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Goal of this lecture

Study conditions for the existence of
low rank positive semidefinite matrix completions
from a combinatorial point of view.

m Low rank solutions to semidefinite programs

New graph parameter gd(G): Gram dimension of a graph

Geometric representations of graphs:

m Euclidean distance graph realizations

m Colin de Verdiere type graph parameters

Geometry of SDP:

Nondegeneracy: Unique completion, universal rigidity, SAP



Positive semidefinite matrix completion

Given a partial matrix:

o
N O
O k=
_ O Vv

Can it be completed to a psd matrix?
How to find a psd completion?
Is such a completion unique?

What is the smallest rank of such a completion?



This lecture: Combinatorial approach

Given a partial matrix:

o
N O
O = =Y
- O

-1

Give answers depending on structural properties of the graph of
specified entries:
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Graph C




m A symmetric matrix X is positive semidefinite (psd, X = 0) if
and only if it is a Gram matrix:

X = (ul'u;) for some vectors ui, ..., u, € R¥.

m S = all n x n psd matrices.

m Given a graph G = (V = [n], E)

S+ (G) = all partial matrices a € RVVE (specified on the
diagonal and on the edge set) that can be completed to a
full psd matrix.

m The elliptope &, = all psd matrices with an all-ones diagonal
(set of correlation matrices).

m The projected elliptope £(G) = all partial matrices
completable to a correlation matrix.



Low rank solutions to semidefinite
programs



Why do we care about low rank solutions for SDP?

® max-cut= max > ;g w;(1 —xixj)/2 st. x € {£1}".
m sdp=max > ;i pw(l—X;)/2 st. X =0, X =1VieV.

Let X be an optimal solution of the SDP.

0.878-approximation algorithm [Goemans-Williamson 1995].
If rank X < 4, 0.881-approximation [Avidor-Zwick 2005].
If rank X < 2, 0.884-approximation [Goemans]

A If rank X = 1, the SDP relaxation is exact: max-cut = sdp.



Another example: Distance geometry

Reconstruct the locations of objects (say) in 3D from partial
measurements of mutual distances.

&

Find w1, ,up € R3 such that ||u; — uj||?> = d; Vij € E.
Equivalently: Find a solution of rank at most 3 to the SDP:

X =0, X;+ X —2X; = dj Vij € E.

~> Euclidean distance dimension ed(G) :
the smallest k s.t. there is a solution
of rank at most k for any d € RE



Getting low rank solutions via matrix completion

sdp= max(Ag, X) sit. X =0, (A, X) =bx (k=1,---,m).

Sparsity pattern G = (V, E): ij € E iff (Ag); # 0 for some k.

Lemma

If X* is an optimum solution, and X satisfies the system:

Xj=X; (i€ VUE), X>0

then X too is an optimum solution.

Thus it suffices to find a low rank solution to the above positive
semidefinite matrix completion problem.



The Gram dimension of a graph



Gram dimension

The Gram dimension gd(G,a) of a partial matrix
a € S4(G) is the smallest rank of a psd completion of a.

That is, the smallest k such that

aj = u,-TuJ- for some uq,...,u, € RX.

The Gram dimension gd(G) of a graph G = (V,E) is

d(G) = d(G. a).
gd(G) aergfgc)g( ,a)

That is, the smallest k such that any partial matrix

a € S4(G) has a psd completion of rank at most k.

For instance, gd(K,) = n, gd(G) < n—1if G # K.




Case of chordal graphs

ae Sy(G) <= a[K] = 0 for all cliques K of G
[Grone-Johnson-Sa-Wolkowicz 1984]

Compute a psd completion of a € QVVE in poly-time [L 2000]
gd(G, a) = maxy rank a[K].
gd(G) = maxk |K| for G chordal.

Theorem
For any graph G, gd(G) < tw(G) + 1.

tw(G): tree-width of G = smallest integer k such that G is
contained in a clique sum of cliques K1



Application: Bounding ranks of solutions to SDP

Example ( Goring, Helmberg, Reiss 2012: Minimizing the

maximum eigenvalue of the weighted Laplacian)

£ IilP=1, lvi—vlI> =€ (ij € E)}

= max = {
€R,v1,-,vnE n :
¢ ! i eV

has an optimal solution in dimension at most gd(G) < tw(G) + 1.

Example (Goring, Helmberg, Wappler 2008: Maximizing the

second smallest eigenvalue of the weighted Laplacian)

max {Z Will? < llvi = vilI> <1 (i € E), || Y _vill* = 0}

Vl,.A.,VneR” . B
ieVvV ieV
has an optimum solution in dimension at most tw(G) + 1.

The bound gd(G) < tw(G) + 1 does not help in the second
example, since the sparsity pattern is the complete graph.



Complexity of the Gram dimension parameter

Theorem (ELV 2012)

For any fixed k > 2, deciding whether gd(G, a) < k [i.e., a has a
psd completion of rank at most k| is an NP-hard problem.

|
Membership in the rank constrained elliptope £(G) is NP-hard.

Ek(G)=all partial matrices completable to a correlation matrix of
rank at most k.

|
Ek(G) C conv &(G) C E(G).

Theorem (ELV 2012)
Membership in the convex hull of £,(G) is NP-hard.

Question: |s weak optimization over conv(Ex(G)) NP-hard?



Case k > 3: Use orthogonal representations

|
¢d(G,0F) is the smallest integer k for which there exist unit
vectors uy,- - -, u, € RX such that uTuj =0 VijeE.

i
Links to cliques, graph colorings and Lovasz' theta number :

Theorem (Lovész' sandwich inequality)

w(G) < Y(G) < gd(G,0g) < x(G).

e ¢d(G,0g) < 4 for G planar graph.

e Deciding whether gd(G,0g) < 3 is NP-hard for G planar.
[Peeters 1997]

e For k > 3, deciding whether gd(G,0g) < k is NP-hard
(for suspensions of planar graphs).

e For k =2, gd(G,0g) < 2 <= G is bipartite.

So we need another reduction!



Case k = 2: Use Euclidean graph realizations

Basic tool 1:

Characterize ed(G,d) <1 and gd(G,a) < 2 in terms of a
partition type property of the arguments d and = arccos a:

Je € {£1}E Z €ede =0, 26696 € 2rnZ YC (oriented) circuit

eeC eeC

Basic tool 2:
Hardness result of [Saxe 1979] for ed(G, d) < 1 when d € {1,2}E.



Structural characterizations



Gram and Euclidean graph realizations

Suspension graph: VG= G + new node adjacent to all nodes
of G.

Theorem (LV 2012)
gd(G) = ed(VG) > ed(G) + 1.

Question

m Does the inequality: ed(VG) < ed(G)+ 1 hold?
m Equivalently: gd(G) = ed(G)+1 ?

Yes, if G has Gram dimension at most 4.



Forbidden minor characterization for ed(G) < 3

Theorem (Belk-Connelly 2007)
The graph parameter ed(G) is minor monotone:
ed(G\e),ed(G/e) < ed(G).

Hence, for any k, the class of graphs with ed(G) < k can be
characterized by finitely many forbidden minors.

ed(G) <1 <= G has no minor Ks.
ed(G) < 2 <= G has no minor Kj.
ed(G) < 3 <= G has no minor Ks, K22 .

1 2

5 3 The octahedron graph K>5 2



Forbidden minor characterization for gd(G) < 4

The graph parameter gd(G) is minor monotone.
gd(G) < 2 <= G has no minor Kj.

gd(G) < 3 <= G has no minor Kj.

gd(G) < 4 <= G has no minor Ks, K22 .




Links between both forbidden minor characterizations

The graph parameter gd(G) is minor monotone.

gd(G) < 2 <= G has no minor K3 = ed(G) < 1.
gd(G) < 3 <= G has no minor K, = ed(G) < 2.
gd(G) < 4 <= G has no minor Ks, K22 = ed(G) < 3.

Recall:
ed(G) < gd(G) — 1.



Sketch of proof

Theorem (Arnborg, Proskurowski, Corneil 1990)

G has tree-width at most 3 <= no Ks, K>, Vg, CGsOOK> minor.

Theorem
gd(G) <4 <= G has no Ks, K22 minor.

Sketch of proof:
Ks, K222 have Gram dimension 5.
If G is 2-connected with no Ks, K225 minor, then G is
contained in a clique sum of copies of Ky, Vg, GGOKo.
Vg, GsOK, have Gram dimension 4.

|
As in the work of Belk-Connelly [2007], the tedious part of the
proof consists of showing that gd(Vg), gd(CsOKy) < 4.

Following So-Ye [2007], use SDP duality: use the optimal dual
(stress) matrix to ‘fold’ the optimal primal solution in low dim.



Geometry of SDP and Colin de
Verdiere type graph parameters



How to show gd(G) > k7

Recipe: Find a partial matrix a having a unique psd completion X
and with rank X > k. Consider the pair of primal and dual SDP’s:

sup 0 s.t. Xjj=a; (je VUE), X =0, (Pg)

X

i v St — AE: > 0.

.yrg “Z ajyj st. Z "Z yiE; = 0 (D¢)
jeVUE jeVUE

Theorem (fundamental facts about SDP)

Let X be a completion of a, X = Gram(ps, ..., p,) with p; € RY.
m /f there is a nondegenerate dual optimum solution Z, then X
is the unique completion of a.

m Let Z be a dual optimal solution which is strictly
complementary to X, i.e., corank Z=rank X. TFAE:
Z is dual nondegenerate.
X is the unique psd completion of a.
X is an extreme point of the primal feasible region:

{plpj:ij € VUE} spansS“.



Example: K522 has Gram dimension 5

Kz22 = Ko \ {14, 25,36}

5 4

X = Gram(ey, e, €3, €4, €5, el\J/%ez) is an extreme point of the

primal feasible region, with rank 5.

a € S84 (Kz2,2) the corresponding partial matrix.

m Z=(1,1,0,0,0,—/2)(1,1,0,0,0, —v/2)T is dual optimal
with corank 5.

m Hence: X is the unique psd completion of a.

This shows: gd(K»22,a) = 5.



Planar graphs with unbounded Gram dimension

The supertriangle G, has gd(G,) > r.

G3=F3

Choose the vector labeling in such a way that each black triangle
has rank 2.

The supertriangles are used in [Colin de Verdere 1998].



Dual nondegeneracy and the Strong Arnold Property

sup 0 s.t. Xjj=a; (je VUE), X =0, (Pg)

X

, . _ E s

}l/n; Z ajyij st. Z Z yiiEij = 0. (Dg)
ijeVUE ijeVUE

Definition
Let Z be dual feasible of rank r. Then, Z is dual nondegenerate

if the tangent space 77 to the manifold M, (of rank r matrices)
intersects transversally at Z the linear space:

L=1lin{E;:ij€e VUE}={M: M;=0Vij € G}.

That is,
ZR=0, Rj=0Vije VUE= R=0. (SAP)

SAP is known as the Strong Arnold Property. It is used to define
Colin de Verdiére type graph parameters p(G),v(G), vy(G), ....



Definition (van der Holst 2003)

The graph parameter vy(G)

vi(G) = max corank(Z) s.t. Z=0, Z; =0 (ij € E), (SAP).
Theorem (van der Holst 2003)

The parameter vy is minor monotone.
vH(G) < 4 <= G has no minor Ks or Kz .

Same forbidden minors as for gd(G) < 4 !
Theorem (LV 2012)

vh(G) < gd(G).
vy(G) = maxgd(G, a), taken over all nice a, i.e., those for
which the dual (D¢) has a nondegenerate optimal solution.

Question
Does equality: gd(G) = vy(G) hold ?




Universal rigidity of frameworks

A framework (G,p = {p1,.-.,pn}) is universally rigid if for any q:

llai—q;ll* = llpi—pjlI* Vij € El={llgi—q;lI> = llpi—p;l|* Vi,j € V]

Theorem (Connelly’s sufficient conditions)

Let p1,...,pn € R? which affinely span RY. Assume:

Re 8 (R, (pi—p)pi—p)T) =0Vije E—= R=0.
[no conic at infinity]

There is a psd stress matrix Z of corank d:

Z;=0Vij€cE, Ze=0, ) Zjpj=0VieV.
JEV

Then: (G, p) is universally rigid.

This extends to tensegrities.



Simple geometric proof

Let q1,...,qn such that ||q; — q;||? = ||pi — pjl|* Vij € E.
We need to show that ||q; — q;||* = ||pi — pj||* Vi,j€ V.

[y

H| Let p; = (p;, 1) and X = Gram(p1,...,pn), rank X = d + 1.
Let Y = Gram(qu, ..., qn).

]

By the assumptions on Z: ZX = 0= ker X = Range(Z).

B Moreover, (Z,Y —X)=0= (Z,Y)=(Z,X)=0
— ZY =0 = ker Y D ker X.

w

B Hence: Y — X = ((R,pip;'))ijev for some R € SI+1.

~

The no conic at infinity condition implies: R = (aOT Z)

where a € RY, b € R.
@ Thus: (Y —X);=a'pi+a'pj+b Vi,jeV, implying
lgi = qill* = Yii + Yy = 25 = X + X — 2X; = [lpi — pil|*.
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