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Iterative approaches

What do we need?

1. Avoid systematic cancellation errors in the transformations of
the right hand side.

2. Generate linear systems with bounded condition numbers.

3. Preserve the sparsity structure of the constraints.

4. Generate symmetric systems.

5. Generate positive definite systems.



Apology

Analysis of the linear systems will be a bit technical

———————————————————————

To get this implemented you just need to be stubborn
and push it through

(I try to concentrate on the main points)



I) Linear Programs

minimizex∈IRn cT x subject to Ax = b and x ≥ 0,

Interior point system:

Ax = b,

AT y + s = c ,

Xs = µe,

x > 0, s > 0 and X := Diag(x1, x2, . . . , xn)



Search direction

Let

p := b − Ax , q := c − AT y − s, and r := µ+e − Xs.

“Standard System”, (Std.S): 0 A 0
AT 0 I
0 S X

∆y
∆x
∆s

 =

p
q
r

 .



Reduction to 2 by 2

Eliminating with any of the red diagonal matrices 0 A 0
AT 0 I
0 S X

∆y
∆x
∆s

 =

p
q
r

 .
and diagonal scaling leads to[

0 A
AT −SX−1

] [
∆y
u

]
=

[
rhs1
rhs2

]
,

with u = ∆x or u = −XS−1∆s and[
rhs1
rhs2

]
=

[
p

q − X−1r

]
or

[
rhs1
rhs2

]
=

[
p − AS−1r

q

]



Systematic cancellation

The small entries of X or the small entries of S in[
rhs1
rhs2

]
=

[
p

q − X−1r

]
or

[
rhs1
rhs2

]
=

[
p − AS−1r

q

]
lead to systematic cancellation error of entries in q or in p.

Pivoting:
Partition x and s into two parts, x1, x2 and s1, s2 such that

x1 ≥ s1 and x2 < s2.

(x1 and x2 each have many components.)



Stable reduction (Freund, J’, 1993)

Defining

q̃ :=

[
q1 − X−1

1 r1

q2

]
and p̃ := p − A2S−1

2 r2,

the “Stable Reduction” (Stb.R) is given by[
0 A

AT −SX−1

] [
∆y
u

]
=

[
p̃
q̃

]
where

u =

[
u1

u2

]
, u1 := ∆x1, and u2 := −X2S−1

2 ∆s2.



Normal equations

Eliminating again with the diagonal matrix SX−1, any of the 2-by-2
systems leads to the same set of normal equations, (Nrm.E)

AXS−1AT∆y = p + AS−1(Xq − r).

Small entries of X cancel components in q and small components
of S cancel p.

Most commonly used with direct solvers.



Comparison

Condition numbers for small nondegenerate LPs (100 x 250)
100 random problems, A unitary, x , s nearly central:

µ cond. (Std.S) cond. (Stb.R) cond. (Nrm.E)
1 210 (320/120) 1300 (2200/610) 10 (15/8)
10−4 1.5e4 (3.5e5/2400) 3.8e8 (1.8e10/5.1e7) 6.1e5 (9.2e7/1.5e6)
10−8 1.4e4 (1.1e6/3400) 2.7e12 (2.1e14/5.8e11) 5.0e5 (3.0e9/4.7e4)

(This does not reflect systematic cancellation – or symmetry)

Consequence: None of the systems seems suitable
(and (Stb.R) seems worst)

Generally, no/few general purpose interior point methods using
iterative solvers.



Extending instead of reducing?

Introduce a “dummy variable” ∆z := −X−1/2∆x .

Then, 
0 A 0 0

AT 0 I 0

0 I 0 X 1/2

0 0 X 1/2 −S




∆y
∆x
∆s
∆z

 =


p
q
0

X−1/2r

 .

(Still some cancellation with small entries of X )



Diagonal pivoting:

Pivoting as for (Stb.R) leads to a first symmetric extension

0 A1 A2 0 0 0 0
AT

1 0 0 I 0 0 0
AT

2 0 0 0 I 0 0

0 I 0 0 0 X
1/2
1 0

0 0 I 0 0 0 X
1/2
2

0 0 0 X
1/2
1 0 −S1 0

0 0 0 0 X
1/2
2 0 −S2





∆y
∆x1

∆x2

∆s1

∆s2

∆z1

∆z2


=



p
q1

q2

0

S−1
2 r2

X
−1/2
1 r1

0


.



In case anybody likes to see:

∆z has changed its meaning but ∆x ,∆y ,∆s remain the same:
Solving the last two block rows for ∆z we obtain

∆z = S−1X 1/2∆s −

[
S−1

1 X
−1/2
1 r1

0

]

and inserting this in the third and fourth block row yields

∆x + X 1/2

(
S−1X 1/2∆s −

[
S−1

1 X
−1/2
1 r1

0

])
=

[
0

S−1
2 r2

]
.

Multiplying this from left with S yields S∆x + X ∆s = r .



Symmetric diagonal scaling (last block row/column)

with Diag(d) where d1 = x
−1/2
1 and d2 = s

−1/2
2 – leads to

0 A1 A2 0 0 0 0
AT

1 0 0 I 0 0 0
AT

2 0 0 0 I 0 0
0 I 0 0 0 I 0

0 0 I 0 0 0 S
−1/2
2 X

1/2
2

0 0 0 I 0 −X−1
1 S1 0

0 0 0 0 S
−1/2
2 X

1/2
2 0 −I





∆y
∆x1

∆x2

∆s1

∆s2

∆z1

∆z2


=



p
q1

q2

0

S−1
2 r2

X−1
1 r1

0


the symmetric extension (Sm.Ex)
(The meaning of ∆z has changed again).



Reducing this again

Let

Dx :=

[
I 0

0 S
−1/2
2 X

1/2
2

]
, Ds :=

[
X−1

1 S1 0
0 I

]
.

The entries of Dx , Ds are nonnegative and at most 1.

Eliminating ∆s with the second and third block row and ∆x with
the fourth and fifth block row leads to



(Rd.Ex)

[
0 ADx

DxAT Ds

] [
∆y
∆z

]
=

 A

[
0

S−1
2 r2

]
− p

Dxq −
[

X−1
1 r1

0

]
 .

Given the (approximate) solution, the components ∆x and ∆s can
be recovered in a stable fashion via

∆x =

[
0

S−1
2 r2

]
− Dx∆z , ∆s = q − AT∆y .

This system will be denoted by “reduced extension” (Rd.Ex).

Only canclellation error in q2; recovered in back substitution!



Comparison

µ cond. (Sm.Ex) cond (Rd.Ex) cond. opt. basis

1 43 (61/32) 18 (26/14) 320 (1.1e4/58)
1.0e-4 1100 (4.6e4/170) 350 (1.4e4/54) 280 (5700/52)
1.0e-8 820 (6.4e4/250) 250 (2.0e4/76) 250 (1.9e4/75)

Even far away from the central path, the condition of (Rd.Ex)
and of the optimal basis are about the same when µ is small!

(Only about 30% of sQMR iterations compared to (Sm.Ex))



Theorem

Assume that the LP has a unique (primal-dual) optimal solution
and let κ̄ be the 2-norm-condition number of the optimal basis.
Assume further that the 2-norm of the optimal basis matrix and of
its inverse are both at least 1.
For µ > 0 let xµ, yµ, sµ be any (not necessarily strictly) primal dual
feasible solution with xT

µ sµ ≤ nµ. Let κ(µ) be the condition
number of system (Rd.Ex) evaluated at xµ, sµ. Then,
limµ→0 κ(µ) = κ̄.

Moreover, (with yµ := (AAT )−1A(c − sµ)), the reduction

(Std.S) −→ (Rd.Ex)

is asymptotically stable for µ→ 0.
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Theorem
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Proof: Straightforward. –



Question:

I Could we have gotten there directly
(much simpler – without using the extension first)?

I Scaling the second block row and block column of (Stb.R)
with Dx leads to the same system matrix.
Dx is singular in the limit
=⇒ cancellation in the right hand side.

I The original variables ∆x and ∆s disappeared,
only the “extension variable” ∆z remains in a rescaled form.

I The definition of ∆z and the right hand side is a bit
“involved”
– how to come up with it without extending first is unclear.
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II) SDP

Notation:

minimizeX∈Sn C • X subject to A(X ) = b and X � 0,

where Sn is the space of symmetric n × n-matrices,
b ∈ IRm, C ∈ Sn, C • X := trace(CX ), and

A(X ) =

A(1) • X
...

A(m) • X

 , A∗(y) =
m∑
i=1

yiA
(i).



Central Path

Let SP denote the symmetrization operator introduced by
Monteiro and Zhang,

SP(U) :=
1

2
(PUP−1 + (PUP−1)T )

with some nonsingular matrix P.
The central path is defined by X , S � 0, y ∈ IRm with

A(X ) = b,

A∗(y) + S = C ,

SP(XS) = µI .



(Std.S)

Let X , S � 0, y ∈ IRm be given, and set

p := b −A(X ), Q := C −A∗(y)− S , and R := µ+I − SP(XS)

with some “target value” µ+(≤ X • S/n). Newton’s method yields 0 A 0
A∗ 0 I
0 SP( . S) SP(X . )

∆y
∆X
∆S

 =

p
Q
R

 .



NT-direction

Let
W := S−1/2(S1/2XS1/2)1/2S−1/2

be the metric geometric mean of X and S−1. Then,

WSW = X , S = W−1XW−1,

W 1/2SW 1/2 = W−1/2XW−1/2 =: E (= E (X ,S)),

and when XS ≈ µI , we have

E ≈ √µI .

Set P := W−1/2.



“Scaling” operator DP : Sn → Sn and
“Lyapunov operator” LE : Sn → Sn defined via

DP(∆X ) := P∆X P and LE (∆X ) :=
1

2
(E ∆X + ∆X E ).

Then,

SP(∆X S) =
1

2
(P∆X SP−1 + (P∆X SP−1)T )

=
1

2
(P∆X P P−1SP−1︸ ︷︷ ︸

E

+(P∆X P P−1SP−1︸ ︷︷ ︸
E

)T )= LEDP(∆X )

and, likewise,
SP(X ∆S) = LEDP−1(∆S).



Same system:

 0 A 0
A∗ 0 I
0 LEDP LEDP−1

∆y
∆X
∆S

 =

p
Q
R

 .
or  0 A 0

A∗ 0 I
0
√
µDP

√
µDP−1

∆y
∆X
∆S

 =

 p
Q√

µ(LE )−1R

 .
P and P−1 have same eigenbasis!
(Unique to NT)



Unitary rescaling

Let P = UΛUT be the eigenvalue decomposition of P,
and U : Sn → Sn be defined by U(Z ) = UZUT with
adjoint U∗(Y ) = U−1(Y ) = UTYU.

 0 AU 0
U∗A∗ 0 I

0
√
µDΛ

√
µDΛ−1

 ∆y
U∗∆X
U∗∆S

 =

 p
U∗Q

U∗√µ(LE )−1R

 ,
Here, DΛ, DΛ−1 are “true” diagonal scalings.
DΛ(M) = ΛMΛ = M ◦ (diag(Λ)eT + e(diag(Λ))T )

(Hadamard product, e = (1, 1, . . . , 1)T .)



Note

Iterative schemes only require multiplication with this matrix,
not its representation.
In particular, AU and U∗A∗ are not formed explicitly.

Let ∆̂X := U∗∆X , ∆̂S := U∗∆S , and ∆̂Z be a dummy variable,
set R̃ :=

√
µ(LE )−1R

then, (up to diagonal scaling) the symmetric extension is given by



Symmetric Extension


0 AU 0 0
U∗A∗ 0 I 0

0 I 0 4
√
µDΛ−1/2

0 0 4
√
µDΛ−1/2 −√µDΛ




∆y

∆̂X

∆̂S

∆̂Z

 =


p
U∗Q
U∗R2

U∗R1

 ,
where √

µDΛU∗R2 + 4
√
µDΛ−1/2U∗R1 = U∗R̃

Changing R1 and R2 s.t. to above constraint

changes ∆̂Z but not ∆y , ∆̂X , ∆̂S .



Chioce of ∆Z

I Minimizing ‖R1‖2
F + ‖R2‖2

F subject to above constraint can
be solved explicitly (and cheaply),

(U∗R2)i ,j = (U∗R̃)i ,j

√
µλiλj

µλ2
i λ

2
j +
√
µλ−1

i λ−1
j

,

(U∗R1)i ,j = (U∗R̃)i ,j
4
√
µλ
−1/2
i λ

−1/2
j

µλ2
i λ

2
j +
√
µλ−1

i λ−1
j

.

– replacing the partition into x1 and x2 for LPs,

I So, all the same as for LPs?
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√
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The Theorem ?

The partition x1 > s1 and x2 < s2

was crucial for the proof of the theorem for LPs.

Here,
√
µλ2

i → 0 for some i ,√
µλ2

j →∞ for some j ,
and

√
µλiλj → const for some i , j .

=⇒ Somewhat worse result,
the right hand side may increase by a factor of 1/ 3

√
µ.



(Rd.Ex)

What we really aim for is the reduced extension which takes the
form[

0 L−1AUDx

DxU∗A∗L−T Ds

] [
∆̂y

∆̂Z

]
=

[
L−1AR2 − L−1p
DxU∗Q −DMU∗R1

]
,

where we assume that a sparse Cholesky factor L of AA∗ is
available. (Not really crucial, but if available we like to use it.)

Given ∆̂y get

∆̂X = U∗R2 −Dx∆̂Z , ∆̂S = U∗Q − U∗A∗L−T ∆̂y .



Details

Choose R1 abd R2 as to minimize the right hand side of this
system subject to the constraint

√
µDΛU∗R2 + 4

√
µDΛ−1/2U∗R1 = U∗R̃.

Use an adapted predictor corrector interior-point method.
(Project the search direction onto the equations
A∆X = p and A∗∆y + ∆S = Q.)

10% accuracy in the computation of the search direction (!)



Numerical Example:

I Not yet competitive with SDPNAL
(but much faster than SEDUMI or SDPT3 for large problems)

I Needs some form of preconditioning

I possibly recycling the previous predictor step in the initial
approximation for QMR in the next predictor step.

I A factor 10 faster than the “unbalanced symmetric extension”.
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Small dense SDP 50x50, 230 linear constraints

iteration corr. qmr-steps centrality step length − log10 µ

1 3 .88 .70 .58
2 10 2.1 .78 1.3
5 103 2.6 .74 3.1
6 121 1.5 .68 3.7
10 495 3.0 .66 6.1
11 485 3.0 .63 6.6
15 1000 3.2 .41 8.5
16 2000 2.6 .59 9.0

The overall number of QMR Iterations was 15477.



Solution generated by the algorithm: X alg , yalg ,Salg

Exact optimal solution: X opt , yopt ,Sopt .

‖A(X alg )− b‖2

‖b‖2
= 1, 4 · 10−9,

X alg • Salg

‖X alg‖F‖Salg‖F
= 2.9 · 10−8,

‖A∗yalg + Salg − C‖F
‖C‖F

= 5.0 · 10−13,

‖X alg − X opt‖F
‖X alg‖F

= 0.008,
‖Salg − Sopt‖F
‖Salg‖F

= 1.1 · 10−5.

Relative errors significantly larger (by a factor of more than 105)
than the relative residuals.
=⇒ optimal solution is not well conditioned.



Small dense LP 2500 variables, 230 linear constraints

iteration corr. qmr-steps centrality step length − log10 µ

1 3 .48 .54 .43
5 9 4,4 .27 2.4
10 110 3.3 .60 4.2
15 125 3.9 .42 5.3
20 287 2.0 .39 6.5
25 699 2.1 .34 7.9
28 1205 1.4 .69 9.0

The overall number of QMR Iterations was 18700.



Larger SDP

X of dimension 2000× 2000,
100000 sparse linear constraints
38 Interior-Point-Iterations
4469 QMR iterations
5 hours (older desktop):

relative primal infeasibility: 5.2e-11,
relative dual infeasibility: 1.6e-11,
relative complementarity: 1.7e-08.

(Optimal solution and condition number unknown.)



Outlook

Further details on Optimization Online (tonight?)

Seems to work also for AHO (joint work with T. Davi)
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