Inverse moment problems on polyhedra and optimization

Dmitrii V. Pasechnik¹

¹School of Physical and Mathematical Sciences, NTU

21.11.2012, IMS Workshop

joint work with Nick Gravin (NTU/PDMI RAS), Jean B. Lasserre (LAAS), Sinai Robins (NTU), Boris Shapiro (Stockholm U.) and Michael Shapiro (Michigan State)

Moment	generating	functions

Parametrizing polyhedra

Non-constant density

Reconstructing

Outline

Moment generating functions

- Introduction
- Fantappiè transformations
- Parametrizing non-convex polytopes by their vertices
- 3 Non-constant density
- 4 Reconstructing measures from Fantappié tranformation
 - Axial moments
 - Non-convex polytopes
 - Fantappié moment matrices?

Moment generating functions	Parametrizing polyhedra	Non-constant density	Reconstructing
Introduction			
Outline			

Moment generating functions Introduction

- Fantappiè transformations
- Parametrizing non-convex polytopes by their vertices
- 3 Non-constant density
- 4 Reconstructing measures from Fantappié tranformation

- Axial moments
- Non-convex polytopes
- Fantappié moment matrices?

Introduction

Moment generating functions - the interval

 $\mu_m^{\rho} := \int_P \mathbf{x}^m \rho(\mathbf{x}) d\mathbf{x}$ — the $\mathbb{Z}_+ \ni m$ -th moment of ρ supported on $P \subset \mathbb{R}^d$. What is a "natural" generating function to encode μ_m^{ρ} 's?

Introduction

Moment generating functions - the interval

 $\mu_m^{\rho} := \int_P \mathbf{x}^m \rho(\mathbf{x}) d\mathbf{x}$ — the $\mathbb{Z}_+ \ni m$ -th moment of ρ supported on $P \subset \mathbb{R}^d$. What is a "natural" generating function to encode μ_m^{ρ} 's? Try Cauchy transform

$$F(u) = \int_{P} \frac{\rho(x)dx}{1 - \langle u, x \rangle} = \sum_{k \ge 0} \int_{P} \langle u, x \rangle^{k} \rho(x)dx = \sum_{m} {\binom{|m|}{m}} \mu_{m}^{\rho} u^{m}.$$

Introduction

Moment generating functions - the interval

 $\mu_m^{\rho} := \int_P \mathbf{x}^m \rho(\mathbf{x}) d\mathbf{x}$ — the $\mathbb{Z}_+ \ni m$ -th moment of ρ supported on $P \subset \mathbb{R}^d$. What is a "natural" generating function to encode μ_m^{ρ} 's? Try Cauchy transform

$$F(u) = \int_{P} \frac{\rho(x)dx}{1 - \langle u, x \rangle} = \sum_{k \ge 0} \int_{P} \langle u, x \rangle^{k} \rho(x)dx = \sum_{m} {\binom{|m|}{m}} \mu_{m}^{\rho} u^{m}.$$

Already for $\rho \equiv 1$ and d = 1: $F(u) = \int_a^b \frac{dx}{1-ux}$ we get a transcendental function.

(日) (同) (三) (三) (三) (○) (○)

Introduction

Moment generating functions - the interval

 $\mu_m^{\rho} := \int_P \mathbf{x}^m \rho(\mathbf{x}) d\mathbf{x}$ — the $\mathbb{Z}_+ \ni m$ -th moment of ρ supported on $P \subset \mathbb{R}^d$. What is a "natural" generating function to encode μ_m^{ρ} 's? Try Cauchy transform

$$F(u) = \int_{P} \frac{\rho(x)dx}{1 - \langle u, x \rangle} = \sum_{k \ge 0} \int_{P} \langle u, x \rangle^{k} \rho(x)dx = \sum_{m} {\binom{|m|}{m}} \mu_{m}^{\rho} u^{m}.$$

Already for $\rho \equiv 1$ and d = 1: $F(u) = \int_{a}^{b} \frac{dx}{1-ux}$ we get a transcendental function. Much better would be to do $\int_{a}^{b} \frac{dx}{(1-ux)^2} = \frac{|a-b|}{(1-au)(1-bu)}$.

Introduction

Moment generating functions - the interval

 $\mu_m^{\rho} := \int_P \mathbf{x}^m \rho(\mathbf{x}) d\mathbf{x}$ — the $\mathbb{Z}_+ \ni m$ -th moment of ρ supported on $P \subset \mathbb{R}^d$. What is a "natural" generating function to encode μ_m^{ρ} 's? Try Cauchy transform

$$F(u) = \int_{P} \frac{\rho(x)dx}{1 - \langle u, x \rangle} = \sum_{k \ge 0} \int_{P} \langle u, x \rangle^{k} \rho(x)dx = \sum_{m} {\binom{|m|}{m}} \mu_{m}^{\rho} u^{m}.$$

Already for $\rho \equiv 1$ and d = 1: $F(u) = \int_{a}^{b} \frac{dx}{1-ux}$ we get a transcendental function. Much better would be to do $\int_{a}^{b} \frac{dx}{(1-ux)^{2}} = \frac{|a-b|}{(1-au)(1-bu)}$. How does it relate to F(u)? Differentiate!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction

Moment generating functions - the interval

 $\mu_m^{\rho} := \int_P \mathbf{x}^m \rho(\mathbf{x}) d\mathbf{x}$ — the $\mathbb{Z}_+ \ni m$ -th moment of ρ supported on $P \subset \mathbb{R}^d$. What is a "natural" generating function to encode μ_m^{ρ} 's? Try Cauchy transform

$$F(u) = \int_{P} \frac{\rho(x)dx}{1 - \langle u, x \rangle} = \sum_{k \ge 0} \int_{P} \langle u, x \rangle^{k} \rho(x)dx = \sum_{m} {\binom{|m|}{m}} \mu_{m}^{\rho} u^{m}.$$

Already for $\rho \equiv 1$ and d = 1: $F(u) = \int_a^b \frac{dx}{1-ux}$ we get a transcendental function. Much better would be to do $\int_a^b \frac{dx}{(1-ux)^2} = \frac{|a-b|}{(1-au)(1-bu)}$. How does it relate to F(u)? Differentiate! $(u\frac{\partial}{\partial u} + 1) \circ F(u) = \int_a^b \frac{dx}{(1-ux)^2} = \sum_m (1+m)\mu_m u^m$.

Moment generating functions	Parametrizing polyhedra	Non-constant density	Reconstructing
Fantappiè transformations			
Outline			

- Moment generating functions
 Introduction
 - Fantappiè transformations
- Parametrizing non-convex polytopes by their vertices
- 3 Non-constant density
- 4 Reconstructing measures from Fantappié tranformation

- Axial moments
- Non-convex polytopes
- Fantappié moment matrices?

Moment generating functions

Parametrizing polyhedra

Non-constant densit

Reconstructing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fantappiè transformations

Fantappiè transformations, $ho\equiv 1$

Let
$$F(u) = \int_P \frac{dx}{1 - \langle u, x \rangle} = \sum_m {\binom{|m|}{m}} \mu_m u^m$$
, and $g(z) := g(z_1, \dots, z_d) = \prod_{\ell=1}^d (\sum_k z_k + \ell)$.

Parametrizing polyhedra

Non-constant densit

Reconstructing

Fantappiè transformations

Fantappiè transformations, $\rho \equiv 1$

Let
$$F(u) = \int_P \frac{dx}{1 - \langle u, x \rangle} = \sum_m {\binom{|m|}{m}} \mu_m u^m$$
, and $g(z) := g(z_1, \dots, z_d) = \prod_{\ell=1}^d (\sum_k z_k + \ell)$.

Definition

Fantappiè transformation ("rationalized" moment generating function) of $P \subset \mathbb{R}^d$ is

$$\mathcal{F}_{P}(u) := g(u_{1}\frac{\partial}{\partial u_{1}}, \dots, u_{d}\frac{\partial}{\partial u_{d}}) \circ F(u)$$

= $\int_{P} \frac{d!dx}{(1 - \langle u, x \rangle)^{d+1}} = \sum_{m} \frac{(|m| + d)!}{\prod_{j} m_{j}!} \mu_{m} u^{m}.$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

Moment generating functions

Parametrizing polyhedra

Non-constant density

Reconstructing

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Fantappiè transformations

Fantappiè transformation of a simplex

Example

Fantappiè transformation ("rationalized" moment generating function) of a simplex $\Delta = \operatorname{conv}(v_1, \ldots, v_{d+1}) \subset \mathbb{R}^d$ is

$$\mathcal{F}_{\Delta}(u) = \int_{\Delta} rac{d! dx}{(1 - \langle u, x
angle)^{d+1}} = rac{d! \operatorname{Vol}(\Delta)}{\prod_k (1 - \langle v_k, u
angle)}.$$

Reconstructing

Fantappiè transformations

Fantappiè transformation of a simplex

Example

Fantappiè transformation ("rationalized" moment generating function) of a simplex $\Delta = \operatorname{conv}(v_1, \ldots, v_{d+1}) \subset \mathbb{R}^d$ is

$$\mathcal{F}_{\Delta}(u) = \int_{\Delta} rac{d! dx}{(1 - \langle u, x
angle)^{d+1}} = rac{d! \operatorname{Vol}(\Delta)}{\prod_k (1 - \langle v_k, u
angle)}.$$

This is known to be true in greater generality (\mathbb{C} -convexity), when Δ is a simplex in $\mathbb{C}P^{d-1}$. Cf. e.g. Andersson-Passare-Sigurdsson (2004).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Moment generating functions	Parametrizing polyhedra	Non-constant density	Reconstructing
Fantappiè transformations			
Fantappiè valuation	n, $ ho\equiv 1$		

Corollary

Let $P \subset \mathbb{R}^d$ be a (non-convex) polytope, i.e. finite union of convex polytopes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fantappiè transformations

Fantappiè valuation, $ho\equiv 1$

Corollary

Let $P \subset \mathbb{R}^d$ be a (non-convex) polytope, i.e. finite union of convex polytopes. Then its Fantappiè transformation $\mathcal{F}_P(u)$ is a rational function with denominator dividing $\prod_{v \in V} (1 - \langle v, u \rangle)$, where V is the set of vertices of a triangulation of P.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Fantappiè transformations

Fantappiè valuation, $ho\equiv 1$

Corollary

Let $P \subset \mathbb{R}^d$ be a (non-convex) polytope, i.e. finite union of convex polytopes. Then its Fantappiè transformation $\mathcal{F}_P(u)$ is a rational function with denominator dividing $\prod_{v \in V} (1 - \langle v, u \rangle)$, where V is the set of vertices of a triangulation of P.

Thus we got a valuation

Fantappiè transformations

Fantappiè valuation, $ho\equiv 1$

Corollary

Let $P \subset \mathbb{R}^d$ be a (non-convex) polytope, i.e. finite union of convex polytopes. Then its Fantappiè transformation $\mathcal{F}_P(u)$ is a rational function with denominator dividing $\prod_{v \in V} (1 - \langle v, u \rangle)$, where V is the set of vertices of a triangulation of P.

Thus we got a valuation (a bit mysterios to us now)

constant measures supp. on $\mathcal{P}(\mathbb{R}^d) \to \text{rational functions on } \mathbb{R}^d$

on the algbera $\mathcal{P}(\mathbb{R}^d)$ of polyhedra.

Fantappiè transformations

Fantappiè valuation, $ho\equiv 1$

Corollary

Let $P \subset \mathbb{R}^d$ be a (non-convex) polytope, i.e. finite union of convex polytopes. Then its Fantappiè transformation $\mathcal{F}_P(u)$ is a rational function with denominator dividing $\prod_{v \in V} (1 - \langle v, u \rangle)$, where V is the set of vertices of a triangulation of P.

Thus we got a valuation (a bit mysterios to us now)

constant measures supp. on $\mathcal{P}(\mathbb{R}^d) o$ rational functions on \mathbb{R}^d

on the algbera $\mathcal{P}(\mathbb{R}^d)$ of polyhedra. Cf. Brion-Barvinok-Khovanskii-Lawrence -Pukhlikov

$$\mathcal{P}(\mathbb{R}^d) o$$
 meromorphic functions on \mathbb{R}^d
 $P \mapsto \int_P e^{\langle u, x
angle} dx$

Fantappiè transformations

Formulae for Fantappiè transformations, $\rho \equiv 1$

Theorem

The Fantappiè transformation of a simple polytope $P \subset \mathbb{R}^d$ is

$$\begin{aligned} \mathcal{F}_{P}(u) &= (-1)^{d} \sum_{v \in V(P)} \frac{\left| \begin{array}{c} w_{1}(v) - v \\ \vdots \\ w_{d}(v) - v \end{array} \right|}{\prod_{j=1}^{d} \langle w_{j}(v), u \rangle} \cdot \frac{1}{1 - \langle v, u \rangle} \\ &= (-1)^{d} \sum_{v \in V(P)} \langle v, u \rangle^{d} \left| \begin{array}{c} w_{1}(v) - v \\ \vdots \\ w_{d}(v) - v \end{array} \right| \prod_{j=1}^{d} \langle w_{j}(v), u \rangle^{-1} \cdot \frac{1}{1 - \langle v, u \rangle} \end{aligned}$$

where $w_1(v), \ldots, w_d(v)$ are generators of the vertex cone of $v \in V(P)$.

Reconstructing

Vertices of compact non-convex polyhedra

As we saw, the denominator of $\mathcal{F}_P(u)$ divides $\prod_{v \in V} (1 - \langle v, u \rangle)$, where V is the set of vertices of a triangulation of P.

Reconstructing

Vertices of compact non-convex polyhedra

As we saw, the denominator of $\mathcal{F}_P(u)$ divides $\prod_{v \in V} (1 - \langle v, u \rangle)$, where V is the set of vertices of a triangulation of P.

Definition

A dissection of P is a finite collection \mathcal{T} of d-simplices $T_i = \operatorname{conv}(v_{i0}, \ldots, v_{id})$ s.t, int $T_i \cap \operatorname{int} T_j = \emptyset$, $i \neq j$, and $P = \bigcup_i T_i$.

Reconstructing

Vertices of compact non-convex polyhedra

As we saw, the denominator of $\mathcal{F}_P(u)$ divides $\prod_{v \in V} (1 - \langle v, u \rangle)$, where V is the set of vertices of a triangulation of P.

Definition

A dissection of P is a finite collection \mathcal{T} of d-simplices $T_i = \operatorname{conv}(v_{i0}, \ldots, v_{id})$ s.t. int $T_i \cap \operatorname{int} T_j = \emptyset$, $i \neq j$, and $P = \bigcup_i T_i$. (note that triangulations are particular types of dissections).

Reconstructing

Vertices of compact non-convex polyhedra

As we saw, the denominator of $\mathcal{F}_P(u)$ divides $\prod_{v \in V} (1 - \langle v, u \rangle)$, where V is the set of vertices of a triangulation of P.

Definition

A dissection of P is a finite collection \mathcal{T} of d-simplices $T_i = \operatorname{conv}(v_{i0}, \ldots, v_{id})$ s.t, int $T_i \cap \operatorname{int} T_j = \emptyset$, $i \neq j$, and $P = \bigcup_i T_i$. (note that triangulations are particular types of dissections). Its vertices: $V(\mathcal{T}) = \bigcup_i \{v_{i0}, \ldots, v_{id}\}$.

Reconstructing

Vertices of compact non-convex polyhedra

As we saw, the denominator of $\mathcal{F}_P(u)$ divides $\prod_{v \in V} (1 - \langle v, u \rangle)$, where V is the set of vertices of a triangulation of P.

Definition

A dissection of P is a finite collection \mathcal{T} of d-simplices $T_i = \operatorname{conv}(v_{i0}, \ldots, v_{id})$ s.t, int $T_i \cap \operatorname{int} T_j = \emptyset$, $i \neq j$, and $P = \bigcup_i T_i$. (note that triangulations are particular types of dissections). Its vertices: $V(\mathcal{T}) = \bigcup_i \{v_{i0}, \ldots, v_{id}\}$. Define the set V(P) of vertices of P

$$V(P) := \bigcap_{\mathcal{T} \in \mathcal{T}} V(\mathcal{T})$$

 ${\mathcal T}$ is a dissection of P

Reconstructing

Vertices of compact non-convex polyhedra

As we saw, the denominator of $\mathcal{F}_P(u)$ divides $\prod_{v \in V} (1 - \langle v, u \rangle)$, where V is the set of vertices of a triangulation of P.

Definition

A dissection of P is a finite collection \mathcal{T} of d-simplices $T_i = \operatorname{conv}(v_{i0}, \ldots, v_{id})$ s.t, int $T_i \cap \operatorname{int} T_j = \emptyset$, $i \neq j$, and $P = \bigcup_i T_i$. (note that triangulations are particular types of dissections). Its vertices: $V(\mathcal{T}) = \bigcup_i \{v_{i0}, \ldots, v_{id}\}$. Define the set V(P) of vertices of P

$$V(P) := \bigcap_{\mathcal{T} \text{ is a dissertion of } P} V(\mathcal{T})$$

Then we can take V := V(P). (For *P* convex it's the usual vertices.) More details here: Gravin-DP-B.&M.Shapiro (2012)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Parametrizing P by simplices from V(P)

Theorem

Assume that any d + 2 points in V(P) affinely span \mathbb{R}^d (non-degeneracy). Then the constant unit density measure [P] supported on P satisfies

$$[P] = \sum_{\{v_0, \dots, v_d\} \subset V(P)} a_{v_0 \dots v_d} [\operatorname{conv}(v_0, \dots, v_d)].$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Parametrizing P by simplices from V(P)

Theorem

Assume that any d + 2 points in V(P) affinely span \mathbb{R}^d (non-degeneracy). Then the constant unit density measure [P] supported on P satisfies

$$[P] = \sum_{\{v_0, \dots, v_d\} \subset V(P)} a_{v_0 \dots v_d} [\operatorname{conv}(v_0, \dots, v_d)].$$
(1)

Conjecturally, the assumption above is not needed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Parametrizing P by simplices from V(P)

Theorem

Assume that any d + 2 points in V(P) affinely span \mathbb{R}^d (non-degeneracy). Then the constant unit density measure [P] supported on P satisfies

$$[P] = \sum_{\{v_0, \dots, v_d\} \subset V(P)} a_{v_0 \dots v_d} [\operatorname{conv}(v_0, \dots, v_d)].$$
(1)

Conjecturally, the assumption above is not needed. Why is (1) nontrivial? Cause often extra vertices are needed to dissect non-convex polytopes.

Parametrizing P by simplices from V(P)

Theorem

Assume that any d + 2 points in V(P) affinely span \mathbb{R}^d (non-degeneracy). Then the constant unit density measure [P] supported on P satisfies

$$[P] = \sum_{\{v_0, \dots, v_d\} \subset V(P)} a_{v_0 \dots v_d} [\operatorname{conv}(v_0, \dots, v_d)].$$
(1)

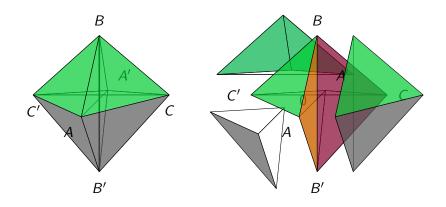
Conjecturally, the assumption above is not needed. Why is (1) nontrivial? Cause often extra vertices are needed to dissect non-convex polytopes. An example is *Schönhardt polyhedron*.

ヘロト ヘ週ト ヘヨト ヘヨト

æ

Reconstructing

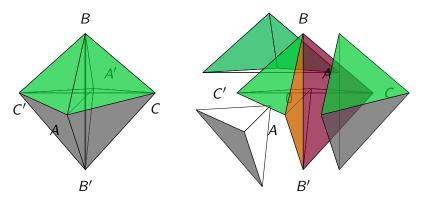
Schönhardt polyhedron



Reconstructing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Schönhardt polyhedron



To dissect, it needs an extra vertex in the interior.

A glimpse of the proof

Apply Fantappiè transformation to both sides of (1)

$$\mathcal{F}_{P}(u) = \frac{P(u)}{\prod_{v \in P(V)} (1 - \langle u, v \rangle)}$$

(???) = $\sum_{\Omega := \{v_0, \dots, v_d\} \subset V(P)} a_{\Omega} \frac{\operatorname{Vol}(\operatorname{conv}(\Omega))}{\prod_{v \in \Omega} (1 - \langle u, v \rangle)}.$

We would be done if we manage to show that P(u) lies in the vectorspace Π spanned by the products $\Pi_{\Omega} = \frac{\prod_{v \in P(V)} (1 - \langle u, v \rangle)}{\prod_{v \in P(V)} (1 - \langle u, v \rangle)}$, where $\Omega := \{v_0, \ldots, v_d\} \subset V(P)$. Non-degeneracy implies that Π_{Ω} , s.t. $v_0 \in \Omega$, span Π . A bit of commutative algebra shows that dim Π coinsides with the dimnesion of full the space of polynomials in u of the appropriate degree, and the latter spanning set is a basis.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A glimpse of the proof

Apply Fantappiè transformation to both sides of (1)

$$\mathcal{F}_{P}(u) = \frac{P(u)}{\prod_{v \in P(V)} (1 - \langle u, v \rangle)}$$

(???) = $\sum_{\Omega := \{v_0, \dots, v_d\} \subset V(P)} a_{\Omega} \frac{\operatorname{Vol}(\operatorname{conv}(\Omega))}{\prod_{v \in \Omega} (1 - \langle u, v \rangle)}.$

A glimpse of the proof

Apply Fantappiè transformation to both sides of (1)

$$\mathcal{F}_{P}(u) = \frac{P(u)}{\prod_{v \in P(V)} (1 - \langle u, v \rangle)}$$

(???) = $\sum_{\Omega := \{v_0, \dots, v_d\} \subset V(P)} a_{\Omega} \frac{\operatorname{Vol}(\operatorname{conv}(\Omega))}{\prod_{v \in \Omega} (1 - \langle u, v \rangle)}.$

We would be done if we manage to show that P(u) lies in the vectorspace Π spanned by the products $\Pi_{\Omega} = \frac{\prod_{v \in P(V)} (1 - \langle u, v \rangle)}{\prod_{v \in \Omega} (1 - \langle u, v \rangle)}$, where $\Omega := \{v_0, \ldots, v_d\} \subset V(P)$.

A glimpse of the proof

Apply Fantappiè transformation to both sides of (1)

$$\mathcal{F}_{P}(u) = \frac{P(u)}{\prod_{v \in P(V)} (1 - \langle u, v \rangle)}$$

(???) = $\sum_{\Omega := \{v_0, \dots, v_d\} \subset V(P)} a_{\Omega} \frac{\operatorname{Vol}(\operatorname{conv}(\Omega))}{\prod_{v \in \Omega} (1 - \langle u, v \rangle)}.$

We would be done if we manage to show that P(u) lies in the vectorspace Π spanned by the products $\Pi_{\Omega} = \frac{\prod_{v \in P(V)} (1 - \langle u, v \rangle)}{\prod_{v \in \Omega} (1 - \langle u, v \rangle)}$, where $\Omega := \{v_0, \ldots, v_d\} \subset V(P)$. Non-degeneracy implies that Π_{Ω} , s.t. $v_0 \in \Omega$, span Π .

・ロト・西ト・西ト・西ト・日・

A glimpse of the proof

Apply Fantappiè transformation to both sides of (1)

$$\mathcal{F}_{P}(u) = \frac{P(u)}{\prod_{v \in P(V)} (1 - \langle u, v \rangle)}$$

(???) = $\sum_{\Omega := \{v_0, \dots, v_d\} \subset V(P)} a_{\Omega} \frac{\operatorname{Vol}(\operatorname{conv}(\Omega))}{\prod_{v \in \Omega} (1 - \langle u, v \rangle)}.$

We would be done if we manage to show that P(u) lies in the vectorspace Π spanned by the products $\Pi_{\Omega} = \frac{\prod_{v \in P(V)} (1 - \langle u, v \rangle)}{\prod_{v \in P(V)} (1 - \langle u, v \rangle)}$, where $\Omega := \{v_0, \ldots, v_d\} \subset V(P)$. Non-degeneracy implies that Π_{Ω} , s.t. $v_0 \in \Omega$, span Π . A bit of commutative algebra shows that dim Π coinsides with the dimnesion of full the space of polynomials in u of the appropriate degree, and the latter spanning set is a basis.

Reconstructing

Fantappiè transformations, non-constant weight

Note that ρ can be "added" later.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fantappiè transformations, non-constant weight

Note that ρ can be "added" later. I.e.

$$\frac{\partial^{|K|}}{\partial u^{K}} \circ \int_{P} \frac{d!dx}{(1 - \langle u, x \rangle)^{d+1}} = \int_{P} \frac{d!(d+1)^{|K|} x^{K} dx}{(1 - \langle u, x \rangle)^{d+1}} \\ = \sum_{m} \frac{(|m| + |K| + d)!}{\prod_{j} m_{j}!} \mu_{m}^{K} u^{m}.$$

Fantappiè transformations, non-constant weight

Note that ρ can be "added" later. I.e.

$$\begin{aligned} \frac{\partial^{|\kappa|}}{\partial u^{\kappa}} &\circ \int_{P} \frac{d!dx}{(1 - \langle u, x \rangle)^{d+1}} = \int_{P} \frac{d!(d+1)^{|\kappa|} x^{\kappa} dx}{(1 - \langle u, x \rangle)^{d+1}} \\ &= \sum_{m} \frac{(|m| + |\kappa| + d)!}{\prod_{j} m_{j}!} \mu_{m}^{\kappa} u^{m}. \end{aligned}$$

Corollary

The Fantappiè transformation $\mathcal{F}^{\rho}_{P}(u)$ of an arbitrary (non-convex) polytope \mathcal{P} w.r.t. an arbitrary homogeneous polynomial weight ρ of degree δ is a rational function with denominator $\prod_{v \in V(P)} (1 - \langle v, u \rangle)^{\delta}.$

Non-constant densit

Reconstructing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Inverse moment problems

Inverse moment problem: given (some) μ_m , recover ρ and P.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Inverse moment problems

Inverse moment problem: given (some) μ_m , recover ρ and P. For polytopes, we thus have:

Inverse moment problems

Inverse moment problem: given (some) μ_m , recover ρ and P. For polytopes, we thus have: given (some) coefficients of the rational function $\mathcal{F}_P^{\rho}(u)$, reconstruct its denominator (and then the rest of it).

Inverse moment problems

Inverse moment problem: given (some) μ_m , recover ρ and P. For polytopes, we thus have: given (some) coefficients of the rational function $\mathcal{F}_P^{\rho}(u)$, reconstruct its denominator (and then the rest of it).

 specializing to univariate generating functions for axial moments Gravin-Lasserre-DP-Robins (2011)

Inverse moment problems

Inverse moment problem: given (some) μ_m , recover ρ and P. For polytopes, we thus have: given (some) coefficients of the rational function $\mathcal{F}_P^{\rho}(u)$, reconstruct its denominator (and then the rest of it).

- specializing to univariate generating functions for axial moments Gravin-Lasserre-DP-Robins (2011)
- tackling $\mathcal{F}^{\rho}_{P}(u)$ directly

Moment generating functions	Parametrizing polyhedra	Non-constant density	Reconstructing
Axial moments			
Outline			

- Introduction
- Fantappiè transformations
- Parametrizing non-convex polytopes by their vertices
- 3 Non-constant density

Reconstructing measures from Fantappié tranformation Axial moments

- Non-convex polytopes
- Fantappié moment matrices?

Specialize to axial moments: pick several $\mathbf{z} \in \mathbb{R}^d$, and consider

$$\mu_j(\mathbf{z}) = \int_P \langle x, \mathbf{z} \rangle^j \rho(x) dx$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Specialize to axial moments: pick several $\mathbf{z} \in \mathbb{R}^d$, and consider

$$\mu_j(\mathbf{z}) = \int_P \langle x, \mathbf{z} \rangle^j \rho(x) dx$$

recover univariate rational generating functions

$$\Phi_{\mathbf{z}}(t) = \sum_{j} \frac{(j+d)!}{j!} \mu_j(\mathbf{z}) t^j = \sum_{j} c_j t^j.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Specialize to axial moments: pick several $\mathbf{z} \in \mathbb{R}^d$, and consider

$$\mu_j(\mathbf{z}) = \int_P \langle x, \mathbf{z} \rangle^j \rho(x) dx$$

recover univariate rational generating functions

$$\Phi_{\mathbf{z}}(t) = \sum_{j} \frac{(j+d)!}{j!} \mu_j(\mathbf{z}) t^j = \sum_{j} c_j t^j.$$

Reconstruct P, by finding the kernel of the (infinite) Hankel matrix $H = (c_{i+j})_{0 \le i,j < \infty}$ from found, as denominators of $\Phi_z(t)$, projections of $v \in Vert(P)$ to z. Use a variation of Prony method to solve the underlying nonlinear system.

Moment generating functions	Parametrizing polyhedra	Non-constant density	Reconstructing ○○●0○○○○
Non-convex polytopes			
Outline			

- Introduction
- Fantappiè transformations
- Parametrizing non-convex polytopes by their vertices
- 3 Non-constant density

4 Reconstructing measures from Fantappié tranformation

- Axial moments
- Non-convex polytopes
- Fantappié moment matrices?

Moment genera	ting	functions

Parametrizing polyhedra

Non-constant densit

Reconstructing

Non-convex polytopes

Non-convex polytopes

Suppose we know V(P).

Parametrizing polyhedra

Non-constant density

Reconstructing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Non-convex polytopes

Non-convex polytopes

Suppose we know V(P). In Gravin-DP-B.&M.Shapiro (2012) we show that then $\mathcal{F}_{P}^{\rho}(u)$ can be reconstructed from sufficiently many (depending on the degree of ρ) moments.

Moment generating functions	Parametrizing polyhedra	Non-constant density	Reconstructing
Fantappié moment matrices?			
Outline			

- Introduction
- Fantappiè transformations
- Parametrizing non-convex polytopes by their vertices
- 3 Non-constant density

4 Reconstructing measures from Fantappié tranformation

- Axial moments
- Non-convex polytopes
- Fantappié moment matrices?

Parametrizing polyhedra

Non-constant densi

Reconstructing

Fantappié moment matrices?

Fantappié moment matrices

Let $\mathcal{F}_P(u) = \sum_I c_I u^I$, and $A = (c_{I+J})_{I,J}$, for a nice ordering of the monomial basis $B = \{1, u^{I_1}, u^{I_2}, \dots\}$.

Parametrizing polyhedra

Non-constant density

Reconstructing

Fantappié moment matrices?

Fantappié moment matrices

Let $\mathcal{F}_P(u) = \sum_I c_I u^I$, and $A = (c_{I+J})_{I,J}$, for a nice ordering of the monomial basis $B = \{1, u^{I_1}, u^{I_2}, \dots\}$. When P is a polyhedron, $\mathcal{F}_P(u) = p(u)/q(u)$ is rational, and thus A has a kernel, although A is not of finite rank.

Fantappié moment matrices?

Fantappié moment matrices

Let $\mathcal{F}_P(u) = \sum_I c_I u^I$, and $A = (c_{I+J})_{I,J}$, for a nice ordering of the monomial basis $B = \{1, u^{I_1}, u^{I_2}, \dots\}$. When P is a polyhedron, $\mathcal{F}_P(u) = p(u)/q(u)$ is rational, and thus A has a kernel, although A is not of finite rank.

Lemma

 $c \in \text{Ker } A$ iff for any u^K the Laurent series $u^{-K} \mathcal{F}_P(u) \sum_{I} c_I u^{-I}$ has no free term.

Fantappié moment matrices?

Fantappié moment matrices

Let $\mathcal{F}_P(u) = \sum_I c_I u^I$, and $A = (c_{I+J})_{I,J}$, for a nice ordering of the monomial basis $B = \{1, u^{I_1}, u^{I_2}, \dots\}$. When P is a polyhedron, $\mathcal{F}_P(u) = p(u)/q(u)$ is rational, and thus A has a kernel, although A is not of finite rank.

Lemma

 $c \in \text{Ker } A$ iff for any u^K the Laurent series $u^{-K} \mathcal{F}_P(u) \sum_{I} c_I u^{-I}$ has no free term.

Corollary

Let $\sum_{I} c_{I} u^{I} = u^{M} q(\frac{1}{u_{1}}, \dots, \frac{1}{u_{d}}) \in \mathbb{R}[u]$, and u^{M} does not divide any monomial of p(u). Then $c \in \text{Ker } A$.

Parametrizing polyhedra

Non-constant densit

Reconstructing

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Fantappié moment matrices?

Fantappié moment matrices—questions

Problem

How can we be sure that we found the generator(s) of the kernel, by looking at minors of A?

Non-constant density

Reconstructing

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Fantappié moment matrices?

Fantappié moment matrices—questions

Problem

How can we be sure that we found the generator(s) of the kernel, by looking at minors of A?

Problem

How about nonlinear relations between moments? Can we find them? Can we use them?

Non-constant density

Reconstructing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Fantappié moment matrices?

Fantappié moment matrices—questions

Problem

How can we be sure that we found the generator(s) of the kernel, by looking at minors of A?

Problem

How about nonlinear relations between moments? Can we find them? Can we use them?

Problem

Relate A and the "usual" moment matrices.

Fantappié moment matrices?

Parametrizing polyhedra

Non-constant density

Reconstructing

IMS Nov 2013/Jan 2014—announcement

A program on inverse moment problems has been announced: http://web.spms.ntu.edu.sg/~dima/IMS2013/

Parametrizing polyhedra

Non-constant density

Reconstructing

Fantappié moment matrices?

IMS Nov 2013/Jan 2014—announcement

A program on inverse moment problems has been announced: http://web.spms.ntu.edu.sg/~dima/IMS2013/ In particular a range of topics related to the present talk will be covered.