Semidefinite Programming, Matrix Completion and Geometric Graph Realizations

Monique Laurent
CWI, Amsterdam \& Tilburg University

Based on joint works with Marianna Eisenberg-Nagy
(Budapest) and Antonis Varvitsiotis (CWI)

Large Scale Conic Optimization

NUS, November 19-23, 2012

Study conditions for the existence of low rank positive semidefinite matrix completions from a combinatorial point of view.

- Low rank solutions to semidefinite programs

■ New graph parameter $\operatorname{gd}(G)$: Gram dimension of a graph

Geometric representations of graphs:

■ Euclidean distance graph realizations
■ Colin de Verdière type graph parameters

Geometry of SDP:

■ Nondegeneracy: Unique completion, universal rigidity, SAP

Given a partial matrix:

$$
\left(\begin{array}{cccc}
\mathbf{1} & 0 & ? & -1 \\
0 & \mathbf{1} & 1 & ? \\
? & 1 & \mathbf{1} & 0 \\
-1 & ? & 0 & \mathbf{1}
\end{array}\right)
$$

1 Can it be completed to a psd matrix?
2 How to find a psd completion?
3 Is such a completion unique?
4 What is the smallest rank of such a completion?

Given a partial matrix:

$$
\left(\begin{array}{cccc}
\mathbf{1} & 0 & ? & -1 \\
0 & \mathbf{1} & 1 & ? \\
? & 1 & \mathbf{1} & 0 \\
-1 & ? & 0 & \mathbf{1}
\end{array}\right)
$$

Give answers depending on structural properties of the graph of specified entries:

Graph C_{4}

- A symmetric matrix X is positive semidefinite (psd, $X \succeq 0$) if and only if it is a Gram matrix:

$$
X=\left(u_{i}^{\top} u_{j}\right) \text { for some vectors } u_{1}, \ldots, u_{n} \in \mathbb{R}^{k}
$$

- $\mathcal{S}_{+}^{n}=$ all $n \times n$ psd matrices.
- Given a graph $G=(V=[n], E)$
$\mathcal{S}_{+}(G)=$ all partial matrices $a \in \mathbb{R}^{V \cup E}$ (specified on the diagonal and on the edge set) that can be completed to a full psd matrix.
- The elliptope $\mathcal{E}_{n}=$ all psd matrices with an all-ones diagonal (set of correlation matrices).
- The projected elliptope $\mathcal{E}(G)=$ all partial matrices completable to a correlation matrix.

Low rank solutions to semidefinite

 programs■ max-cut $=\max \sum_{i j \in E} w_{i j}\left(1-\mathbf{x}_{\mathbf{i}} \mathbf{x}_{\mathbf{j}}\right) / 2$ s.t. $\mathbf{x} \in\{ \pm \mathbf{1}\}^{\mathbf{n}}$.
■ sdp $=\max \sum_{i j \in E} w_{i j}\left(1-X_{i j}\right) / 2$ s.t. $X \succeq 0, X_{i i}=1 \forall i \in V$.

Let X be an optimal solution of the SDP.
1 0.878-approximation algorithm [Goemans-Williamson 1995].
2 If rank $X \leq 4, \mathbf{0 . 8 8 1}$-approximation [Avidor-Zwick 2005].
3 If rank $X \leq 2,0.884$-approximation [Goemans]
4 If $\operatorname{rank} X=1$, the SDP relaxation is exact: max-cut $=\mathrm{sdp}$.

Reconstruct the locations of objects (say) in 3D from partial measurements of mutual distances.

Find $u_{1}, \cdots, u_{n} \in \mathbb{R}^{3}$ such that $\left\|u_{i}-u_{j}\right\|^{2}=d_{i j} \quad \forall i j \in E$.
Equivalently: Find a solution of rank at most 3 to the SDP:

$$
X \succeq 0, \quad X_{i i}+X_{j j}-2 X_{i j}=d_{i j} \quad \forall i j \in E
$$

\leadsto Euclidean distance dimension $\mathrm{ed}(G)$: the smallest k s.t. there is a solution of rank at most k for any $d \in \mathbb{R}^{E}$
$\mathrm{sdp}=\max \left\langle A_{0}, X\right\rangle$ s.t. $X \succeq 0,\left\langle A_{k}, X\right\rangle=b_{k}(k=1, \cdots, m)$.
Sparsity pattern $G=(V, E): i j \in E$ iff $\left(A_{k}\right)_{i j} \neq 0$ for some k.

Lemma

If X^{*} is an optimum solution, and X satisfies the system:

$$
X_{i j}=X_{i j}^{*} \quad(i j \in V \cup E), \quad X \succeq 0
$$

then X too is an optimum solution.

Thus it suffices to find a low rank solution to the above positive semidefinite matrix completion problem.

The Gram dimension of a graph

Definition

1 The Gram dimension $\operatorname{gd}(G, a)$ of a partial matrix $a \in \mathcal{S}_{+}(G)$ is the smallest rank of a psd completion of a.

That is, the smallest k such that

$$
a_{i j}=u_{i}^{\top} u_{j} \text { for some } u_{1}, \ldots, u_{n} \in \mathbb{R}^{k}
$$

2 The Gram dimension $\operatorname{gd}(G)$ of a graph $G=(V, E)$ is

$$
\operatorname{gd}(G)=\max _{a \in \mathcal{S}_{+}(G)} \operatorname{gd}(G, a)
$$

That is, the smallest k such that any partial matrix $a \in \mathcal{S}_{+}(G)$ has a psd completion of rank at most k.

For instance, $\operatorname{gd}\left(K_{n}\right)=n, \quad \operatorname{gd}(G) \leq n-1$ if $G \neq K_{n}$.

$1 a \in \mathcal{S}_{+}(G) \Longleftrightarrow a[K] \succeq 0$ for all cliques K of G [Grone-Johnson-Sà-Wolkowicz 1984]

2 Compute a psd completion of $a \in \mathbb{Q}^{V \cup E}$ in poly-time [L 2000]
$3 \operatorname{gd}(G, a)=\max _{K} \operatorname{rank} a[K]$.
$4 \operatorname{gd}(G)=\max _{K}|K|$ for G chordal.

Theorem

For any graph $G, \operatorname{gd}(G) \leq t w(G)+1$.
$\operatorname{tw}(G)$: tree-width of $G=$ smallest integer k such that G is contained in a clique sum of cliques K_{k+1}

Example (Göring, Helmberg, Reiss 2012: Minimizing the maximum eigenvalue of the weighted Laplacian)
$\max _{\xi \in \mathbb{R}, v_{1}, \cdots, v_{n} \in \mathbb{R}^{n}}\left\{\xi: \sum_{i \in V}\left\|v_{i}\right\|^{2}=1,\left\|v_{i}-v_{j}\right\|^{2} \geq \xi(i j \in E)\right\}$
has an optimal solution in dimension at most $\operatorname{gd}(G) \leq \operatorname{tw}(G)+1$.

Example (Göring, Helmberg, Wappler 2008: Maximizing the second smallest eigenvalue of the weighted Laplacian)
$\max _{v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}}\left\{\sum_{i \in V}\left\|v_{i}\right\|^{2}:\left\|v_{i}-v_{j}\right\|^{2} \leq 1(i j \in E),\left\|\sum_{i \in V} v_{i}\right\|^{2}=0\right\}$
has an optimum solution in dimension at most $\operatorname{tw}(G)+1$.

The bound $\operatorname{gd}(G) \leq \operatorname{tw}(G)+1$ does not help in the second example, since the sparsity pattern is the complete graph.

Theorem (ELV 2012)

For any fixed $k \geq 2$, deciding whether $\operatorname{gd}(G, a) \leq k$ [i.e., a has a psd completion of rank at most $k]$ is an NP-hard problem.

Membership in the rank constrained elliptope $\mathcal{E}_{k}(G)$ is NP-hard.
$\mathcal{E}_{k}(G)=$ all partial matrices completable to a correlation matrix of rank at most k.

$$
\mathcal{E}_{k}(G) \subseteq \operatorname{conv} \mathcal{E}_{k}(G) \subseteq \mathcal{E}(G)
$$

Theorem (ELV 2012)
Membership in the convex hull of $\mathcal{E}_{k}(G)$ is NP-hard.
Question: Is weak optimization over conv $\left(\mathcal{E}_{k}(G)\right)$ NP-hard?
$\operatorname{gd}\left(G, 0_{E}\right)$ is the smallest integer k for which there exist unit vectors $u_{1}, \cdots, u_{n} \in \mathbb{R}^{k}$ such that $u_{i}^{\top} u_{j}=0 \quad \forall i j \in E$.

Links to cliques, graph colorings and Lovász' theta number:

Theorem (Lovász' sandwich inequality)

$$
\omega(G) \leq \vartheta(\bar{G}) \leq \operatorname{gd}\left(G, 0_{E}\right) \leq \chi(G)
$$

- $\operatorname{gd}\left(G, 0_{E}\right) \leq 4$ for G planar graph.
- Deciding whether $\operatorname{gd}\left(G, 0_{E}\right) \leq 3$ is NP-hard for G planar.
[Peeters 1997]
- For $k \geq 3$, deciding whether $\operatorname{gd}\left(G, 0_{E}\right) \leq k$ is NP-hard (for suspensions of planar graphs).
- For $k=2, \operatorname{gd}\left(G, 0_{E}\right) \leq 2 \Longleftrightarrow G$ is bipartite.

So we need another reduction!

Basic tool 1:

Characterize $\operatorname{ed}(G, d) \leq 1$ and $\operatorname{gd}(G, a) \leq 2$ in terms of a partition type property of the arguments d and $\theta=\arccos a$:
$\exists \epsilon \in\{ \pm 1\}^{E} \quad \sum_{e \in C} \epsilon_{e} d_{e}=0, \quad \sum_{e \in C} \epsilon_{e} \theta_{e} \in 2 \pi \mathbb{Z} \quad \forall C$ (oriented) circuit

Basic tool 2:
Hardness result of [Saxe 1979] for $\operatorname{ed}(G, d) \leq 1$ when $d \in\{1,2\}^{E}$.

Structural characterizations

Suspension graph: $\nabla G=G+$ new node adjacent to all nodes of G.

Theorem (LV 2012)

$\operatorname{gd}(G)=\operatorname{ed}(\nabla G) \geq \operatorname{ed}(G)+1$.

Question

- Does the inequality: $\operatorname{ed}(\nabla G) \leq \operatorname{ed}(G)+1$ hold?
- Equivalently: $\operatorname{gd}(G)=\operatorname{ed}(G)+1$?

Yes, if G has Gram dimension at most 4 .

Forbidden minor characterization for $\operatorname{ed}(G) \leq 3$

Theorem (Belk-Connelly 2007)

1 The graph parameter $\operatorname{ed}(G)$ is minor monotone:

$$
\operatorname{ed}(G \backslash e), \operatorname{ed}(G / e) \leq \operatorname{ed}(G)
$$

Hence, for any k, the class of graphs with $\operatorname{ed}(G) \leq k$ can be characterized by finitely many forbidden minors.
$2 \operatorname{ed}(G) \leq 1 \Longleftrightarrow G$ has no minor K_{3}.
$3 \operatorname{ed}(G) \leq 2 \Longleftrightarrow G$ has no minor K_{4}.
$4 \operatorname{ed}(G) \leq 3 \Longleftrightarrow G$ has no minor $K_{5}, K_{2,2,2}$.

The octahedron graph $K_{2,2,2}$

Theorem

1 The graph parameter $\operatorname{gd}(G)$ is minor monotone.
$2 \operatorname{gd}(G) \leq 2 \Longleftrightarrow G$ has no minor K_{3}.
$3 \operatorname{gd}(G) \leq 3 \Longleftrightarrow G$ has no minor K_{4}.
$4 \operatorname{gd}(G) \leq 4 \Longleftrightarrow G$ has no minor $K_{5}, K_{2,2,2}$.

Theorem

1 The graph parameter $\operatorname{gd}(G)$ is minor monotone.
$2 \operatorname{gd}(G) \leq 2 \Longleftrightarrow G$ has no minor $K_{3} \Longrightarrow \operatorname{ed}(G) \leq 1$.
$3 \operatorname{gd}(G) \leq 3 \Longleftrightarrow G$ has no minor $K_{4} \Longrightarrow \operatorname{ed}(G) \leq 2$.
$4 \operatorname{gd}(G) \leq 4 \Longleftrightarrow G$ has no minor $K_{5}, K_{2,2,2} \Longrightarrow \operatorname{ed}(G) \leq 3$.

Recall:

$$
\operatorname{ed}(G) \leq \operatorname{gd}(G)-1
$$

Theorem (Arnborg, Proskurowski, Corneil 1990)

G has tree-width at most $3 \Longleftrightarrow$ no $K_{5}, K_{2,2,2}, V_{8}, C_{5} \square K_{2}$ minor.

Theorem

$\operatorname{gd}(G) \leq 4 \Longleftrightarrow G$ has no $K_{5}, K_{2,2,2}$ minor.

Sketch of proof:

$1 K_{5}, K_{2,2,2}$ have Gram dimension 5.
2 If G is 2-connected with no $K_{5}, K_{2,2,2}$ minor, then G is contained in a clique sum of copies of $K_{4}, V_{8}, C_{5} \square K_{2}$.
$3 V_{8}, C_{5} \square K_{2}$ have Gram dimension 4.

As in the work of Belk-Connelly [2007], the tedious part of the proof consists of showing that $\operatorname{gd}\left(V_{8}\right), \operatorname{gd}\left(C_{5} \square K_{2}\right) \leq 4$.

Following So-Ye [2007], use SDP duality: use the optimal dual (stress) matrix to 'fold' the optimal primal solution in low dim.

Geometry of SDP and Colin de Verdière type graph parameters

Recipe: Find a partial matrix a having a unique psd completion X and with rank $X \geq k$. Consider the pair of primal and dual SDP's:

$$
\begin{align*}
& \sup _{X} 0 \text { s.t. } X_{i j}=a_{i j}(i j \in V \cup E), X \succeq 0, \tag{G}\\
& \inf _{y, Z} \sum_{i j \in V \cup E} a_{i j} y_{i j} \text { s.t. } Z=\sum_{i j \in V \cup E} y_{i j} E_{i j} \succeq 0 . \tag{G}
\end{align*}
$$

Theorem (fundamental facts about SDP)

Let X be a completion of $a, X=\operatorname{Gram}\left(p_{1}, \ldots, p_{n}\right)$ with $p_{i} \in \mathbb{R}^{d}$.

- If there is a nondegenerate dual optimum solution Z, then X is the unique completion of a.
- Let Z be a dual optimal solution which is strictly complementary to X, i.e., corank $Z=\operatorname{rank} X$. TFAE:
$1 Z$ is dual nondegenerate.
$2 X$ is the unique psd completion of a.
$3 X$ is an extreme point of the primal feasible region:

$$
\left\{p_{i}^{\top} p_{j}: i j \in V \cup E\right\} \text { spans } \mathcal{S}^{d} .
$$

$$
K_{2,2,2}=K_{6} \backslash\{14,25,36\}
$$

- $X=\operatorname{Gram}\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, \frac{e_{1}+e_{2}}{\sqrt{2}}\right)$ is an extreme point of the primal feasible region, with rank 5 .
- $a \in \mathcal{S}_{+}\left(K_{2,2,2}\right)$ the corresponding partial matrix.
- $Z=(1,1,0,0,0,-\sqrt{2})(1,1,0,0,0,-\sqrt{2})^{\top}$ is dual optimal with corank 5.
- Hence: X is the unique psd completion of a.
- This shows: $\operatorname{gd}\left(K_{2,2,2}, a\right)=5$.

The supertriangle G_{r} has $\operatorname{gd}\left(G_{r}\right) \geq r$.

$$
\mathrm{G}_{3}=\mathrm{F}_{3}
$$

Choose the vector labeling in such a way that each black triangle has rank 2.

The supertriangles are used in [Colin de Verdère 1998].

$$
\begin{align*}
& \sup _{X} 0 \text { s.t. } X_{i j}=a_{i j}(i j \in V \cup E), X \succeq 0, \tag{G}\\
& \inf _{y, Z} \sum_{i j \in V \cup E} a_{i j} y_{i j} \text { s.t. } Z=\sum_{i j \in V \cup E} y_{i j} E_{i j} \succeq 0 . \tag{G}
\end{align*}
$$

Definition

Let Z be dual feasible of rank r. Then, Z is dual nondegenerate if the tangent space \mathcal{T}_{Z} to the manifold \mathcal{M}_{r} (of rank r matrices) intersects transversally at Z the linear space:

$$
\mathcal{L}=\operatorname{lin}\left\{E_{i j}: i j \in V \cup E\right\}=\left\{M: M_{i j}=0 \forall i j \in \bar{G}\right\}
$$

That is,

$$
\begin{equation*}
Z R=0, R_{i j}=0 \forall i j \in V \cup E \Longrightarrow R=0 \tag{SAP}
\end{equation*}
$$

SAP is known as the Strong Arnold Property. It is used to define Colin de Verdière type graph parameters $\mu(G), \nu(G), \nu_{H}(G), \ldots$

The graph parameter $\nu_{H}(G)$

Definition (van der Holst 2003)

$$
\nu_{H}(G)=\max \operatorname{corank}(Z) \text { s.t. } Z \succeq 0, Z_{i j}=0(i j \in \bar{E}),(S A P) .
$$

Theorem (van der Holst 2003)

1 The parameter ν_{H} is minor monotone.
$2 \nu_{H}(G) \leq 4 \Longleftrightarrow G$ has no minor K_{5} or $K_{2,2,2}$.

Same forbidden minors as for $\operatorname{gd}(G) \leq 4$!
Theorem (LV 2012)
$1 \nu_{H}(G) \leq \operatorname{gd}(G)$.
$2 \nu_{H}(G)=\operatorname{maxgd}(G, a)$, taken over all nice a, i.e., those for which the dual $\left(D_{G}\right)$ has a nondegenerate optimal solution.

Question

Does equality: $\operatorname{gd}(G)=\nu_{H}(G)$ hold?

Definition

A framework $\left(G, \mathbf{p}=\left\{p_{1}, \ldots, p_{n}\right\}\right)$ is universally rigid if for any \mathbf{q} :

$$
\left[\left\|q_{i}-q_{j}\right\|^{2}=\left\|p_{i}-p_{j}\right\|^{2} \forall i j \in E\right] \Longrightarrow\left[\left\|q_{i}-q_{j}\right\|^{2}=\left\|p_{i}-p_{j}\right\|^{2} \forall i, j \in V\right]
$$

Theorem (Connelly's sufficient conditions)

Let $p_{1}, \ldots, p_{n} \in \mathbb{R}^{d}$ which affinely span \mathbb{R}^{d}. Assume:
\| $R \in \mathcal{S}^{d},\left\langle R,\left(p_{i}-p_{j}\right)\left(p_{i}-p_{j}\right)^{\top}\right\rangle=0 \forall i j \in E \Longrightarrow R=0$. [no conic at infinity]
2 There is a psd stress matrix Z of corank d :

$$
Z_{i j}=0 \forall i j \in \bar{E}, Z e=0, \sum_{j \in V} Z_{i j} p_{j}=0 \forall i \in V
$$

Then: (G, p) is universally rigid.
This extends to tensegrities.

Let q_{1}, \ldots, q_{n} such that $\left\|q_{i}-q_{j}\right\|^{2}=\left\|p_{i}-p_{j}\right\|^{2} \quad \forall i j \in E$.
We need to show that $\left\|q_{i}-q_{j}\right\|^{2}=\left\|p_{i}-p_{j}\right\|^{2} \quad \forall i, j \in V$.
1 Let $\widehat{p}_{i}=\left(p_{i}, 1\right)$ and $X=\operatorname{Gram}\left(\widehat{p_{1}}, \ldots, \widehat{p_{n}}\right), \operatorname{rank} X=d+1$. Let $Y=\operatorname{Gram}\left(q_{1}, \ldots, q_{n}\right)$.

2 By the assumptions on $Z: Z X=0 \Longrightarrow \operatorname{ker} X=\operatorname{Range}(Z)$.
3 Moreover, $\langle Z, Y-X\rangle=0 \Longrightarrow\langle Z, Y\rangle=\langle Z, X\rangle=0$ $\Longrightarrow Z Y=0 \Longrightarrow \operatorname{ker} Y \supseteq \operatorname{ker} X$.

4 Hence: $Y-X=\left(\left\langle R, \widehat{p}_{i} \widehat{p}_{j}^{\top}\right\rangle\right)_{i, j \in V}$ for some $R \in \mathcal{S}^{d+1}$.
5 The no conic at infinity condition implies: $R=\left(\begin{array}{cc}\mathbf{0} & a \\ a^{\top} & b\end{array}\right)$, where $a \in \mathbb{R}^{d}, b \in \mathbb{R}$.
б Thus: $(Y-X)_{i j}=a^{\top} p_{i}+a^{\top} p_{j}+b \quad \forall i, j \in V$, implying

$$
\left\|q_{i}-q_{j}\right\|^{2}=Y_{i i}+Y_{j j}-2 Y_{i j}=X_{i i}+X_{i j}-2 X_{i j}=\left\|p_{i}-p_{j}\right\|^{2}
$$

- A new graph parameter related to bounded rank positive semidefinite matrix completions. With A. Varvitsiotis. arXiv:1204.0734, 2012.
- Complexity of the positive semidefinite matrix completion problem with a rank constraint. With M. E.-Nagy and A.
Varvitsiotis. arXiv:1203.6602, 2012.
- Semidefinite programming, universal rigidity and the Strong Arnold Property. With A. Varvitsiotis. In preparation.
- On bounded rank positive semidefinite matrix completions of extreme partial correlation matrices. With M. E.-Nagy and A. Varvitsiotis. arXiv:1205.2040, 2012.

