Signal reconstruction from the magnitude of subspace components

Christine Bachoc
Joint work with Martin Ehler (Helmholtz Zentrum München).

Université Bordeaux I, IMB
IMS, National University of Singapore
Large Scale Conic Optimization, 19-23 Novembre 2012

Outline

- Problem formulation
- Configurations allowing for closed formulas
- Constructions
- SDP reconstruction for random configurations

Problem formulation

- Given a set of k-dimensional subspaces of \mathbb{R}^{d} :

$$
\left\{V_{j}\right\}_{j=1}^{n} \quad V_{j} \subset \mathbb{R}^{d}, \operatorname{dim}\left(V_{j}\right)=k
$$

- Given $x \in \mathbb{R}^{d},\|x\|=1$, can we recover x (up to sign) from

$$
\left\|P_{V_{1}}(x)\right\|, \ldots,\left\|P_{V_{n}}(x)\right\| ?
$$

- Aims: exact recovery versus probabilistic recovery.

Goals

- Exact recovery from a closed formula. Requires special properties of $\left\{V_{1}, \ldots, V_{n}\right\}$ that nicely relate to cubature formulas, Grassmann designs, group representation.

$$
\text { Requires } n \geq c d^{2} \text {. }
$$

Extends and strengthens Balan, Bodmann, Casazza, Edidin (2009) for $k=1$

- Recovery with high probability, using semidefinite programming, under a random choice of $\left\{V_{1}, \ldots, V_{n}\right\}$.

$$
\text { Requires only } n \geq c d \log (d) \text {. }
$$

Follows the lines of Candès, Strohmer, Voroninski (2011) for $k=1$.
Candes, Li (2012): $n \geq c \log (d)$ is enough.

Grassmann space

- $\mathcal{G}_{k, d}$ the space of subspaces of \mathbb{R}^{d} of dimension k.
- The orthogonal group $O\left(\mathbb{R}^{d}\right)$ acts transitively on $\mathcal{G}_{k, d}$ and induces an invariant probability measure σ_{k}.
- Polynomial functions $\mathrm{Pol}_{\leq 2 p}\left(\mathcal{G}_{k, d}\right)$.

Definition: A cubature formula of strength $2 p$ is a set $\left\{\left(V_{j}, \omega_{j}\right)\right\}_{j=1}^{n}$ such that $\omega_{j}>0, \sum_{j} \omega_{j}=1$, and

$$
\int_{\mathcal{G}_{k, d}} f(V) d \sigma_{k}(V)=\sum_{j=1}^{n} \omega_{j} f\left(V_{j}\right) \quad \text { for all } f \in \operatorname{Pol}_{\leq 2 p}\left(\mathcal{G}_{k, d}\right) .
$$

$\omega_{j}=1 / n$: Grassmannian designs (of strength $2 p$) (B., Coulangeon, Nebe 2002)

Exact recovery

Theorem: (B., Ehler) Let $\left\{\left(V_{j}, \omega_{j}\right)\right\}_{j=1}^{n}$ be a cubature formula of strength 4. Then,

$$
P_{x}=\frac{1}{\alpha} \sum_{i=1}^{n} \omega_{j}\left\|P_{V_{j}}(x)\right\|^{2} P_{V_{j}}-\frac{\beta}{\alpha} I_{d}
$$

where $\alpha=\frac{2 k(d-k)}{d(d+2)(d-1)}$ and $\beta=\frac{k(k d+k-2)}{d(d+2)(d-1)}$.
Sketch of proof:
$V \rightarrow\left\langle P_{x}, P_{V}\right\rangle\left\langle P_{y}, P_{V}\right\rangle \in \mathrm{Pol}_{\leq 4}\left(\mathcal{G}_{k, d}\right)$ so:

$$
\int_{\mathcal{G}_{k, d}}\left\langle P_{x}, P_{V}\right\rangle\left\langle P_{y}, P_{V}\right\rangle d \sigma_{k}(V)=\sum_{j=1}^{n} \omega_{j}\left\langle P_{x}, P_{v_{j}}\right\rangle\left\langle P_{y}, P_{v_{j}}\right\rangle .
$$

$$
\text { Let } \quad K(x, y):=\int_{\mathcal{G}_{k, d}}\left\langle P_{x}, P_{V}\right\rangle\left\langle P_{y}, P_{V}\right\rangle d \sigma_{k}(V) \text {. }
$$

By $\mathrm{O}\left(\mathbb{R}^{d}\right)$-invariance of σ_{k}, also $K(x, y)$ is $\mathrm{O}\left(\mathbb{R}^{d}\right)$-invariant. It shows that, for some constants α, β,

$$
K(x, y)=\alpha\left(x^{*} y\right)^{2}+\beta
$$

Leads to:

$$
\sum_{j=1}^{n} \underbrace{\omega_{j}\left\langle P_{x}, P_{V_{j}}\right\rangle\left\langle P_{y}, P_{V_{j}}\right\rangle}_{\left\langle\omega_{j}\left\|P_{V_{j}}(x)\right\|^{2} P_{V_{j}}, P_{y}\right\rangle}=\underbrace{\alpha\left(x^{*} y\right)^{2}+\beta}_{\left\langle\alpha P_{x}+\beta I, P_{y}\right\rangle}
$$

It remains to compute α and β (easy).

Exact recovery in presence of erasures

It is sometimes possible to recover $\left\{\left\|P_{V_{j}}(x)\right\|\right\}_{j=1}^{n}$ even if p of these values are missing. It is the case when $\left\{\left(V_{j}, \omega_{j}\right)\right\}_{j=1}^{n}$ is a tight p-fusion frame.

Definition: A tight p-fusion frame is a set $\left\{\left(V_{j}, \omega_{j}\right)\right\}_{j=1}^{n}$ such that $\omega_{j}>0, \sum_{j} \omega_{j}=1$, and

$$
\int_{\mathcal{G}_{k, d}} f(V) d \sigma_{k}(V)=\sum_{j=1}^{n} \omega_{j} f\left(V_{j}\right) \quad \text { for all } f \in \operatorname{Pol}_{\leq 2 p}^{1}\left(\mathcal{G}_{k, d}\right) .
$$

where $\operatorname{Pol}_{\leq 2 p}^{1}\left(\mathcal{G}_{k, d}\right) \subset \operatorname{Pol}_{\leq 2 p}\left(\mathcal{G}_{k, d}\right)$ is the subspace 'generated' by $\mathrm{Pol}_{\leq 2 p}\left(\mathcal{G}_{1, d}\right)$.
B., Ehler, Tight p-fusion frames (2011), arXiv:1201.1798

Tight p-fusion frames

Equivalent characterizations:

1. $\left\{\left(V_{j}, \omega_{j}\right)\right\}_{j=1}^{n}$ is a tight p-fusion frame
2. There exists a constant A_{p} such that, for all $x \in S^{d-1}$,

$$
\sum_{j=1}^{n} \omega_{j}\left\|P_{V_{j}}(x)\right\|^{2 p}=A_{p}
$$

3. For all $k=1, \ldots, p$,

$$
\sum_{i, j} \omega_{i} \omega_{j} P_{(2 k)}\left(\underline{y}\left(V_{i}, V_{j}\right)\right)=0
$$

where $P_{(2 k)}\left(y_{1}, \ldots, y_{k}\right)$ are certain multivariate Jacobi polynomials attached to $\mathrm{Pol}_{\leq 2 p}^{1}\left(\mathcal{G}_{k, d}\right)$ and $\underline{y}\left(V_{i}, V_{j}\right) \in[0,1]^{k}$ are the squared cosine of the principal angles between V_{i} and V_{j}.

Tight p-fusion frames

- The constant in 2. can take only the value:

$$
A_{p}=\frac{(k / 2)_{p}}{(d / 2)_{p}} \quad(a)_{p}:=a(a+1) \ldots(a+p-1)
$$

- From 3. we see that a tight p-fusion frame is also a tight ℓ-fusion frame for $\ell<p$. So, we have

$$
\sum_{j=1}^{n} \omega_{j}\left\|P_{V_{j}}(x)\right\|^{2 \ell}=A_{\ell} \quad 1 \leq \ell \leq p
$$

- Extends the notion of tight frames ($k=1, p=1$) and tight fusion frames ($k \geq 2, p=1$).

Tight p-fusion frames correct p erasures

If the values $\left\|P_{V_{1}}(x)\right\|, \ldots,\left\|P_{V_{p}}(x)\right\|$ are missing, they can be recomputed by solving the following system of algebraic equations:

$$
\left\{\begin{array}{l}
\omega_{1} T_{1}+\cdots+\omega_{p} T_{p}=A_{1}-\sum_{j=p+1}^{n} \omega_{j}\left\|P_{V_{j}}(x)\right\|^{2} \\
\omega_{1} T_{1}^{2}+\cdots+\omega_{p} T_{p}^{2}=A_{2}-\sum_{j=p+1}^{n} \omega_{j}\left\|P_{V_{j}}(x)\right\|^{4} \\
\quad \cdots \cdots \\
\omega_{1} T_{1}^{p}+\cdots+\omega_{p} T_{p}^{p}=A_{p}-\sum_{j=p+1}^{n} \omega_{j}\left\|P_{V_{j}}(x)\right\|^{2 p}
\end{array}\right.
$$

There are only finitely many solutions (at most p !. Think of $\omega_{i}=c t$). Moreover in the reconstruction process using

$$
P_{x}=\frac{1}{\alpha} \sum_{i=1}^{n} \omega_{j}\left\|P_{V_{j}}(x)\right\|^{2} P_{V_{j}}-\frac{\beta}{\alpha} I_{d}
$$

it is likely that most solution will not give rise to a matrix of rank one. However it outputs a list of candidate signals x.

Existence and constructions

We want to adress the following questions:

- When do cubature formulas and tight p-fusion frames exist ?
- How can they be constructed ?

Existence

Theorem:

1. If $\left\{\left(V_{j}, \omega_{j}\right)\right\}_{j=1}^{n}$ is a cubature formula of strength $2 p$, then

$$
n \geq \operatorname{dim}\left(\operatorname{Pol}_{\leq p}\left(\mathcal{G}_{k, d}\right)\right) \approx c_{p} d^{p} .
$$

2. Such a configuration does exist, with number of elements

$$
n \leq \operatorname{dim}\left(\operatorname{Pol}_{\leq 2 p}\left(\mathcal{G}_{k, d}\right)\right) \approx c_{p}^{\prime} d^{2 p} .
$$

$p=2: n \geq p(p+1) / 2$ and $n \leq p^{4} / 8$.
Standard results. See [de la Harpe, Pache 2005] for a general framework where Grassmann spaces fit.
Existence result 2. is non constructive (uses Caratheodory theorem).

Numerical constructions

Constructing a cubature formulas of strength say 4 amounts to solve an algebraic system of equations:

$$
\begin{aligned}
\begin{cases}\left\{\left(V_{j}, \omega_{j}\right)\right\}_{j=1}^{n} \\
\text { cub. str. } 4\end{cases} & \Longleftrightarrow\left\{\begin{array}{l}
\sum_{j=1}^{n} \omega_{j} \varphi\left(V_{j}\right)=0 \\
\text { for all } \varphi \in \operatorname{Pol}_{\leq 4}^{0}\left(\mathcal{G}_{k, d}\right)
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
\sum_{j=1}^{n} \omega_{j} \varphi_{\ell}\left(V_{j}\right)=0 \\
\text { for all } \ell=1, \ldots, \operatorname{dim}\left(\operatorname{Pol}_{\leq 4}^{0}\left(\mathcal{G}_{k, d}\right)\right)
\end{array}\right.
\end{aligned}
$$

where $\operatorname{Pol}_{\leq 4}^{0}\left(\mathcal{G}_{k, d}\right):=\left\{\varphi \in \operatorname{Pol}_{\leq 4}\left(\mathcal{G}_{k, d}\right): \int \varphi d \sigma_{k}(V)=0\right\}$ and $\left\{\varphi_{1}, \ldots, \varphi_{\ell}, \ldots\right\}$ is a basis of $\mathrm{Pol}_{\leq 4}^{0}\left(\mathcal{G}_{k, d}\right)$.

Algebraic constructions

Constructions using symmetries:

- Let G be a finite subgroup of $\mathbf{O}\left(\mathbb{R}^{d}\right)$. Can $\left\{\left(V_{j}, \omega_{j}\right)\right\}_{j=1}^{n}$ afford G as a transitive group of symmetries, and be a cubature of strength $2 p$ (resp a tight p-fusion frames) ?
- If so, we can assume $\omega_{j}=1 / n$.
- Stronger condition: Can all the orbits of G on $\mathcal{G}_{k, d}$ be cubatures of strength $2 p$ (resp tight p-fusion frames) ?

$$
\text { Orbit of } V: \quad G \cdot V:=\{g(V): g \in G\}
$$

Constructions using symmetries

Theorem: The following are equivalent:

1. For all $2 \leq k \leq d / 2$, for all $V \in \mathcal{G}_{k, d}, G \cdot V$ is a design of str. 4.
2. $\left(V_{d}^{(4)}\right)^{G}=\left(V_{d}^{(2,2)}\right)^{G}=\left(V_{d}^{(2)}\right)^{G}=\{0\}$.

And also:

1. For all $k \leq d / 2$, for all $V \in \mathcal{G}_{k, d}, G \cdot V$ is a tight p-fusion frame.
2. $\left(\mathbb{R}\left[X_{1}, \ldots, X_{d}\right]_{2 p}\right)^{G}=\mathbb{R}\left(X_{1}^{2}+\cdots+X_{d}^{2}\right)^{p}$.
where, for a partition μ, V_{d}^{μ} denotes a specific irreducible representation of $\mathrm{O}\left(\mathbb{R}^{d}\right)$ that occurs in $\mathrm{Pol}_{\leq 2 p}\left(\mathcal{G}_{k, d}\right)$ iff $\ell(\mu) \leq k$, $\operatorname{deg}(\mu) \leq 2 p$ and μ is even.

Constructions using symmetries

Examples:

1. Tiep 2006: complete classification of the groups that satisfy 1.
2. Designs of strength 4: Weyl groups of root systems A_{2}, D_{4}, E_{6}, E_{7}, E_{8} (str. 6), 2. Co_{1} (str. 10).
3. An infinite family: the Clifford groups \mathcal{C}_{m} acting on $\mathbb{R}^{d}, d=2^{m}$ give rise to 6-designs.
Conway. Hardin, Rains, Shor, Sloane (1999) in view of Grassmannian packings have described non-generic orbits: e.g. $k=2^{m-1}=d / 2$ and $n=d^{2}+d-2$.
4. With a modification of this construction using maximal spreads of isotropic subspaces in $\mathcal{F}_{2}^{2 m}$, when $m-s$ divised $m(e . g, s=0)$, 4-designs in $\mathcal{G}_{2^{s}, 2^{m}}$ with $n \approx(d-1)(d+2) / 2$ can be constructed (B. 2004).

A construction using 'concatenation'

Ingredients: $k<\ell<d$

$$
\left\{\left(V_{j}, \omega_{j}\right)\right\}_{j=1}^{n}, V_{j} \in \mathcal{G}_{k, \ell} \quad\left\{\left(W_{i}, \tau_{i}\right)\right\}_{i=1}^{m}, W_{i} \in \mathcal{G}_{\ell, d}
$$

Goal: cubature of str. 4 or tight p-ff in $\mathcal{G}_{k, d}$.

$$
f_{i}: \mathbb{R}^{\ell} \rightarrow W_{i} \text { fixed isometries. } \quad V_{i j}:=f_{i}\left(V_{j}\right) \in \mathcal{G}_{k, d}
$$

Theorem: (B., Ehler 2011) If $\left\{\left(V_{j}, \omega_{j}\right)\right\}_{j=1}^{n}$ and $\left\{\left(W_{i}, \tau_{i}\right)\right\}_{i=1}^{m}$ are cubature formulas of strength 4 , respectivement tight p-fusion frames, then

$$
\left\{\left(V_{i j}, \tau_{i} \omega_{j}\right)\right\}_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}
$$

is also a cubature formula of strength 4, respectivement a tight p-fusion frame.

Probabilistic recovery from trace minimization

- We follow the lines of: Candès, Strohmer, Voroninski: PhaseLift: exact and stable signal recovery from magnitude measurements via convex programming (2011) who deal with $k=1$.
- Let $f_{i}:=\left\langle P_{x}, P_{v_{i}}\right\rangle . P_{x}$ is an optimal solution of:

$$
\left(P_{\text {rank }}\right) \quad \min \left\{\operatorname{rank}(X): X \succeq 0,\left\langle X, P_{v_{i}}\right\rangle=f_{i} \quad 1 \leq i \leq n\right\}
$$

- As is standard, we replace rank minimization with trace minimization:

$$
\left(P_{\text {trace }}\right) \quad \min \left\{\operatorname{trace}(X): X \succeq 0,\left\langle X, P_{v_{i}}\right\rangle=f_{i} \quad 1 \leq i \leq n\right\}
$$

- Question : under which conditions is P_{x} the unique optimal solution of $\left(P^{\prime}\right)$?

Probabilistic recovery from trace minimization

Theorem: (B., Ehler 2012, arxiv:1209.5986v1)
Let $x \in \mathbb{R}^{d},\|x\|=1$. There are constants $c_{1}, c_{2}>0$ such that, if $n \geq c_{1} d$, and $\left\{V_{j}\right\}_{j=1}^{n}$ are chosen independently identically distributed according to σ_{k}, with probability at least $1-e^{-c_{2} n / d}, P_{x}$ is the unique optimal solution of ($P_{\text {trace }}$).

For $k=1$, Candès and Li, Solving quadratic equations via PhaseLift where there are about as many equations as unknowns, arxiv:1208.6247v2 have proved a stronger result: proba $1-e^{-c d}$. As a consequence, the same result holds uniformly for all x.

An idea of the proof

$$
\text { Let } \begin{aligned}
\mathcal{F}: S^{d} & \rightarrow \mathbb{R}^{n} & \mathcal{F}^{*}: \mathbb{R}^{n} & \rightarrow S^{d} \\
X \quad & \mapsto \frac{d}{k}\left(\left\langle X, P_{v_{i}}\right\rangle\right)_{i=1}^{n} & & \mapsto \frac{d}{k} \sum_{i=1}^{n} y_{i} P V_{V_{i}}
\end{aligned} \quad \begin{aligned}
\left(P_{\text {trace }}\right) & \min \left\{\left\langle X, I_{d}\right\rangle: X \succeq 0, \mathcal{F} X=f\right\} \\
& =\max \left\{y^{*} f: I_{d}-\mathcal{F}^{*}(y) \succeq 0\right\} .
\end{aligned}
$$

$$
\left\langle X, I_{d}\right\rangle-y^{*} f=\left\langle X, I_{d}-\mathcal{F}^{*} y\right\rangle .
$$

We assume $x=e=(1,0, \ldots, 0)^{*}$. A dual certificate for unique optimality of $e e^{*}$ is given by a matrix $Y \in \operatorname{rg}\left(\mathcal{F}^{*}\right)$ such that

An idea of the proof

$$
Y=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & Y^{\prime} & \\
0 & & &
\end{array}\right) \quad \text { and } \quad I_{d}-Y^{\prime} \succ 0
$$

Remember the reconstruction formula for a design of strength 4:

$$
P_{e}=\frac{1}{n} \sum_{j=1}^{n}\left(\frac{1}{\alpha}\left\|P_{V_{j}}(e)\right\|^{2}-\frac{d \beta}{k \alpha}\right) P_{V_{j}}
$$

The RHS is a valid dual certificate Y ! Motivates to take in general

$$
Y:=\frac{1}{n} \sum_{j=1}^{n}\left(\frac{1}{\alpha}\left\|P_{V_{j}}(e)\right\|^{2}-\frac{d \beta}{k \alpha}\right) P_{V_{j}} .
$$

An idea of the proof

With high probability, under the assumptions of the theorem, this matrix satisfies:

1. $\left\|Y_{T}-P_{e}\right\| \leq \gamma$
2. $\left\|Y_{T^{\perp}}\right\|_{\infty} \leq 1 / 2$
and \mathcal{F} satisfies and 'almost isometry' property:
3. For all $X \succeq 0$,

$$
(1-r)\|X\|_{1} \leq \frac{1}{n}\|\mathcal{F}(X)\|_{\ell_{1}} \leq(1+r)\|X\|_{1}
$$

2. For all X symmetric of rank at most 2 ,

$$
\frac{1}{n}\|\mathcal{F}(X)\|_{\ell_{1}} \geq u_{k}(1-r)\|X\|_{\infty}
$$

where $0<r, u_{k}, \gamma<1$ satisfy certain inequalities.

