z) ≥ . . . ≥ σm(Z) are the singular values of Z

and the orthogonal matrices P ∈ Om0 , U ∈ Om, V ∈ On satisfy

Y = Pdiag(λ(Y ))PT , Z = U [diag(σ(Z)) 0]V T .
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The symmetric function

The given function g : IRm0 × IRm → IRm0 × IRm is symmetric, if for any
permutation matrix Q1 and signed permutation matrix Q2,

g(x) := (g1(x), g2(x)) = (QT1 g1(Qx), QT2 g2(Qx)) ∀x = (y, z) ∈ IRm0 × IRm ,

in short,
g(x) = QT g(Qx) ∀x ∈ IRm0 × IRm .
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Summary of results

Let G : X → X be the spectral operator with g.

If g is symmetric, then the corresponding spectral operator G : X → X is
well-defined.
G is continuous⇐⇒ g is continuous.
G is (continuously) differentiable⇐⇒ g is (continuously) differentiable.
G is locally Lipschitz continuous⇐⇒ g is locally Lipschitz continuous.
G is Hadamard directionally differentiable⇐⇒ g is Hadamard
directionally differentiable.
If g is locally Lipschitz continuous, G is directionally differentiable⇐⇒ g is
directionally differentiable.
G is ρ-order B(ouligand)-differentiable⇐⇒ g is ρ-order
B(ouligand)-differentiable (0 < ρ ≤ 1).
G is ρ-order G-semismooth⇐⇒ g is ρ-order G-semismooth (0 < ρ ≤ 1).
The characterization of Clarke’s generalized Jacobian of G
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Matrix optimization problems (MOPs)

The primal MOP takes the form:

(P) min 〈C,X〉+ f(X)

s.t. AX = b, X ∈ X .

X := Sm1 × . . .× Sms0 × IRms0+1×ns0+1 × . . .× IRms×ns ;

〈·, ·〉 and ‖ · ‖ are the natural inner product and the induced norm.

f : X → (−∞,+∞] is a closed proper convex function;

A : X → IRp is a given linear operator;

C ∈ X and b ∈ IRp are given.
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The dual MOP

The dual MOP takes the form:

(D) max 〈b, y〉 − f∗(X∗)
s.t. A∗y − C = X∗ .

f∗ is the conjugate function of f , i.e.,

f∗(X∗) := sup {〈X∗, X〉 − f(X) |X ∈ X} , X∗ ∈ X ;

A∗ : IRp → X is the adjoint of the linear operator A.
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The KKT condition of MOP

The KKT condition of MOP: C −A∗y + Γ = 0 ,
AX − b = 0 ,
0 ∈ −X + ∂f∗(Γ) ,

— ∂f∗(·) is maximal monotone.

The equivalent form:

F (X, y,Γ) =

 C −A∗y + Γ
AX − b

X − Pf (X + Γ)

 = 0 ,

— Pf (·) is the proximal point mapping (M-Y projection) of f , the unique
optimal solution of the Moreau-Yosida regularization ψf of f .
— A possible question: Is Pf semismooth?
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Recall: The Moreau-Yosida regularization

For the given closed proper convex function f : E → (−∞,+∞], the
Moreau-Yosida regularization ψf of f with respect to η > 0 is defined as

ψf (x) := min
z∈E

{
f(z) +

1

2η
‖z − x‖2

}
, x ∈ E . (1)

Denote the corresponding unique optimal solution of (1) by Pf (x), the
proximal point of x associated with h.

Pf (x), x ∈ X is well defined if f is unitarily invariant. It is shown that
Pf (x) is a spectral operator as defined above.
ψf is continuously differentiable, and it holds that

∇ψf (x) =
1

η
(x− Pf (x)) .

The M-Y projection is closely related to the proximal point approach, which
includes the augmented Lagrangian method.
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The unitary invariance

Unitary invariance: for any orthogonal matrices P ∈ Om0 and U ∈ Om,
V ∈ On,

f(X) = f(PTY P,UTZV ) ∀X = (Y,Z) ∈ Sm0 × IRm×n .

If f is unitarily invariant, then (cf. [von Neumann, 1937]1, [Davis, 1957]2)
(i) ∃ a convex function g : IRm0+m → (−∞,+∞] such that

f(X) = g(κ(X)) .

(ii) g is invariant under permutations, i.e., for any permutation matrix Q1 and
signed permutation matrix Q2,

g(x) = g(Q1y,Q2z) ∀x = (y, z) ∈ IRm0 × IRm .

1J. VON NEUMANN, Some matrix inequalities and metrization of metric space, Tomsk University Review, 1 (1937), pp. 286–300.
2C. DAVIS, All convex invariant functions of hermitian matrices, Archiv der Mathematik, 8 (1957), pp. 276–278.
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For Moreau-Yosida regularization

f is a unitarily invariant closed proper convex function and f(X) = g(κ(X)).
Then,
(1) the Moreau-Yosida regularization function ψf of f is also unitarily

invariant;
(2) the proximal mapping Pf (X) = G(X) is the spectral operator with respect

to ψg = g(x) (g is symmetric).
For the given X ∈ X and η > 0, the proximal point is given by

Pf (X) = G(X) = (G1(X), G2(X)) ,

with {
G1(X) = Pdiag

(
g1(κ(X))

)
PT ,

G2(X) = U
[
diag

(
g2(κ(X))

)
0
]
V T ,

where the orthogonal matrices P , U , V ∈ On satisfy

Y = Pdiag(λ(Y ))PT , Z = U [diag(σ(Z)) 0]V T .
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Matrix completion

Given a matrix M ∈ IRm×n with entries in the index set Ω given, find a
low-rank matrix X such that Xij ≈Mij for all (i, j) ∈ Ω.

— Under suitable assumptions, one can recover M with high probability by
solving the following nuclear norm minimization problem, see e.g., [Recht,
Fazel & Parrilo, 2010]3, [Candès & Recht, 2009]4 :

min
{
‖X‖∗ |PΩ(X) = PΩ(M)

}
.

— For applications with noisy data, one may consider the following problem
[Candès & Plan, 2010]5:

min
{1

2
‖PΩ(X)− PΩ(M)‖2 + ρ‖X‖∗

}
.

— Useful in recommender systems, e.g. Netflix, Amazon; also in reducing
“the total-variation" in image processing.

3B. RECHT, M. FAZEL, P. PARRILO, Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization. SIAM Review 52,

pp. 471–501 (2010).
4E. CANDÈS AND B. RECHT, Exact matrix completion via convex optimization, Foundations of Computational Mathematics, 9 (2009), pp. 717–772.
5E. CANDÈS AND Y. PLAN, Matrix completion with noise. Proceedings of the IEEE, 98,pp. 925?-936 (2010).
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The primal MC form:

(P) min 〈0, X〉+ 〈0, z〉+
1

2
‖z‖2 + ρ‖X‖∗

s.t. AX − z = b .

— (z,X) ∈ X = IR|Ω| × IRm×n, b = PΩ(M), and A(X) = PΩ(X).

The dual MC form:

(D) max 〈b, y〉 − 1

2
‖z∗‖2 − δBρ2 (X∗)

s.t. A∗y −X∗ = 0, y + z∗ = 0 ,

— Bρ2 := {Z ∈ IRm×n | ‖Z‖2 ≤ ρ}.
‖ · ‖∗ is the nuclear norm of matrices, i.e., the sum of singular values. ‖ · ‖2 is
the spectral norm of matrices, i.e., the largest singular value.
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More applications

The MOP is a broad framework including many optimization problems:

SDP: X = Sn, f = δSn+ and f∗ = δSn− .

Matrix norm approximation

min
{
‖B0 +

p∑
k=1

ykBk‖2 | y ∈ IRp
}

Robust matrix completion/Robust PCA 6:

min
{
‖X‖∗ + ρ‖Y ‖1 |PΩ(X) + PΩ(Y ) = PΩ(M)

}
Fastest Mixing Markov Chain (FMMC) 7:

min
{
‖P(p)‖(2) | p ≥ 0, Bp ≤ e

}
— ‖ · ‖(k) is Ky Fan k-norm of matrices, i.e., the sum of the k largest
singular values.

6E. CANDÈS, X. LI, Y. MA, AND J. WRIGHT, Robust principal component analysis?, Journal of the ACM (JACM), 58 (2011), p. 11.
7S. BOYD, P. DIACONIS, AND L. XIAO, Fastest mixing Markov chain on a graph, SIAM review, 46 (2004), pp. 667–689.
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For MOPs, if the Moreau-Yosida regularization of f to be “tractable", then

— admits a closed form solution or can be computed efficiently

— second order information

Some “tractable" cases:

f = δS+ , SDP
f = ‖ · ‖∗, the nuclear norm of matrices
f = ‖ · ‖2, the spectral norm of matrices
f = ‖ · ‖(k), the Ky Fan k-norm of matrices
f = δK, K is the epigraph cone of ‖ · ‖(k)

...
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Beyond the Moreau-Yosida regularization

The spectral operator may not necessarily be the gradient of a certain
function. For example, define F : IRm×n → IRm×n by

F (Z) = U
[
diag

(
f(σ(Z))

)
0
]
V T , Z ∈ Vm×n

associated with the function f : IRm → IRm

fi(z) =

 φ

(
zi
‖z‖∞

)
if z ∈ IRm \ {0} ,

0 otherwise,
z ∈ IRm ,

where (U, V ) ∈ Om,n(Z) and the scalar function φ : IR→ IR takes the form

φ(t) = sgn(t)(1 + ετ )
|t|τ

|t|τ + ετ
, t ∈ IR ,

for some τ > 0 and ε > 0.

— f is symmetric

— the spectral operator F (·) is used in [Miao et al. 2012]8

8W.M. MIAO, D.F. SUN AND S.H. PAN, A Rank-Corrected Procedure for Matrix Completion with Fixed Basis Coefficients, Preprint available at
http://arxiv.org/abs/1210.3709.
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The eigenvalue decomposition

Let Y ∈ Sm0 be given. Denote

Λ(Y ) = diag(λ1(Y ), λ2(Y ), . . . , λm0
(Y )) .

Let µ1 > µ2 > · · · > µr be the distinct eigenvalues of Y . Define the index set

ak := { i |λi(Y ) = µk } , k = 1, . . . , r .

Proposition 1 (D. Sun & J.S. 02, 03)
For any H ∈ Sm0 , let P be an orthogonal matrix such that

PT (Λ(Y ) +H)P = diag(λ(Λ(Y ) +H)) .

Then, for any H → 0, we have
Pakal = O(‖H‖) , k, l = 1, . . . , r, k 6= l ,
PakakP

T
akak

= I|ak| +O(‖H‖2) , k = 1, . . . , r ,
dist(Pakak , O|ak|) = O(‖H‖2) , k = 1, . . . , r ,

where for each k, O|ak| is the set of all |ak| × |ak| orthogonal matrices.
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The singular value decomposition

Let Z ∈ IRm×n be given. Let µ1 > µ2 > . . . > µr be the nonzero distinct
singular values of Z. Define

ak := {i | σi(Z) = µk, 1 ≤ i ≤ m}, k = 1, . . . , r .

Proposition 2

For any IRm×n 3 H → 0, let Y := [Σ(Z) 0] +H. Let U and V be two
orthogonal matrices satisfying [Σ(Z) 0] +H = U [Σ(Y ) 0]V T .
Then, there exist Q ∈ O|a|, Q′ ∈ O|b| and Q′′ ∈ On−|a| such that

U =

[
Q 0
0 Q′

]
+O(‖H‖) and V =

[
Q 0
0 Q′′

]
+O(‖H‖) ,

where Q = diag(Q1, Q2, . . . , Qr) is a block diagonal orthogonal matrix with the
k-th diagonal block given by Qk ∈ O|ak|, k = 1, . . . , r. Furthermore, we have

S(Hakak ) = Qk (Σ(Y )akak − Σ(Z)akak )QTk +O(‖H‖2), k = 1, . . . , r

and
[Hbb Hbc] = Q′ [Σ(Y )bb − Σ(Z)bb 0]Q′′T +O(‖H‖2) .

where S(Hakak) = (Hakak +HT
akak

)/2, k = 1, . . . , r.
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The Fréchet differentiability

Theorem 1
The spectral operator G is (continuously) differentiable at X if and only if the
symmetric function g is (continuously) differentiable at κ = κ(X). In this case,
the derivative of G at X is given by for any H = (A,B) ∈ X ,

G′(X)H =
(
P [L1(κ, H̃) +AD ◦ Ã]PT , U [L2(κ, H̃) + T (κ, B̃)]V

T
)
,

where H̃ = (Ã, B̃) = (P
T
AP,U

T
BV ).
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Main results: More details

(AD)ij :=


(g1(κ))i − (g1(κ))j

λi(Y )− λj(Y )
if λi(Y ) 6= λj(Y ) ,

(g′(κ))ii − (g′(κ))ij otherwise ,
i, j ∈ {1, . . . ,m0} ,

(ED1 )ij :=


(g2(κ))i − (g2(κ))j

σi(Z)− σj(Z)
if σi(Z) 6= σj(Z) ,

(g′(κ))ii − (g′(κ))ij otherwise ,
i, j ∈ {1, . . . ,m} ,

(ED2 )ij :=


(g2(κ))i + (g2(κ))j

σi(Z) + σj(Z)
if σi(Z) + σj(Z) 6= 0 ,

(g′(κ))ii − (g′(κ))ij otherwise ,
i, j ∈ {1, . . . ,m} ,

and

(FD)ij :=


(g2(κ))i

σi(Z)
if σi(Z) 6= 0 ,

(g′(κ))ii − (g′(κ))ij otherwise.
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n−m} .
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Main results: More details

For any B = [B1 B2] ∈ IRm×n, let

T (κ,B) :=
[
ED1 ◦ S(B1) + ED2 ◦ T (B1) FD ◦B2

]
∈ IRm×n .

Define a linear operator L(κ, ·) : X → X by for any Z = (A,B) ∈ X ,

L(κ, Z) = (L1(κ, Z), L2(κ, Z))

with

L1(κ, Z) :=


θ1(κ, Z)I|α1| · · · 0

...
. . .

...
0 · · · θr0(κ, Z)I|αr0 |

 ∈ Sm0
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Main results: More details

and

L2(κ, Z) :=


θr0+1(κ, Z)I|a1| · · · 0 0 0

...
. . .

...
...

...
0 · · · θr0+r(κ, Z)I|ar| 0 0

0 · · · 0 0 0

 ∈ IRm×n ,

where θk(κ, ·) : X → IR, k = 1, . . . , r0 + r are given by

θk(κ, Z) :=

r0∑
k′=1

c̄kk′tr(Aαk′αk′ ) +

r0+r∑
k′=r0+l=r0+1

c̄kk′tr(S(Balal)) .
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Thank you!
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