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Problem formulation

I Given a set of k -dimensional subspaces of Rd :

{Vj}n
j=1 Vj ⊂ Rd , dim(Vj) = k

I Given x ∈ Rd , ‖x‖ = 1, can we recover x (up to sign) from

‖PV1(x)‖, . . . , ‖PVn(x)‖ ?

I Aims: exact recovery versus probabilistic recovery.



Goals

I Exact recovery from a closed formula. Requires special
properties of {V1, . . . ,Vn} that nicely relate to cubature formulas,
Grassmann designs, group representation.

Requires n ≥ cd2.

Extends and strengthens Balan, Bodmann, Casazza, Edidin
(2009) for k = 1

I Recovery with high probability, using semidefinite programming,
under a random choice of {V1, . . . ,Vn}.

Requires only n ≥ cd log(d).

Follows the lines of Candès, Strohmer, Voroninski (2011) for
k = 1.
Candes, Li (2012): n ≥ clog(d) is enough.



Grassmann space

I Gk,d the space of subspaces of Rd of dimension k .
I The orthogonal group O(Rd ) acts transitively on Gk,d and

induces an invariant probability measure σk .
I Polynomial functions Pol≤2p(Gk,d ).

Definition: A cubature formula of strength 2p is a set {(Vj , ωj)}n
j=1

such that ωj > 0,
∑

j ωj = 1, and

∫
Gk,d

f (V )dσk (V ) =
n∑

j=1

ωj f (Vj) for all f ∈ Pol≤2p(Gk,d ).

ωj = 1/n: Grassmannian designs (of strength 2p) (B., Coulangeon,
Nebe 2002)



Exact recovery

Theorem: (B., Ehler) Let {(Vj , ωj)}n
j=1 be a cubature formula of

strength 4. Then,

Px =
1
α

n∑
i=1

ωj‖PVj (x)‖2PVj −
β

α
Id

where α = 2k(d−k)
d(d+2)(d−1) and β = k(kd+k−2)

d(d+2)(d−1) .

Sketch of proof:
V → 〈Px ,PV 〉〈Py ,PV 〉 ∈ Pol≤4(Gk,d ) so:∫

Gk,d

〈Px ,PV 〉〈Py ,PV 〉dσk (V ) =
n∑

j=1

ωj〈Px ,PVj 〉〈Py ,PVj 〉.



Let K (x , y) :=

∫
Gk,d

〈Px ,PV 〉〈Py ,PV 〉dσk (V ).

By O(Rd )-invariance of σk , also K (x , y) is O(Rd )-invariant. It shows
that, for some constants α, β,

K (x , y) = α(x∗y)2 + β.

Leads to:
n∑

j=1

ωj〈Px ,PVj 〉〈Py ,PVj 〉︸ ︷︷ ︸
〈ωj‖PVj (x)‖2PVj ,Py 〉

= α(x∗y)2 + β︸ ︷︷ ︸
〈αPx +βI,Py 〉

It remains to compute α and β (easy).



Exact recovery in presence of erasures

It is sometimes possible to recover {‖PVj (x)‖}n
j=1 even if p of these

values are missing. It is the case when {(Vj , ωj)}n
j=1 is a tight p-fusion

frame.

Definition: A tight p-fusion frame is a set {(Vj , ωj)}n
j=1 such that

ωj > 0,
∑

j ωj = 1, and

∫
Gk,d

f (V )dσk (V ) =
n∑

j=1

ωj f (Vj) for all f ∈ Pol1≤2p(Gk,d ).

where Pol1≤2p(Gk,d ) ⊂ Pol≤2p(Gk,d ) is the subspace ’generated’ by
Pol≤2p(G1,d ).

B., Ehler, Tight p-fusion frames (2011), arXiv:1201.1798



Tight p-fusion frames

Equivalent characterizations:

1. {(Vj , ωj)}n
j=1 is a tight p-fusion frame

2. There exists a constant Ap such that, for all x ∈ Sd−1,

n∑
j=1

ωj‖PVj (x)‖2p = Ap.

3. For all k = 1, . . . ,p,∑
i,j

ωiωjP(2k)(y(Vi ,Vj)) = 0,

where P(2k)(y1, . . . , yk ) are certain multivariate Jacobi
polynomials attached to Pol1≤2p(Gk,d ) and y(Vi ,Vj) ∈ [0,1]k are
the squared cosine of the principal angles between Vi and Vj .



Tight p-fusion frames

I The constant in 2. can take only the value:

Ap =
(k/2)p

(d/2)p
(a)p := a(a + 1) . . . (a + p − 1)

I From 3. we see that a tight p-fusion frame is also a tight `-fusion
frame for ` < p. So, we have

n∑
j=1

ωj‖PVj (x)‖2` = A` 1 ≤ ` ≤ p

I Extends the notion of tight frames (k = 1, p = 1) and tight fusion
frames (k ≥ 2, p = 1).



Tight p-fusion frames correct p erasures

If the values ‖PV1(x)‖, . . . , ‖PVp(x)‖ are missing, they can be
recomputed by solving the following system of algebraic equations:

ω1T1 + · · ·+ ωpTp = A1 −
∑n

j=p+1 ωj‖PVj (x)‖2

ω1T 2
1 + · · ·+ ωpT 2

p = A2 −
∑n

j=p+1 ωj‖PVj (x)‖4

. . . . . .

ω1T p
1 + · · ·+ ωpT p

p = Ap −
∑n

j=p+1 ωj‖PVj (x)‖2p

There are only finitely many solutions (at most p!. Think of ωi = ct).
Moreover in the reconstruction process using

Px =
1
α

n∑
i=1

ωj‖PVj (x)‖2PVj −
β

α
Id

it is likely that most solution will not give rise to a matrix of rank one.
However it outputs a list of candidate signals x .



Existence and constructions

We want to adress the following questions:
I When do cubature formulas and tight p-fusion frames exist ?
I How can they be constructed ?



Existence

Theorem:
1. If {(Vj , ωj)}n

j=1 is a cubature formula of strength 2p, then

n ≥ dim(Pol≤p(Gk,d )) ≈ cpdp.

2. Such a configuration does exist, with number of elements

n ≤ dim(Pol≤2p(Gk,d )) ≈ c′pd2p.

p = 2: n ≥ p(p + 1)/2 and n ≤ p4/8.
Standard results. See [de la Harpe, Pache 2005] for a general
framework where Grassmann spaces fit.
Existence result 2. is non constructive (uses Caratheodory theorem).



Numerical constructions

Constructing a cubature formulas of strength say 4 amounts to solve
an algebraic system of equations:{

{(Vj , ωj)}n
j=1

cub. str. 4
⇐⇒

{∑n
j=1 ωjϕ(Vj) = 0

for all ϕ ∈ Pol0≤4(Gk,d )

⇐⇒

{∑n
j=1 ωjϕ`(Vj) = 0

for all ` = 1, . . . ,dim(Pol0≤4(Gk,d ))

where Pol0≤4(Gk,d ) := {ϕ ∈ Pol≤4(Gk,d ) :
∫
ϕdσk (V ) = 0} and

{ϕ1, . . . , ϕ`, . . . } is a basis of Pol0≤4(Gk,d ).



Algebraic constructions

Constructions using symmetries:

I Let G be a finite subgroup of O(Rd ). Can {(Vj , ωj)}n
j=1 afford G

as a transitive group of symmetries, and be a cubature of
strength 2p (resp a tight p-fusion frames) ?

I If so, we can assume ωj = 1/n.
I Stronger condition: Can all the orbits of G on Gk,d be cubatures

of strength 2p (resp tight p-fusion frames) ?

Orbit of V : G · V := {g(V ) : g ∈ G}



Constructions using symmetries

Theorem: The following are equivalent:
1. For all 2 ≤ k ≤ d/2, for all V ∈ Gk,d , G · V is a design of str. 4.

2. (V (4)
d )G = (V (2,2)

d )G = (V (2)
d )G = {0}.

And also:
1. For all k ≤ d/2, for all V ∈ Gk,d , G · V is a tight p-fusion frame.
2. (R[X1, . . . ,Xd ]2p)

G = R(X 2
1 + · · ·+ X 2

d )p.

where, for a partition µ, Vµ
d denotes a specific irreducible

representation of O(Rd ) that occurs in Pol≤2p(Gk,d ) iff `(µ) ≤ k ,
deg(µ) ≤ 2p and µ is even.



Constructions using symmetries

Examples:

1. Tiep 2006: complete classification of the groups that satisfy 1.
2. Designs of strength 4: Weyl groups of root systems A2, D4, E6,

E7, E8 (str. 6), 2.Co1 (str. 10).
3. An infinite family: the Clifford groups Cm acting on Rd , d = 2m

give rise to 6-designs.
Conway. Hardin, Rains, Shor, Sloane (1999) in view of
Grassmannian packings have described non-generic orbits: e.g.
k = 2m−1 = d/2 and n = d2 + d − 2.

4. With a modification of this construction using maximal spreads of
isotropic subspaces in F2m

2 , when m − s divised m (e.g, s = 0),
4-designs in G2s,2m with n ≈ (d − 1)(d + 2)/2 can be constructed
(B. 2004).



A construction using ’concatenation’

Ingredients: k < ` < d

{(Vj , ωj)}n
j=1, Vj ∈ Gk,` {(Wi , τi)}m

i=1, Wi ∈ G`,d

Goal: cubature of str. 4 or tight p-ff in Gk,d .

fi : R` →Wi fixed isometries. Vij := fi(Vj) ∈ Gk,d

Theorem: (B., Ehler 2011) If {(Vj , ωj)}n
j=1 and {(Wi , τi)}m

i=1 are
cubature formulas of strength 4, respectivement tight p-fusion frames,
then

{(Vij , τiωj)}1≤i≤m
1≤j≤n

is also a cubature formula of strength 4, respectivement a tight
p-fusion frame.



Probabilistic recovery from trace minimization

I We follow the lines of: Candès, Strohmer, Voroninski: PhaseLift:
exact and stable signal recovery from magnitude measurements
via convex programming (2011) who deal with k = 1.

I Let fi := 〈Px ,PVi 〉. Px is an optimal solution of:

(Prank) min
{

rank(X ) : X � 0, 〈X ,PVi 〉 = fi 1 ≤ i ≤ n
}

I As is standard, we replace rank minimization with trace
minimization:

(Ptrace) min
{

trace(X ) : X � 0, 〈X ,PVi 〉 = fi 1 ≤ i ≤ n
}

I Question : under which conditions is Px the unique optimal
solution of (P ′)?



Probabilistic recovery from trace minimization

Theorem: (B., Ehler 2012, arxiv:1209.5986v1)
Let x ∈ Rd , ‖x‖ = 1. There are constants c1, c2 > 0 such that, if
n ≥ c1d , and {Vj}n

j=1 are chosen independently identically distributed
according to σk , with probability at least 1− e−c2n/d , Px is the unique
optimal solution of (Ptrace).

For k = 1, Candès and Li, Solving quadratic equations via PhaseLift
where there are about as many equations as unknowns,
arxiv:1208.6247v2 have proved a stronger result: proba 1− e−cd . As
a consequence, the same result holds uniformly for all x .



An idea of the proof

Let F : Sd → Rn F∗ : Rn → Sd

X 7→ d
k (〈X ,PVi 〉)n

i=1 y 7→ d
k

∑n
i=1 yiPVi

(Ptrace) min
{
〈X , Id 〉 : X � 0, FX = f

}
= max

{
y∗f : Id −F∗(y) � 0

}
.

〈X , Id 〉 − y∗f = 〈X , Id −F∗y〉.

We assume x = e = (1,0, . . . ,0)∗. A dual certificate for unique
optimality of ee∗ is given by a matrix Y ∈ rg(F∗) such that



An idea of the proof

Y =


1 0 . . . 0
0
...
0

Y ′

 and Id − Y ′ � 0

Remember the reconstruction formula for a design of strength 4:

Pe =
1
n

n∑
j=1

(1
α
‖PVj (e)‖2 − dβ

kα

)
PVj

The RHS is a valid dual certificate Y ! Motivates to take in general

Y :=
1
n

n∑
j=1

(1
α
‖PVj (e)‖2 − dβ

kα

)
PVj .



An idea of the proof

With high probability, under the assumptions of the theorem, this
matrix satisfies:

1. ‖YT − Pe‖ ≤ γ
2. ‖YT⊥‖∞ ≤ 1/2

and F satisfies and ’almost isometry’ property:
1. For all X � 0,

(1− r)‖X‖1 ≤
1
n
‖F(X )‖`1 ≤ (1 + r)‖X‖1

2. For all X symmetric of rank at most 2,

1
n
‖F(X )‖`1 ≥ uk (1− r)‖X‖∞

where 0 < r ,uk , γ < 1 satisfy certain inequalities.


