The Spectral Operator of Matrices

C. Ding, D. Sun, J. Sun, and K. Toh

National University of Singapore
ICCP 2012, Singapore

December 18, 2012

Outline

(1) What is it?

- The definition
- Main results
(2) Why did it?
- Matrix optimization problems (MOPs)
- The Moreau-Yosida regularization: Extending metric projection
- Matrix completion
- Beyond the Moreau-Yosida regularization
(3) Main results: More details
- The eigenvalue decomposition
- The singular value decomposition
- An example of detailed statement: Differentiability

Outline

(1) What is it?

- The definition
- Main results
(2) Why did it?
- Matrix optimization problems (MOPs)
- The Moreau-Yosida regularization: Extending metric projection
- Matrix completion
- Beyond the Moreau-Yosida regularization
(3) Main results: More details
- The eigenvalue decomposition
- The singular value decomposition
- An example of detailed statement: Differentiability

What is it?

- Let $\mathcal{X}:=\mathcal{S}^{m_{0}} \times \mathbb{R}^{m \times n}(m \leq n)$ be the Cartesian product of a symmetric matrix space and an $m \times n$ real matrix space.
- The spectral operator $G: \mathcal{X} \rightarrow \mathcal{X}$ with respect to a given function $g=\left(g_{1}, g_{2}\right), g_{1}: \mathbb{R}^{m_{0}} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m_{0}}, g_{2}: \mathbb{R}^{m_{0}} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, is defined by

$$
G(X)=\left(G_{1}(X), G_{2}(X)\right) \in \mathcal{X}, \quad X=(Y, Z) \in \mathcal{X},
$$

with

$$
\left\{\begin{array}{l}
G_{1}(X)=P \operatorname{diag}\left(g_{1}(\kappa(X))\right) P^{T}, \\
G_{2}(X)=U\left[\operatorname{diag}\left(g_{2}(\kappa(X))\right) 0\right] V^{T},
\end{array}\right.
$$

where $\kappa(X):=(\lambda(Y), \sigma(Z))$

- $\lambda_{1}(Y) \geq \lambda_{2}(Y) \geq \ldots \geq \lambda_{m_{0}}(Y)$ are the eigenvalues of Y
- $\sigma_{1}(Z) \geq \sigma_{2}(Z) \geq \ldots \geq \sigma_{m}(Z)$ are the singular values of Z
and the orthogonal matrices $P \in \mathcal{O}^{m_{0}}, U \in \mathcal{O}^{m}, V \in \mathcal{O}^{n}$ satisfy

$$
Y=P \operatorname{diag}(\lambda(Y)) P^{T}, \quad Z=U[\operatorname{diag}(\sigma(Z)) 0] V^{T} .
$$

The symmetric function

The given function $g: \mathbb{R}^{m_{0}} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m_{0}} \times \mathbb{R}^{m}$ is symmetric, if for any permutation matrix Q_{1} and signed permutation matrix Q_{2},

$$
g(x):=\left(g_{1}(x), g_{2}(x)\right)=\left(Q_{1}^{T} g_{1}(Q x), Q_{2}^{T} g_{2}(Q x)\right) \quad \forall x=(y, z) \in \mathbb{R}^{m_{0}} \times \mathbb{R}^{m},
$$

in short,

$$
g(x)=Q^{T} g(Q x) \quad \forall x \in \mathbb{R}^{m_{0}} \times \mathbb{R}^{m} .
$$

Summary of results

Let $G: \mathcal{X} \rightarrow \mathcal{X}$ be the spectral operator with g.

- If g is symmetric, then the corresponding spectral operator $G: \mathcal{X} \rightarrow \mathcal{X}$ is well-defined.
- G is continuous $\Longleftrightarrow g$ is continuous.
- G is (continuously) differentiable $\Longleftrightarrow g$ is (continuously) differentiable.
- G is locally Lipschitz continuous $\Longleftrightarrow g$ is locally Lipschitz continuous.
- G is Hadamard directionally differentiable $\Longleftrightarrow g$ is Hadamard directionally differentiable.
- If g is locally Lipschitz continuous, G is directionally differentiable $\Longleftrightarrow g$ is directionally differentiable.
- G is ρ-order B (ouligand)-differentiable $\Longleftrightarrow g$ is ρ-order B (ouligand)-differentiable ($0<\rho \leq 1$).
- G is ρ-order G-semismooth $\Longleftrightarrow g$ is ρ-order G-semismooth $(0<\rho \leq 1)$.
- The characterization of Clarke's generalized Jacobian of G

Outline

What is it?
 - The definition
 - Main results

(2) Why did it?

- Matrix optimization problems (MOPs)
- The Moreau-Yosida regularization: Extending metric projection
- Matrix completion
- Beyond the Moreau-Yosida regularization
(3) Main results: More details
- The eigenvalue decomposition
- The singular value decomposition
- An example of detailed statement: Differentiability

Matrix optimization problems (MOPs)

The primal MOP takes the form:

$$
\begin{array}{ccl}
\text { (P) } \quad \min & \langle C, X\rangle+f(X) \\
& \text { s.t. } & \mathcal{A} X=b, \quad X \in \mathcal{X} .
\end{array}
$$

- $\mathcal{X}:=\mathcal{S}^{m_{1}} \times \ldots \times \mathcal{S}^{m_{s_{0}}} \times \mathbb{R}^{m_{s_{0}+1} \times n_{s_{0}+1}} \times \ldots \times \mathbb{R}^{m_{s} \times n_{s}}$;
- $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ are the natural inner product and the induced norm.
- $f: \mathcal{X} \rightarrow(-\infty,+\infty]$ is a closed proper convex function;
- $\mathcal{A}: \mathcal{X} \rightarrow \mathbb{R}^{p}$ is a given linear operator;
- $C \in \mathcal{X}$ and $b \in \mathbb{R}^{p}$ are given.

The dual MOP

The dual MOP takes the form:

$$
\begin{aligned}
& \text { (D) } \max \langle b, y\rangle-f^{*}\left(X^{*}\right) \\
& \text { s.t. } \quad \mathcal{A}^{*} y-C=X^{*} .
\end{aligned}
$$

- f^{*} is the conjugate function of f, i.e.,

$$
f^{*}\left(X^{*}\right):=\sup \left\{\left\langle X^{*}, X\right\rangle-f(X) \mid X \in \mathcal{X}\right\}, \quad X^{*} \in \mathcal{X} ;
$$

- $\mathcal{A}^{*}: \mathbb{R}^{p} \rightarrow \mathcal{X}$ is the adjoint of the linear operator \mathcal{A}.

The KKT condition of MOP

The KKT condition of MOP:

$$
\left\{\begin{array}{l}
C-\mathcal{A}^{*} y+\Gamma=0, \\
\mathcal{A} X-b=0 \\
0 \in-X+\partial f^{*}(\Gamma),
\end{array}\right.
$$

- $\partial f^{*}(\cdot)$ is maximal monotone.

The KKT condition of MOP

The KKT condition of MOP:

$$
\left\{\begin{array}{l}
C-\mathcal{A}^{*} y+\Gamma=0, \\
\mathcal{A} X-b=0 \\
0 \in-X+\partial f^{*}(\Gamma),
\end{array}\right.
$$

- $\partial f^{*}(\cdot)$ is maximal monotone.

The equivalent form:

$$
F(X, y, \Gamma)=\left[\begin{array}{c}
C-\mathcal{A}^{*} y+\Gamma \\
\mathcal{A} X-b \\
X-P_{f}(X+\Gamma)
\end{array}\right]=0
$$

- $P_{f}(\cdot)$ is the proximal point mapping ($\mathrm{M}-\mathrm{Y}$ projection) of f, the unique optimal solution of the Moreau-Yosida regularization ψ_{f} of f.

The KKT condition of MOP

The KKT condition of MOP:

$$
\left\{\begin{array}{l}
C-\mathcal{A}^{*} y+\Gamma=0 \\
\mathcal{A} X-b=0 \\
0 \in-X+\partial f^{*}(\Gamma)
\end{array}\right.
$$

- $\partial f^{*}(\cdot)$ is maximal monotone.

The equivalent form:

$$
F(X, y, \Gamma)=\left[\begin{array}{c}
C-\mathcal{A}^{*} y+\Gamma \\
\mathcal{A} X-b \\
X-P_{f}(X+\Gamma)
\end{array}\right]=0
$$

- $P_{f}(\cdot)$ is the proximal point mapping ($\mathrm{M}-\mathrm{Y}$ projection) of f, the unique optimal solution of the Moreau-Yosida regularization ψ_{f} of f.
- A possible question: Is P_{f} semismooth?

Recall: The Moreau-Yosida regularization

For the given closed proper convex function $f: \mathcal{E} \rightarrow(-\infty,+\infty]$, the Moreau-Yosida regularization ψ_{f} of f with respect to $\eta>0$ is defined as

$$
\begin{equation*}
\psi_{f}(x):=\min _{z \in \mathcal{E}}\left\{f(z)+\frac{1}{2 \eta}\|z-x\|^{2}\right\}, \quad x \in \mathcal{E} . \tag{1}
\end{equation*}
$$

Denote the corresponding unique optimal solution of (1) by $P_{f}(x)$, the proximal point of x associated with h.

- $P_{f}(x), x \in \mathcal{X}$ is well defined if f is unitarily invariant. It is shown that $P_{f}(x)$ is a spectral operator as defined above.
- ψ_{f} is continuously differentiable, and it holds that

$$
\nabla \psi_{f}(x)=\frac{1}{\eta}\left(x-P_{f}(x)\right) .
$$

The M-Y projection is closely related to the proximal point approach, which includes the augmented Lagrangian method.

The unitary invariance

Unitary invariance: for any orthogonal matrices $P \in \mathcal{O}^{m_{0}}$ and $U \in \mathcal{O}^{m}$, $V \in \mathcal{O}^{n}$,

$$
f(X)=f\left(P^{T} Y P, U^{T} Z V\right) \quad \forall X=(Y, Z) \in \mathcal{S}^{m_{0}} \times \mathbb{R}^{m \times n}
$$

If f is unitarily invariant, then (cf. [von Neumann, 1937] ${ }^{1}$, [Davis, 1957]²)
(i) \exists a convex function $g: \mathbb{R}^{m_{0}+m} \rightarrow(-\infty,+\infty]$ such that

$$
f(X)=g(\kappa(X))
$$

(ii) g is invariant under permutations, i.e., for any permutation matrix Q_{1} and signed permutation matrix Q_{2},

$$
g(x)=g\left(Q_{1} y, Q_{2} z\right) \quad \forall x=(y, z) \in \mathbb{R}^{m_{0}} \times \mathbb{R}^{m}
$$

[^0]
For Moreau-Yosida regularization

f is a unitarily invariant closed proper convex function and $f(X)=g(\kappa(X))$. Then,
(1) the Moreau-Yosida regularization function ψ_{f} of f is also unitarily invariant;
(2) the proximal mapping $P_{f}(X)=G(X)$ is the spectral operator with respect to $\psi_{g}=g(x)$ (g is symmetric).
For the given $X \in \mathcal{X}$ and $\eta>0$, the proximal point is given by

$$
P_{f}(X)=G(X)=\left(G_{1}(X), G_{2}(X)\right)
$$

with

$$
\left\{\begin{array}{l}
G_{1}(X)=P \operatorname{diag}\left(g_{1}(\kappa(X))\right) P^{T} \\
G_{2}(X)=U\left[\operatorname{diag}\left(g_{2}(\kappa(X))\right) 0\right] V^{T}
\end{array}\right.
$$

where the orthogonal matrices $P, U, V \in \mathcal{O}^{n}$ satisfy

$$
Y=P \operatorname{diag}(\lambda(Y)) P^{T}, \quad Z=U[\operatorname{diag}(\sigma(Z)) 0] V^{T} .
$$

Matrix completion

Given a matrix $M \in \mathbb{R}^{m \times n}$ with entries in the index set Ω given, find a low-rank matrix X such that $X_{i j} \approx M_{i j}$ for all $(i, j) \in \Omega$.

- Under suitable assumptions, one can recover M with high probability by solving the following nuclear norm minimization problem, see e.g., [Recht, Fazel \& Parrilo, 2010] ${ }^{3}$, [Candès \& Recht, 2009] ${ }^{4}$:

$$
\min \left\{\|X\|_{*} \mid P_{\Omega}(X)=P_{\Omega}(M)\right\}
$$

- For applications with noisy data, one may consider the following problem [Candès \& Plan, 2010] ${ }^{5}$:

$$
\min \left\{\frac{1}{2}\left\|P_{\Omega}(X)-P_{\Omega}(M)\right\|^{2}+\rho\|X\|_{*}\right\}
$$

- Useful in recommender systems, e.g. Netflix, Amazon; also in reducing "the total-variation" in image processing.
$3_{\text {B. Recht, M. Fazel, P. Parrilo, Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization. SIAM Review } 52 \text {, }}$ pp. 471-501 (2010).
${ }^{4}$ E. CANDĖS AND B. RECHT, Exact matrix completion via convex optimization, Foundations of Computational Mathematics, 9 (2009), pp. 717-772.
$5^{\text {E. Candès and Y. PLAN, Matrix completion with noise. Proceedings of the IEEE, 98,pp. 925?-936 (2010). }}$

The primal MC form:

$$
\begin{aligned}
& \text { (P) min }\langle 0, X\rangle+\langle 0, z\rangle+\frac{1}{2}\|z\|^{2}+\rho\|X\|_{*} \\
& \text { s.t. } \mathcal{A} X-z=b \text {. } \\
& -(z, X) \in \mathcal{X}=\mathbb{R}^{|\Omega|} \times \mathbb{R}^{m \times n}, b=P_{\Omega}(M) \text {, and } \mathcal{A}(X)=P_{\Omega}(X) \text {. }
\end{aligned}
$$

The dual MC form:

$$
\begin{array}{cl}
\text { (D) } \begin{array}{cl}
\max & \langle b, y\rangle-\frac{1}{2}\left\|z^{*}\right\|^{2}-\delta_{B_{2}^{o}}\left(X^{*}\right) \\
\text { s.t. } & \mathcal{A}^{*} y-X^{*}=0, \quad y+z^{*}=0
\end{array}, r \text {. }
\end{array}
$$

$-B_{2}^{\rho}:=\left\{Z \in \mathbb{R}^{m \times n} \mid\|Z\|_{2} \leq \rho\right\}$.
$\|\cdot\|_{*}$ is the nuclear norm of matrices, i.e., the sum of singular values. $\|\cdot\|_{2}$ is the spectral norm of matrices, i.e., the largest singular value.

More applications

The MOP is a broad framework including many optimization problems:

- SDP: $\mathcal{X}=\mathcal{S}^{n}, f=\delta_{\mathcal{S}_{+}^{n}}$ and $f^{*}=\delta_{\mathcal{S}_{-}^{n}}$.
- Matrix norm approximation

$$
\min \left\{\left\|B_{0}+\sum_{k=1}^{p} y_{k} B_{k}\right\|_{2} \mid y \in \mathbb{R}^{p}\right\}
$$

- Robust matrix completion/Robust PCA ${ }^{6}$:

$$
\min \left\{\|X\|_{*}+\rho\|Y\|_{1} \mid P_{\Omega}(X)+P_{\Omega}(Y)=P_{\Omega}(M)\right\}
$$

- Fastest Mixing Markov Chain (FMMC) ${ }^{7}$:

$$
\min \left\{\|\mathcal{P}(p)\|_{(2)} \mid p \geq 0, B p \leq e\right\}
$$

- $\|\cdot\|_{(k)}$ is Ky Fan k-norm of matrices, i.e., the sum of the k largest singular values.

[^1]For MOPs, if the Moreau-Yosida regularization of f to be "tractable", then

- admits a closed form solution or can be computed efficiently
- second order information

Some "tractable" cases:

- $f=\delta_{\mathcal{S}_{+}}$, SDP
- $f=\|\cdot\|_{*}$, the nuclear norm of matrices
- $f=\|\cdot\|_{2}$, the spectral norm of matrices
- $f=\|\cdot\|_{(k)}$, the Ky Fan k-norm of matrices
- $f=\delta_{\mathcal{K}}, \mathcal{K}$ is the epigraph cone of $\|\cdot\|_{(k)}$
- ...

Beyond the Moreau-Yosida regularization

The spectral operator may not necessarily be the gradient of a certain function. For example, define $F: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n}$ by

$$
F(Z)=U[\operatorname{diag}(f(\sigma(Z))) \quad 0] V^{T}, \quad Z \in \mathbb{V}^{m \times n}
$$

associated with the function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$

$$
f_{i}(z)=\left\{\begin{array}{ll}
\phi\left(\frac{z_{i}}{\|z\|_{\infty}}\right) & \text { if } z \in \mathbb{R}^{m} \backslash\{0\}, \\
0 & \text { otherwise },
\end{array} \quad z \in \mathbb{R}^{m},\right.
$$

where $(U, V) \in \mathcal{O}^{m, n}(Z)$ and the scalar function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ takes the form

$$
\phi(t)=\operatorname{sgn}(t)\left(1+\varepsilon^{\tau}\right) \frac{|t|^{\tau}}{|t|^{\tau}+\varepsilon^{\tau}}, \quad t \in \mathbb{R},
$$

for some $\tau>0$ and $\varepsilon>0$.
$-f$ is symmetric
— the spectral operator $F(\cdot)$ is used in [Miao et al. 2012] ${ }^{8}$

[^2]
Outline

What is it?
 - The definition
 - Main results

(2) Why did it?

- Matrix optimization problems (MOPs)
- The Moreau-Yosida regularization: Extending metric projection
- Matrix completion
- Beyond the Moreau-Yosida regularization
(3) Main results: More details
- The eigenvalue decomposition
- The singular value decomposition
- An example of detailed statement: Differentiability

The eigenvalue decomposition

Let $Y \in \mathcal{S}^{m_{0}}$ be given. Denote

$$
\Lambda(Y)=\operatorname{diag}\left(\lambda_{1}(Y), \lambda_{2}(Y), \ldots, \lambda_{m_{0}}(Y)\right)
$$

Let $\mu_{1}>\mu_{2}>\cdots>\mu_{r}$ be the distinct eigenvalues of Y. Define the index set

$$
a_{k}:=\left\{i \mid \lambda_{i}(Y)=\mu_{k}\right\}, \quad k=1, \ldots, r .
$$

Proposition 1 (D. Sun \& J.S. 02, 03)

For any $H \in \mathcal{S}^{m_{0}}$, let P be an orthogonal matrix such that

$$
P^{T}(\Lambda(Y)+H) P=\operatorname{diag}(\lambda(\Lambda(Y)+H)) .
$$

Then, for any $H \rightarrow 0$, we have

$$
\begin{cases}P_{a_{k} a_{l}}=O(\|H\|), & k, l=1, \ldots, r, k \neq l, \\ P_{a_{k} a_{k}} P_{a_{k} a_{k}}^{T}=I_{\left|a_{k}\right|}+O\left(\|H\|^{2}\right), & k=1, \ldots, r, \\ \operatorname{dist}\left(P_{a_{k} a_{k}}, \mathcal{O}^{\left|a_{k}\right|}\right)=O\left(\|H\|^{2}\right), & k=1, \ldots, r,\end{cases}
$$

where for each $k, \mathcal{O}^{\left|a_{k}\right|}$ is the set of all $\left|a_{k}\right| \times\left|a_{k}\right|$ orthogonal matrices.

The singular value decomposition

Let $Z \in \mathbb{R}^{m \times n}$ be given. Let $\bar{\mu}_{1}>\bar{\mu}_{2}>\ldots>\bar{\mu}_{r}$ be the nonzero distinct singular values of Z. Define

$$
a_{k}:=\left\{i \mid \sigma_{i}(Z)=\bar{\mu}_{k}, 1 \leq i \leq m\right\}, \quad k=1, \ldots, r .
$$

Proposition 2

For any $\mathbb{R}^{m \times n} \ni H \rightarrow 0$, let $Y:=[\Sigma(Z) 0]+H$. Let U and V be two orthogonal matrices satisfying $[\Sigma(Z) 0]+H=U[\Sigma(Y) 0] V^{T}$. Then, there exist $Q \in \mathcal{O}^{|a|}, Q^{\prime} \in \mathcal{O}^{|b|}$ and $Q^{\prime \prime} \in \mathcal{O}^{n-|a|}$ such that

$$
U=\left[\begin{array}{cc}
Q & 0 \\
0 & Q^{\prime}
\end{array}\right]+O(\|H\|) \quad \text { and } \quad V=\left[\begin{array}{cc}
Q & 0 \\
0 & Q^{\prime \prime}
\end{array}\right]+O(\|H\|),
$$

where $Q=\operatorname{diag}\left(Q_{1}, Q_{2}, \ldots, Q_{r}\right)$ is a block diagonal orthogonal matrix with the k-th diagonal block given by $Q_{k} \in \mathcal{O}^{\left|a_{k}\right|}, k=1, \ldots, r$. Furthermore, we have

$$
S\left(H_{a_{k} a_{k}}\right)=Q_{k}\left(\Sigma(Y)_{a_{k} a_{k}}-\Sigma(Z)_{a_{k} a_{k}}\right) Q_{k}^{T}+O\left(\|H\|^{2}\right), \quad k=1, \ldots, r
$$

and

$$
\left[\begin{array}{ll}
H_{b b} & H_{b c}
\end{array}\right]=Q^{\prime}\left[\Sigma(Y)_{b b}-\Sigma(Z)_{b b} \quad 0\right] Q^{\prime \prime T}+O\left(\|H\|^{2}\right) .
$$

where $S\left(H_{a_{k} a_{k}}\right)=\left(H_{a_{k} a_{k}}+H_{a_{k} a_{k}}^{T}\right) / 2, k=1, \ldots, r$.

The Fréchet differentiability

Theorem 1

The spectral operator G is (continuously) differentiable at \bar{X} if and only if the symmetric function g is (continuously) differentiable at $\bar{\kappa}=\kappa(\bar{X})$. In this case, the derivative of G at \bar{X} is given by for any $H=(A, B) \in \mathcal{X}$,

$$
G^{\prime}(\bar{X}) H=\left(\bar{P}\left[L_{1}(\bar{\kappa}, \widetilde{H})+\overline{\mathcal{A}}^{D} \circ \widetilde{A}\right] \bar{P}^{T}, \bar{U}\left[L_{2}(\bar{\kappa}, \widetilde{H})+\mathcal{T}(\bar{\kappa}, \widetilde{B})\right] \bar{V}^{T}\right),
$$

where $\widetilde{H}=(\widetilde{A}, \widetilde{B})=\left(\bar{P}^{T} A \bar{P}, \bar{U}^{T} B \bar{V}\right)$.

Main results: More details

$$
\left.\begin{array}{l}
\left(\overline{\mathcal{A}}^{D}\right)_{i j}:=\left\{\begin{array}{ll}
\frac{\left(g_{1}(\bar{\kappa})\right)_{i}-\left(g_{1}(\bar{\kappa})\right)_{j}}{\lambda_{i}(\bar{Y})-\lambda_{j}(\bar{Y})} & \text { if } \lambda_{i}(\bar{Y}) \neq \lambda_{j}(\bar{Y}), \\
\left(g^{\prime}(\bar{\kappa})\right)_{i i}-\left(g^{\prime}(\bar{\kappa})\right)_{i j} & \text { otherwise },
\end{array} \quad i, j \in\left\{1, \ldots, m_{0}\right\}\right.
\end{array}\right\} \begin{array}{ll}
\left(\overline{\mathcal{E}}_{1}^{D}\right)_{i j}:= \begin{cases}\frac{\left(g_{2}(\bar{\kappa})\right)_{i}-\left(g_{2}(\bar{\kappa})\right)_{j}}{\sigma_{i}(\bar{Z})-\sigma_{j}(\bar{Z})} & \text { if } \sigma_{i}(\bar{Z}) \neq \sigma_{j}(\bar{Z}), \\
\left(g^{\prime}(\bar{\kappa})\right)_{i i}-\left(g^{\prime}(\bar{\kappa})\right)_{i j} & \text { otherwise },\end{cases} \\
\left(\overline{\mathcal{E}}_{2}^{D}\right)_{i j}:= \begin{cases}\frac{\left(g_{2}(\bar{\kappa})\right)_{i}+\left(g_{2}(\bar{\kappa})\right)_{j}}{\sigma_{i}(\bar{Z})+\sigma_{j}(\bar{Z})} & \text { if } \left.\sigma_{i}(\bar{Z})+\sigma_{j}(\bar{Z}) \neq 0, \ldots, m\right\} \\
\left(g^{\prime}(\bar{\kappa})\right)_{i i}-\left(g^{\prime}(\bar{\kappa})\right)_{i j} & \text { otherwise },\end{cases}
\end{array}
$$

and

$$
\left(\overline{\mathcal{F}}^{D}\right)_{i j}:= \begin{cases}\frac{\left(g_{2}(\bar{\kappa})\right)_{i}}{\sigma_{i}(\bar{Z})} & \text { if } \sigma_{i}(\bar{Z}) \neq 0, \quad i \in\{1, \ldots, m\}, j \in\{1, \ldots, n-m\} . \\ \left(g^{\prime}(\bar{\kappa})\right)_{i i}-\left(g^{\prime}(\bar{\kappa})\right)_{i j} & \text { otherwise. }\end{cases}
$$

Main results: More details

For any $B=\left[\begin{array}{ll}B_{1} & B_{2}\end{array}\right] \in \mathbb{R}^{m \times n}$, let

$$
\mathcal{T}(\bar{\kappa}, B):=\left[\overline{\mathcal{E}}_{1}^{D} \circ S\left(B_{1}\right)+\overline{\mathcal{E}}_{2}^{D} \circ T\left(B_{1}\right) \overline{\mathcal{F}}^{D} \circ B_{2}\right] \in \mathbb{R}^{m \times n} .
$$

Define a linear operator $L(\bar{\kappa}, \cdot): \mathcal{X} \rightarrow \mathcal{X}$ by for any $Z=(A, B) \in \mathcal{X}$,

$$
L(\bar{\kappa}, Z)=\left(L_{1}(\bar{\kappa}, Z), L_{2}(\bar{\kappa}, Z)\right)
$$

with

$$
L_{1}(\bar{\kappa}, Z):=\left[\begin{array}{ccc}
\theta_{1}(\bar{\kappa}, Z) I_{\left|\alpha_{1}\right|} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \theta_{r_{0}}(\bar{\kappa}, Z) I_{\left|\alpha_{r_{0}}\right|}
\end{array}\right] \in \mathcal{S}^{m_{0}}
$$

Main results: More details

and

$$
L_{2}(\bar{\kappa}, Z):=\left[\begin{array}{ccccc}
\theta_{r_{0}+1}(\bar{\kappa}, Z) I_{\left|a_{1}\right|} \mid & \cdots & 0 & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \cdots & \theta_{r_{0}+r}(\bar{\kappa}, Z) I_{\left|a_{r}\right|} & 0 & 0 \\
0 & \cdots & 0 & 0 & 0
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

where $\theta_{k}(\bar{\kappa}, \cdot): \mathcal{X} \rightarrow \mathbb{R}, k=1, \ldots, r_{0}+r$ are given by

$$
\theta_{k}(\bar{\kappa}, Z):=\sum_{k^{\prime}=1}^{r_{0}} \bar{c}_{k k^{\prime}} \operatorname{tr}\left(A_{\alpha_{k^{\prime}} \alpha_{k^{\prime}}}\right)+\sum_{k^{\prime}=r_{0}+l=r_{0}+1}^{r_{0}+r} \bar{c}_{k k^{\prime}} \operatorname{tr}\left(S\left(B_{a_{l} a_{l}}\right)\right) .
$$

Thank you!

[^0]: ${ }^{1}$ J. von Neumann, Some matrix inequalities and metrization of metric space, Tomsk University Review, 1 (1937), pp. 286-300.
 ${ }^{2}$ C. DAVIs, All convex invariant functions of hermitian matrices, Archiv der Mathematik, 8 (1957), pp. 276-278.

[^1]: ${ }^{6}$ E. CANDÈs, X. LI, Y. MA, AND J. Wright, Robust principal component analysis?, Journal of the ACM (JACM), 58 (2011), p. 11.
 ${ }^{7}$ S. BOYD, P. DIACONIS, AND L. XIAO, Fastest mixing Markov chain on a graph, SIAM review, 46 (2004), pp. 667-689.

[^2]: ${ }^{8}$ W.M. MIAO, D.F. SUN AND S.H. PAN, A Rank-Corrected Procedure for Matrix Completion with Fixed Basis Coefficients, Preprint available at http://arxiv.org/abs/1210.3709.

