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Goal of this lecture

Study conditions for the existence of
low rank positive semidefinite matrix completions

from a combinatorial point of view.

Low rank solutions to semidefinite programs

New graph parameter gd(G ): Gram dimension of a graph

Geometric representations of graphs:

Euclidean distance graph realizations

Colin de Verdière type graph parameters

Geometry of SDP:

Nondegeneracy: Unique completion, universal rigidity, SAP



Positive semidefinite matrix completion

Given a partial matrix: 
1 0 ? −1
0 1 1 ?
? 1 1 0
−1 ? 0 1



1 Can it be completed to a psd matrix?

2 How to find a psd completion?

3 Is such a completion unique?

4 What is the smallest rank of such a completion?



This lecture: Combinatorial approach

Given a partial matrix: 
1 0 ? −1
0 1 1 ?
? 1 1 0
−1 ? 0 1


Give answers depending on structural properties of the graph of
specified entries:

Graph  C4
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Notation

A symmetric matrix X is positive semidefinite (psd, X � 0) if
and only if it is a Gram matrix:

X = (uT
i uj) for some vectors u1, . . . , un ∈ Rk .

Sn+ = all n × n psd matrices.

Given a graph G = (V = [n],E )

S+(G ) = all partial matrices a ∈ RV∪E (specified on the
diagonal and on the edge set) that can be completed to a
full psd matrix.

The elliptope En = all psd matrices with an all-ones diagonal
(set of correlation matrices).

The projected elliptope E(G ) = all partial matrices
completable to a correlation matrix.



Low rank solutions to semidefinite
programs



Why do we care about low rank solutions for SDP?

max-cut= max
∑

ij∈E wij(1− xixj)/2 s.t. x ∈ {±1}n.

sdp= max
∑

ij∈E wij(1− Xij)/2 s.t. X � 0, Xii = 1 ∀i ∈ V .

Let X be an optimal solution of the SDP.

1 0.878-approximation algorithm [Goemans-Williamson 1995].

2 If rank X ≤ 4, 0.881-approximation [Avidor-Zwick 2005].

3 If rank X ≤ 2, 0.884-approximation [Goemans]

4 If rank X = 1, the SDP relaxation is exact: max-cut = sdp.



Another example: Distance geometry

Reconstruct the locations of objects (say) in 3D from partial
measurements of mutual distances.

Find u1, · · · , un ∈ R3 such that ‖ui − uj‖2 = dij ∀ij ∈ E .

Equivalently: Find a solution of rank at most 3 to the SDP:

X � 0, Xii + Xjj − 2Xij = dij ∀ij ∈ E .

; Euclidean distance dimension ed(G ) :
the smallest k s.t. there is a solution

of rank at most k for any d ∈ RE



Getting low rank solutions via matrix completion

sdp= max〈A0,X 〉 s.t. X � 0, 〈Ak ,X 〉 = bk (k = 1, · · · ,m).

Sparsity pattern G = (V ,E ): ij ∈ E iff (Ak)ij 6= 0 for some k .

Lemma

If X ∗ is an optimum solution, and X satisfies the system:

Xij = X ∗ij (ij ∈ V ∪ E ), X � 0

then X too is an optimum solution.

Thus it suffices to find a low rank solution to the above positive
semidefinite matrix completion problem.



The Gram dimension of a graph



Gram dimension

Definition

1 The Gram dimension gd(G , a) of a partial matrix
a ∈ S+(G ) is the smallest rank of a psd completion of a.

That is, the smallest k such that

aij = uT
i uj for some u1, . . . , un ∈ Rk .

2 The Gram dimension gd(G ) of a graph G = (V ,E ) is

gd(G ) = max
a∈S+(G)

gd(G , a).

That is, the smallest k such that any partial matrix

a ∈ S+(G ) has a psd completion of rank at most k.

For instance, gd(Kn) = n, gd(G ) ≤ n − 1 if G 6= Kn.



Case of chordal graphs

+ =

1 a ∈ S+(G )⇐⇒ a[K ] � 0 for all cliques K of G
[Grone-Johnson-Sà-Wolkowicz 1984]

2 Compute a psd completion of a ∈ QV∪E in poly-time [L 2000]

3 gd(G , a) = maxK rank a[K ].

4 gd(G ) = maxK |K | for G chordal.

Theorem

For any graph G , gd(G ) ≤ tw(G ) + 1.

tw(G ): tree-width of G = smallest integer k such that G is
contained in a clique sum of cliques Kk+1



Application: Bounding ranks of solutions to SDP

Example ( Göring, Helmberg, Reiss 2012: Minimizing the
maximum eigenvalue of the weighted Laplacian)

max
ξ∈R,v1,··· ,vn∈Rn

{
ξ :
∑
i∈V
‖vi‖2 = 1, ‖vi − vj‖2 ≥ ξ (ij ∈ E )

}
has an optimal solution in dimension at most gd(G ) ≤ tw(G ) + 1.

Example (Göring, Helmberg, Wappler 2008: Maximizing the
second smallest eigenvalue of the weighted Laplacian)

max
v1,...,vn∈Rn

{∑
i∈V
‖vi‖2 : ‖vi − vj‖2 ≤ 1 (ij ∈ E ), ‖

∑
i∈V

vi‖2 = 0

}
has an optimum solution in dimension at most tw(G ) + 1.

The bound gd(G ) ≤ tw(G ) + 1 does not help in the second
example, since the sparsity pattern is the complete graph.



Complexity of the Gram dimension parameter

Theorem (ELV 2012)

For any fixed k ≥ 2, deciding whether gd(G , a) ≤ k [i.e., a has a
psd completion of rank at most k] is an NP-hard problem.

Membership in the rank constrained elliptope Ek(G ) is NP-hard.

Ek(G )=all partial matrices completable to a correlation matrix of
rank at most k .

Ek(G ) ⊆ conv Ek(G ) ⊆ E(G ).

Theorem (ELV 2012)

Membership in the convex hull of Ek(G ) is NP-hard.

Question: Is weak optimization over conv(Ek(G )) NP-hard?



Case k ≥ 3: Use orthogonal representations

gd(G , 0E ) is the smallest integer k for which there exist unit
vectors u1, · · · , un ∈ Rk such that uT

i uj = 0 ∀ij ∈ E .

Links to cliques, graph colorings and Lovász’ theta number :

Theorem (Lovász’ sandwich inequality)

ω(G ) ≤ ϑ(G ) ≤ gd(G , 0E ) ≤ χ(G ).

• gd(G , 0E ) ≤ 4 for G planar graph.

• Deciding whether gd(G , 0E ) ≤ 3 is NP-hard for G planar.
[Peeters 1997]

• For k ≥ 3, deciding whether gd(G , 0E ) ≤ k is NP-hard
(for suspensions of planar graphs).

• For k = 2, gd(G , 0E ) ≤ 2 ⇐⇒ G is bipartite.

So we need another reduction!



Case k = 2: Use Euclidean graph realizations

Basic tool 1:

Characterize ed(G , d) ≤ 1 and gd(G , a) ≤ 2 in terms of a
partition type property of the arguments d and θ = arccos a:

∃ε ∈ {±1}E
∑
e∈C

εede = 0,
∑
e∈C

εeθe ∈ 2πZ ∀C (oriented) circuit

Basic tool 2:

Hardness result of [Saxe 1979] for ed(G , d) ≤ 1 when d ∈ {1, 2}E .



Structural characterizations



Gram and Euclidean graph realizations

Suspension graph: ∇G = G + new node adjacent to all nodes
of G .

Theorem (LV 2012)

gd(G ) = ed(∇G ) ≥ ed(G ) + 1.

Question

Does the inequality: ed(∇G ) ≤ ed(G ) + 1 hold?

Equivalently: gd(G ) = ed(G ) + 1 ?

Yes, if G has Gram dimension at most 4.



Forbidden minor characterization for ed(G ) ≤ 3

Theorem (Belk-Connelly 2007)

1 The graph parameter ed(G ) is minor monotone:

ed(G\e), ed(G/e) ≤ ed(G ).

Hence, for any k, the class of graphs with ed(G ) ≤ k can be
characterized by finitely many forbidden minors.

2 ed(G ) ≤ 1⇐⇒ G has no minor K3.

3 ed(G ) ≤ 2⇐⇒ G has no minor K4.

4 ed(G ) ≤ 3⇐⇒ G has no minor K5,K2,2,2.
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The octahedron graph K2,2,2



Forbidden minor characterization for gd(G ) ≤ 4

Theorem

1 The graph parameter gd(G ) is minor monotone.

2 gd(G ) ≤ 2⇐⇒ G has no minor K3.

3 gd(G ) ≤ 3⇐⇒ G has no minor K4.

4 gd(G ) ≤ 4⇐⇒ G has no minor K5,K2,2,2.

1 2

3

45

6



Links between both forbidden minor characterizations

Theorem

1 The graph parameter gd(G ) is minor monotone.

2 gd(G ) ≤ 2⇐⇒ G has no minor K3 =⇒ ed(G ) ≤ 1.

3 gd(G ) ≤ 3⇐⇒ G has no minor K4 =⇒ ed(G ) ≤ 2.

4 gd(G ) ≤ 4⇐⇒ G has no minor K5,K2,2,2 =⇒ ed(G ) ≤ 3.
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Recall:
ed(G ) ≤ gd(G )− 1.



Sketch of proof

Theorem (Arnborg, Proskurowski, Corneil 1990)

G has tree-width at most 3 ⇐⇒ no K5, K2,2,2, V8, C52K2 minor.

Theorem

gd(G ) ≤ 4 ⇐⇒ G has no K5,K2,2,2 minor .

Sketch of proof:

1 K5, K2,2,2 have Gram dimension 5.

2 If G is 2-connected with no K5, K2,2,2 minor, then G is
contained in a clique sum of copies of K4, V8, C52K2.

3 V8, C52K2 have Gram dimension 4.

As in the work of Belk-Connelly [2007], the tedious part of the
proof consists of showing that gd(V8), gd(C52K2) ≤ 4.

Following So-Ye [2007], use SDP duality: use the optimal dual
(stress) matrix to ‘fold’ the optimal primal solution in low dim.



Geometry of SDP and Colin de
Verdière type graph parameters



How to show gd(G ) ≥ k?

Recipe: Find a partial matrix a having a unique psd completion X
and with rank X ≥ k . Consider the pair of primal and dual SDP’s:

sup
X

0 s.t. Xij = aij (ij ∈ V ∪ E ), X � 0, (PG )

inf
y ,Z

∑
ij∈V∪E

aijyij s.t. Z =
∑

ij∈V∪E
yijEij � 0. (DG )

Theorem (fundamental facts about SDP)

Let X be a completion of a, X = Gram(p1, . . . , pn) with pi ∈ Rd .

If there is a nondegenerate dual optimum solution Z , then X
is the unique completion of a.

Let Z be a dual optimal solution which is strictly
complementary to X , i.e., corank Z = rank X . TFAE:

1 Z is dual nondegenerate.
2 X is the unique psd completion of a.
3 X is an extreme point of the primal feasible region:

{pT
i pj : ij ∈ V ∪ E} spans Sd .



Example: K2,2,2 has Gram dimension 5

K2,2,2 = K6 \ {14, 25, 36}
1 2

3
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X = Gram(e1, e2, e3, e4, e5,
e1+e2√

2
) is an extreme point of the

primal feasible region, with rank 5.

a ∈ S+(K2,2,2) the corresponding partial matrix.

Z = (1, 1, 0, 0, 0,−
√

2)(1, 1, 0, 0, 0,−
√

2)T is dual optimal
with corank 5.

Hence: X is the unique psd completion of a.

This shows: gd(K2,2,2, a) = 5.

gd(K2,2,2) ≤ 5 since K2,2,2 has tree-width 4.



Planar graphs with unbounded Gram dimension

The supertriangle Gr has gd(Gr ) ≥ r .

4

3 = F 3G

G

Choose the vector labeling in such a way that each black triangle
has rank 2.

The supertriangles are used in [Colin de Verdère 1998].



Dual nondegeneracy and the Strong Arnold Property

sup
X

0 s.t. Xij = aij (ij ∈ V ∪ E ), X � 0, (PG )

inf
y ,Z

∑
ij∈V∪E

aijyij s.t. Z =
∑

ij∈V∪E
yijEij � 0. (DG )

Definition

Let Z be dual feasible of rank r . Then, Z is dual nondegenerate
if the tangent space TZ to the manifold Mr (of rank r matrices)
intersects transversally at Z the linear space:

L = lin{Eij : ij ∈ V ∪ E} = {M : Mij = 0 ∀ij ∈ G}.

That is,
ZR = 0, Rij = 0 ∀ij ∈ V ∪ E =⇒ R = 0. (SAP)

SAP is known as the Strong Arnold Property. It is used to define
Colin de Verdière type graph parameters µ(G ), ν(G ), νH(G ), ....



The graph parameter νH(G )

Definition (van der Holst 2003)

νH(G ) = max corank(Z ) s.t. Z � 0, Zij = 0 (ij ∈ E ), (SAP).

Theorem (van der Holst 2003)

1 The parameter νH is minor monotone.

2 νH(G ) ≤ 4 ⇐⇒ G has no minor K5 or K2,2,2.

Same forbidden minors as for gd(G ) ≤ 4 !

Theorem (LV 2012)

1 νH(G ) ≤ gd(G ).

2 νH(G ) = max gd(G , a), taken over all nice a, i.e., those for
which the dual (DG ) has a nondegenerate optimal solution.

Question

Does equality: gd(G ) = νH(G ) hold ?

Yes if G has no minor K5 or K2,2,2, but also for K2,2,2, G chordal,...



Universal rigidity of frameworks

Definition

A framework (G ,p = {p1, . . . , pn}) is universally rigid if for any q:

[‖qi−qj‖2 = ‖pi−pj‖2 ∀ij ∈ E ]=⇒[‖qi−qj‖2 = ‖pi−pj‖2 ∀i , j ∈ V ]

Theorem (Connelly’s sufficient conditions)

Let p1, . . . , pn ∈ Rd which affinely span Rd . Assume:

1 R ∈ Sd , 〈R, (pi − pj)(pi − pj)
T〉 = 0 ∀ij ∈ E =⇒ R = 0.

[no conic at infinity]

2 There is a psd stress matrix Z of corank d:

Zij = 0 ∀ij ∈ E , Ze = 0,
∑
j∈V

Zijpj = 0 ∀i ∈ V .

Then: (G , p) is universally rigid.

This extends to tensegrities.



Simple geometric proof

Let q1, . . . , qn such that ‖qi − qj‖2 = ‖pi − pj‖2 ∀ij ∈ E .

We need to show that ‖qi − qj‖2 = ‖pi − pj‖2 ∀i , j ∈ V .

1 Let p̂i = (pi , 1) and X = Gram(p̂1, . . . , p̂n), rank X = d + 1.

Let Y = Gram(q1, . . . , qn).

2 By the assumptions on Z : ZX = 0=⇒ ker X = Range(Z ).

3 Moreover, 〈Z ,Y − X 〉 = 0 =⇒ 〈Z ,Y 〉 = 〈Z ,X 〉 = 0
=⇒ ZY = 0 =⇒ ker Y ⊇ ker X .

4 Hence: Y − X = (〈R, p̂i p̂j
T〉)i ,j∈V for some R ∈ Sd+1.

5 The no conic at infinity condition implies: R =

(
0 a

aT b

)
,

where a ∈ Rd , b ∈ R.

6 Thus: (Y − X )ij = aTpi + aTpj + b ∀i , j ∈ V , implying

‖qi − qj‖2 = Yii + Yjj − 2Yij = Xii + Xij − 2Xij = ‖pi − pj‖2.
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