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Semidefinite Programming

P → min
x ∈Rn

{ c′ x |
n∑

i=1

Ai xi � b},

P∗ → max
Y ∈Sm

{ 〈b , Y 〉 | Y � 0; 〈Ai ,Y 〉 = ci , i = 1, . . . ,n}

• c ∈ Rn and b,Ai , Y ∈ Sm (m ×m symmetric matrices)

• Y � 0 means Y semidefinite positive; 〈A,B〉 = trace (AB).

P and its dual P∗ are convex problems that are solvable in
polynomial time to arbitrary precision ε > 0.
= generalization to the convex cone S+

m (X � 0) of Linear
Programming on the convex polyhedral cone Rm

+ (x ≥ 0).
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• weak duality: 〈b , Y 〉 ≤ c′ x for all feasible x ∈ Rn,Y ∈ Sm.
• strong duality: under “Slater interior point condition”

∃x ∈ Rn, Y � 0;
n∑

i=1

Ai xi � b; 〈Ai , Y 〉 = ci i = 1, . . . ,n.

Then there is no duality gap and

sup P∗ = max P∗ = min P = inf P∗

Several academic SDP software packages exist, (e.g. MATLAB
“LMI toolbox”, SeduMi, SDPT3, ...). However, so far, size
limitation is more severe than for LP software packages.
Pioneer contributions by A. Nemirovsky, Y. Nesterov, N.Z. Shor,
B.D. Yudin,...
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Inverse Optimization

Let f ∈ R[x] be a polynomial and

K := {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m},

for some polynomials (gj) ⊂ R[x].

... and consider the polynomial optimization problem:

P : f ∗ = min
x
{f (x) : x ∈ K }

What is the associated inverse optimization problem?
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Given y ∈ K, one searches for a polynomial g∗ ∈ R[x],

AS CLOSE AS POSSIBLE to f ,
and such that

... y is a global optimal solution of

min
x
{g∗(x) : x ∈ K }

i.e., g∗(y) = minx {g∗(x) : x ∈ K }, AND SO ....

the inverse optimization problem associated with P and y reads:

P−1 : min
g∈R[x]

{‖f − g‖ : g(x)− g(y) ≥ 0, ∀x ∈ K }

for some appropriate norm ‖ · ‖ on R[x].
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In general it makes sense to search for a polynomial g of same
degree as f , but not necessarily.

Flexibility

One may add structural constraints on g. For instance,
writing f in the canonical basis of monomials,
x 7→ f (x) =

∑
α∈Nn fα xα1

1 · · · x
αn
n , one may impose the

structural constraint gα = 0 whenever fα = 0, to obtain a
polynomial with same “pattern".

One may impose g to be convex on K by imposing

yT∇2g(x) y ≥ 0, ∀x ∈ K, ∀ y ∈ {z : ‖z‖2 ≤ 1}.
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Motivation

I. Practical ...
e.g., suppose that y ∈ K is the n-th iterate of some local
minimization algorithm. Then a practical issue is:

Why spend more energy (and computation) to find a (global?)
minimum x∗ ∈ K? whereas ...

f is perhaps not the "real" criterion .. just one among many
other possibilities, and
y could be an optimal solution of another criterion g "close"
to f !
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Motivation (continued)

II. Mathematical ...
If y ∈ K is “close" to an optimal solution of P, and g∗ ∈ R[x]
solves the inverse optimization problem P−1, then

‖f − g∗‖ is a measure of sensitivity or a kind of condition
number on problem P:
The smaller ‖f − g∗‖ is, the less sensitive to data is P.

If y ∈ K is an optimal solution of P but not certified, then
‖f − g∗‖ measures how hard it is to certify that y is optimal
for P.
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Solving the inverse optimization problem P−1

Let d ≥ degf and recall the inverse optimization problem:

P−1 : min
g∈R[x]d

{‖f − g‖ : g(x)− g(y) ≥ 0, ∀x ∈ K }

(and possibly additional structural constraints on g).

Lemma

Let K ⊂ Rn have a nonempty interior. The inverse problem P−1

has an optimal solution g∗ ∈ R[x]d .
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To solve P−1 practically ... the difficulty is
to express in a tractable manner that y is an optimal solution of

min
x
{g∗(x) : x ∈ K }

i.e., g∗(x)− g∗(y) ≥ 0 for all x ∈ K.
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This is why previous work has considered LPs, or some
particular combinatorial problems. E.g., Burton and Toint
(shortest path problems), Ahuja and Orlin (LPs), and Schaefer
(Integer Programming).

For instance, in IP, the characterization by Schaefer is
exponential in the input size of the problem and not practical.
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The inverse optimization problem P−1 (continued)

However, for Polynomial Optimization ...
and this is the main message to retain ...

CERTIFICATES of global optimality EXIST!,
e.g., Schmüdgen’s and Putinar’s Positivstellensätze.
They can be translated into LMIs (or feasible solutions of
semidefinite programs)!
The SIZE of the certificate can be adjusted (to some
extent), according to the computational workload limitation
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The inverse optimization problem P−1 (continued)

Putinar’s certificate for P−1

Let g ∈ R[x]d for some d ∈ N, and with k ∈ N fixed, replace

g(x)− g(y) ≥ 0 ∀x ∈ K, with

g(x)− g(y) = σ0(x)︸ ︷︷ ︸
sos of deg 2k

+
m∑

j=1

gj(x)× σj(x)︸ ︷︷ ︸
sos of deg 2(k − vj)

for all x ∈ Rn.

The SOS polynomials (σj) provide a Putinar’s certificate that y
is a global minimizer of g on K!
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Similarly ....if one searches for a polynomial g convex on K, it
suffices to add the constraint:

yT∇2g(x) y = ψ0(x, y)︸ ︷︷ ︸
SOS

+
m∑

j=1

ψj(x, y)︸ ︷︷ ︸
SOS

gj(x)

+ψm+1(x, y)︸ ︷︷ ︸
S0S

(1− ‖y‖2).
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A rationale for Putinar’s certificate

Why introduce this positivity certificate ?

Let K := {x : gj(x) ≥ 0, j = 1, . . . ,m} be compact and
assume that the quadratic polynomial x 7→ N − ‖x‖2 satisfies:

N − ‖x‖2 = p0 +
m∑

j=1

pj gj ,

for some SOS polynomials (pj) ⊂ R[x].

Theorem (Putinar’s Positivstellensatz)

If f ∈ R[x] is positive on K then:

f = σ0 +
m∑

j=1

σj gj ,

for some SOS polynomials (σj) ⊂ R[x].
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And in fact,

from recent results by Marshall (2009) and Nie (2012) ...

Putinar’s Positivstellensatz

also holds generically for polynomials of degree d nonnegative
on K
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A practical inverse optimization problem

Recall that y ∈ K is fixed (given):

A practical inverse optimization problem P−1
k , k ∈ N, reads:

ρk = min
g∈R[x ]d ,σj

{‖f − g‖ : g − g(y) = σ0︸︷︷︸
∈Σ[x]k

+
m∑

j=1

gj · σj︸︷︷︸
∈Σ[x]k−vj

The unknowns, which are the coefficients (gα) and (σjα) of
g ∈ R[x]d and σj ∈ Σ[x]k−vj , satisfy a system of LMIs

The size of the certificate (hence of the LMI’s) is controlled
by the parameter k , the degree of the sos polynomials σj .
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If the norm ‖h‖ on R[x]

is the `1, or `2, or `∞-norm of the vector of coefficients (hα) of
the polynomial h

... then P−1
k is a semidefinite program

Theorem
Let K ⊂ Rn be with nonempty interior. Then for every 2k ≥ deg f
the practical inverse problem P−1

k has a optimal solution
g∗ ∈ R[x]d .
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The canonical form of an `1-norm solution

Consider the inverse optimization problem P−1
k with the

`1-norm.

We consider the case K compact. With no loss of generality,
and up to the change of variable x′ = x− y (and possibly after
some scaling) one may and will assume that K ⊆ [−1,1]n and
y ∈ K is y = 0.
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The canonical form of an `1-norm solution

Theorem
Let K ⊆ [−1,1]n be with nonempty interior. Under the `1-norm,
there is an optimal solution g∗ ∈ R[x]d of P−1

k , with value ρk and
of the form

g∗ = f + b′x +
n∑

i=1

λ∗i x2
i

for some b ∈ Rn and nonnegative vector λ∗ ∈ Rn. And

ρk = ‖f − g∗‖1 = ‖b‖1 + ‖λ∗‖1.

Moreover, letting J(0) = {j : gj(0) = 0},

b = −∇f (0) +
∑

j∈J(0)

γi ∇gj(0), γ ≥ 0,

for some nonnegative vector γ.
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Observe that in such an optimal solution g∗ ∈ R[x]d ,

... ONLY 2n

OUT OF
(n+d

n

)
(= O(nd )) coefficients of g∗ are potentially non

zero ... and this ... independently of d !

That is, the `1-norm criterion INDUCES an optimal solution g∗

with a sparse support !!

.... a property already observed in other contexts (e.g. sparse
recovery of signals).
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A by-product

As a by product of the inverse optimization problem P−1, we
also obtain:

Theorem

Let f ∗ and ρk be the optimal values of P and P−1
k , respectively,

and let x∗ ∈ K be an optimal solution of P. Then:

f ∗ ≤ f (y) ≤ f ∗ + ρk · sup
α∈Nn

2d

|(x∗)α|,

and if K ⊆ [−1,1]n,

f ∗ ≤ f (y) ≤ f ∗ + ρk .

And so ρk provides an estimate of the how far is f (y) from f ∗.
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Asymptotics when k →∞

Recall that P−1 is the ideal inverse problem with value ρ.

Theorem

Let K be with nonempty interior. Let gk ∈ R[x]d (resp.
g∗ ∈ R[x]d ) be an optimal solution of P−1

k (resp. P−1), with
associated optimal value ρk (resp. ρ).

The sequence (ρk ), k ∈ N, is monotone nonincreasing and
converges to ρ̂ ≥ ρ.
Moreover, every accumulation point ĝ ∈ R[x]d of the
sequence (gk ), k ∈ N, is such that ĝ − ĝ(0) ≥ 0 on K and
‖ĝ − f‖ = ρ̂.
Finally, if the polynomial g∗ − g∗(0) has a Putinar
certificate then ρk = ρ̂ = ρ for some k ∈ N.
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It has been proved in a number of cases that f ≥ 0 on K implies
that f has a Putinar certificate, i.e.,

f = σ0︸︷︷︸
SOS

+
m∑

j=1

σj︸︷︷︸
SOS

gj ,

but recent results by Marshall (2006) and Nie (2012) prove that
in fact it is a generic property in R[x]d !
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ε-global minimizer

We would like ρk → ρ (instead of ρk → ρ̂ ≥ ρ) as k →∞.

possible ... but need to introduce ε-global optimality

P−1
ε : ρε = min

g∈R[x]d
{‖f − g‖ : g(x)− g(y) + ε ≥ 0, ∀x ∈ K }

and

P−1
εk : ρεk = min

g∈R[x]d
{‖f − g‖ : g(x)− g(y) + ε = σ0 +

∑
j

σj gj}

with degσjgj ≤ 2k for all j .
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Theorem
Let 0 < ε` → 0 as `→∞, and let g`k ∈ R[x]d be an optimal
solution of the inverse problem P−1

ε`k .

For every ` ∈ N there exists k` such that ρε`k ≤ ρ for all k ≥ k`
and

ρε`k` → ρ and g`k` → g∗ as `→∞.

Jean B. Lasserre Inverse optimization



Conclusion

We have presented a hierarchy of semidefinite programs
that provides an approximate solution to inverse
polynomial optimization problems.
For the `1-norm criterion, there exists a canonical “sparse"
solution.

An interesting issue is to consider problems where the cost
function f depends on a parameter θ ∈ Θ.

Given y ∈ K, the inverse problem is now to find a parameter
θ∗ ∈ Θ that minimizes the error between f (y , θ) and the optimal
value J(θ) over all θ ∈ Θ

... because in this case
there might be no parameter value θ for which y is an optimal
solution.
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THANK YOU!
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