Towards higher order semidefinite relaxations for Max-Cut

Franz Rendl
http://www.math.uni-klu.ac.at
jointly with
E. Adams, M. Anjos (Montreal) and A. Wiegele (Klagenfurt) 1

Alpen-Adria-Universität Klagenfurt
Austria

The Max-Cut Problem

Unconstrained quadratic 1/-1 optimization:

$$
\text { max } x^{T} L x \text { such that } x \in\{-1,1\}^{n}
$$

This is Max-Cut as a binary quadratic problem. Unconstrained quadratic 0/1 minimization:

$$
\min x^{T} Q x+c^{T} x \text { such that } x \in\{0,1\}^{n}
$$

This is equivalent to Max-Cut, by simple variable transformation.
Q could either be assumed to be upper triangular, or symmetric, with zero diagonal.

Basic semidefinite relaxation

Consider the polytope $M_{\text {cut }}:=\operatorname{conv}\left\{x x^{T}: x \in\{-1,1\}^{n}\right\}$. It is contained in the set

$$
C_{n}:=\{X: \operatorname{diag}(X)=e, X \succeq 0\}
$$

of correlation matrices. Since $x^{T} L x=\left\langle L, x x^{T}\right\rangle$ we get

$$
\begin{gathered}
z_{m c}=\max \left\{\langle L, X\rangle: X \in M_{\text {cut }}\right\} \\
\leq \max \left\{\langle L, X\rangle: X \in C_{n}\right\}:=z_{\text {sdp-basic }}
\end{gathered}
$$

Goemans, Williamson (1995) worst-case error analysis (at most 14% above optimum if weights nonnegative).
Nesterov (1997) error at most 57% if $L \succeq 0$.

Max-Cut and Cutting Planes

This SDP relaxation can be further tightened by including Combinatorial Cutting Planes:

A simple observation:
Barahona, Mahjoub (1986): Cut Polytope, Deza, Laurent (1997): Hypermetric Inequalities

$$
x \in\{-1,1\}^{n}, \quad f=(1,1,1,0, \ldots, 0)^{T} \Rightarrow\left|f^{T} x\right| \geq 1 .
$$

Results in $x^{T} f f^{T} x=\left\langle\left(x x^{T}\right),\left(f f^{T}\right)\right\rangle=\left\langle\mathbf{X}, \mathrm{ff}^{\mathbf{T}}\right\rangle \geq 1$.
Can be applied to any triangle $i<j<k$.
Nonzeros of f can also be -1 .
There are $4\binom{n}{3}$ such triangle inequality constraints. Direct application of standard methods not possible for $n \approx 100$.

Metric Polytope

We collect all the triangle inequalities

$$
x_{i j}+x_{i k}+x_{j k} \geq-1, x_{i j}-x_{i k}-x_{j k} \geq-1
$$

in the metric polytope $M E T_{n}$.
Optimizing over $M E T_{n}$ results in a difficult (highly degenerate) LP.
Optimizing over $\mathrm{Met}_{n} \cap C_{n}$ provides the currently strongest bounds for Max-Cut.

Exact optimization over $M E T_{n} \cap C_{n}$ feasible if $n \approx 200$.
Can be approximated for large instances, $n \approx 1000$.

Another look at basic relaxation

With $x \in\{-1,1\}^{n}$ consider $y \in\{-1,1\}^{n}$ with

$$
y=x_{1} \cdot x=\left(1, x_{1} x_{2}, x_{1} x_{3}, \ldots, x_{1} x_{n}\right)^{T} .
$$

Then $y y^{T}=x_{1}^{2} x x^{T}=x x^{T}$.
Anjos, Wolkowicz (2002) and Lasserre (2002) consider

$$
y(x)=\left(1, x_{i} x_{j}\right) \text { with } 1 \leq i<j \leq n .
$$

and study relaxations based on $M_{c u t}^{2}:=\operatorname{conv}\left(y y^{T}\right)$.
Note that $M_{\text {cut }}^{2}$ is contained in the space of symmetric matrices of order $\binom{n}{2}+1$.

Basic structural properties of $M_{c u t}^{2}$

$\left(\begin{array}{ccccc|cccccc}1 & y_{12} & y_{13} & y_{14} & y_{15} & y_{23} & y_{24} & y_{25} & y_{34} & y_{35} & y_{45} \\ & 1 & y_{23} & y_{24} & y_{25} & y_{13} & y_{14} & y_{15} & z_{1} & z_{2} & z_{3} \\ & & 1 & y_{34} & y_{35} & y_{12} & z_{1} & z_{2} & y_{14} & y_{15} & z_{4} \\ & & & 1 & y_{45} & z_{1} & y_{12} & z_{3} & y_{13} & z_{4} & y_{15} \\ & & & 1 & z_{2} & z_{3} & y_{12} & z_{4} & y_{13} & y_{14} \\ \hline & & & & & 1 & y_{34} & y_{35} & y_{24} & y_{25} & z_{5} \\ & & & & & 1 & y_{45} & y_{23} & z_{5} & y_{25} \\ & & & & & & & 1 & z_{5} & y_{23} & y_{24} \\ & & & & & & & & 1 & y_{45} & y_{35} \\ & & & & & & & & 1 & y_{35} \\ & & & & & & & & & 1\end{array}\right)$

Basic Properties (2)

A matrix $Y \in M_{c u t}^{2}$ (of order $\binom{n}{2}+1$) has the following properties:

- main diagonal equal one, and off diagonal elements of two types:
- $y_{i j}$ for $i<j \leq n$. These are already part of basic $n \times n$ model.
- $z_{i j k l}$ for every 4-tupel of vertices.

These reflect commutativity of the term $x_{i} x_{j} x_{k} x_{l}$, hence

$$
Y_{i j, k l}=Y_{i k, j l}=Y_{i l, j k}=z_{i j k l} .
$$

$Q:=\left\{Y: Y\right.$ has structure given through $\left.y_{i j}, z_{i j k l}, Y \succeq 0\right\}$

Hierarchy of relaxations

$$
\begin{aligned}
z_{S D P} & :=\max \left\{\langle L, X\rangle: X \in C_{n}\right\} \\
z_{S D P M E T} & :=\max \left\{\langle L, X\rangle: X \in C_{n} \cap M E T_{n}\right\} \\
z_{Q} & :=\max \{\langle\tilde{L}, Y\rangle: Y \in Q\}
\end{aligned}
$$

Cost function \tilde{L} has Laplacian L as principal submatrix.

$$
\left.\begin{array}{rl}
z_{Q M E T} & :=\max \left\{\langle\tilde{L}, Y\rangle: Y \in Q \cap M E T_{\binom{n}{2}+1}\right\}
\end{array}\right\}
$$

and all inequalities can be strict. The only nontrivial condition is $z_{S D P M E T} \geq Z_{Q}$.
The last relaxation $z_{Q M E T}$ has not been investigated.

A tiny example (n=5) (Laurent (2004))

$$
L=-\frac{1}{2}\left(\begin{array}{ccccc}
0 & 14 & 13 & 14 & 12 \\
14 & 0 & 13 & 15 & 17 \\
13 & 13 & 0 & 13 & 11 \\
14 & 15 & 13 & 0 & 14 \\
12 & 17 & 11 & 14 & 0
\end{array}\right)
$$

optimize over	optimal value
C_{n}	38.263
$C_{n} \cap M E T_{n}$	36.143
Q	34.340
$Q \cap M E T_{\binom{n}{2}+1}$	34.000
Max-Cut	34.000

Another example ($n=7$)

Grishukhin inequality, facet for CUT_{7} :

optimize over	optimal value
C_{n}	6.9518
$C_{n} \cap M E T_{n}$	6.0584
$A W$	5.7075
Q	5.6152
$Q \cap M E T_{\binom{n}{2}+1}$	5.5730
Max-Cut	5.0000

The last three relaxations are intractable for values of n beyond, say $n \approx 30$.

Optimizing over C_{n}

We solve $\max \langle L, X\rangle: X \in C_{n}$.
Matrices of order n and $C_{n}=\{X: \operatorname{diag}(X)=e, X \succeq 0\}$

n	seconds
1000	12
2000	102
3000	340
4000	782
5000	1570

Computing times to solve the SDP on a my laptop. Implementation in MATLAB, 30 lines of source code

Practical experience with $C_{n} \cap M E T_{n}$

graph	n	SDP	SDPMET	time(min)	cut
g1d	100	396.1	352.374	1.10	324
g2d	200	1268.9	1167.978	7.00	1050
g3d	300	2359.6	2215.233	14.01	1953
g1s	100	144.6	130.007	2.60	126
g2s	200	377.3	343.149	8.24	318
g3s	300	678.5	635.039	13.73	555
spin5	125	125.3	109.334	11.40	108

All relaxations solved exactly. The cut value is not known to be optimal.

Optimizing over Q

- Laurent shows that optimizing over Q may provide an improvement by studying facets of $M_{c u t}$ for small values of $n, n \leq 7$.
- Solving this relaxation for $n \geq 30$ is nontrivial.

The Q relaxation can be strenthened by adding triangle conditions, leading to optimizing over $Q \cap M E T$.

Toward optimizing over $Q \cap M E T$

It is computationally prohibitive to work with matrices of order $\binom{n}{2}$.
Our approach: Select small submatrices of Q and impose semidefiniteness as additional constraints (semidefinite cuts).
Starting point is optimal $n \times n$ matrix $Y \in C_{n} \cap M E T_{n}$.
Main task: Identify small candidate submatrices of Lasserre matrix, which cut off current point Y.

Simplest idea: add K_{3}

We have $x \in\{-1,1\}^{n}$ and form $y=y(x)=x_{1} \cdot x$. Then $x x^{T}=y y^{T}$ and $Y=\left(y_{i j}\right) \in C_{n} \cap M E T_{n}$ is starting point. First Idea: extend $y(x)$ by adding only one term $x_{i} x_{j}$ for $2 \leq i<j$.
Hence we consider
$y=y(x):=\left(1, x_{1} x_{2}, \ldots, x_{1} x_{n}, x_{i} x_{j}\right) \in\{-1,1\}^{n+1}$.
Of the $(n+1) \times(n+1)$ matrix $y y^{T}$ we focus on the submatrix indexed by (1, [1i], [1j], [ij]). It contains only elements from Y.

$$
Y_{1 i j}:=\left(\begin{array}{cccc}
1 & y_{1 i} & y_{1 j} & y_{i j} \\
y_{1 i} & 1 & y_{i j} & y_{1 j} \\
y_{1 j} & y_{i j} & 1 & y_{1 i} \\
y_{i j} & y_{1 j} & y_{1 j} & 1
\end{array}\right)
$$

K_{3} expansion does not work

Theorem Let $Y \in C_{n}$. Then $Y \in M E T_{n}$ if and only if $Y_{i j k} \succeq 0 \forall i, j, k$
The first direction was already shown by Anjos and Wolkowicz and also Laurent.
If $Y_{i j k} \succeq 0$, then $e^{T} Y_{1 i j} e=4\left(1+x_{i j}+x_{i k}+x_{j k}\right) \geq 0$. The other inequalities from MET are obtained in a similar way.

If $Y \in M E T$, then observe that all principal 3×3 submatrices of $Y_{1 i j}$ have same determinant, and the first is by assumption semidefinite. It can be verified that

$$
\operatorname{det}\left(Y_{1 i j}\right)=\left(1+x_{1 i}+x_{1 j}+x_{i j}\right)\left(1+x_{1 i}-x_{1 j}-x_{i j}\right)(\ldots)(\ldots),
$$

which is ≥ 0 because all factors are nonnegative. Hence including $Y_{1 i j} \succeq 0$ is satisfied once $Y \in C_{n} \cap M E T_{n}$.

K_{3} expansion (2)

Extending $y(x)$ by a single edge $[i j]$ does not improve the relaxation.
If some triangle constraint from $M E T$, say on i, j, k is tight, the proof also shows that the semidefinite matrix $Y_{i j k}$ is singular.

So we try to add edges from a K_{4} to extend the relaxation. Hence we consider $y=y(x)=$ $\left(1, x_{1} x_{2}, x_{1} x_{3}, \ldots, x_{1} x_{n}, x_{i} x_{j}, x_{i} x_{k}, x_{j} x_{k}\right) \in\{-1,1\}^{n+3}$.
The relevant 7×7 submatrix of the Lasserre matrix has all but one entry specified by Y.

The 7×7 submatrix

$$
Y_{1 i j k}(\xi):=\left(\begin{array}{ccccccc}
1 & y_{1 i} & y_{1 j} & y_{1 k} & y_{i j} & y_{i k} & y_{j k} \\
y_{1 i} & 1 & y_{i j} & y_{i k} & y_{1 j} & y_{1 k} & \xi \\
y_{1 j} & y_{i j} & 1 & y_{j k} & y_{1 i} & \xi & y_{1 k} \\
y_{1 k} & y_{i k} & y_{j k} & 1 & \xi & y_{1 i} & y_{1 j} \\
y_{i j} & y_{1 j} & y_{1 i} & \xi & 1 & y_{j k} & y_{i k} \\
y_{i k} & y_{1 k} & \xi & y_{1 i} & y_{j k} & 1 & y_{i j} \\
y_{j k} & \xi & y_{1 k} & y_{1 j} & y_{i k} & y_{i j} & 1
\end{array}\right)
$$

The unspecified parameter is $\xi=z_{1 i j k}$, and represents the products $x_{1} x_{i} x_{j} x_{k}$.

K_{4} expansion

Note that in case the triangle on i, j, k is tight, the principal submatrix indexed by $[1, i j, i k, j k]$ is singular.
This makes it seem unlikely that $Y_{1 i k l}$ is completable to a semidefinite matrix.
If $Y \in C_{n}$ but $Y \notin M E T$, then it is easy to show that $Y_{1 i k l}$ may not be sdp completable.
Since we do not only ask for sdp-completability but also that the unspecified parameter ξ is the same throughout, we can not use standard results for sdp-completability.

K_{4} extension does not work

Theorem. Let $Y \in C_{n} \cap M E T$ and consider $Y_{1 i j k}$ as defined before. Then $Y_{1 i j k} \in C U T_{7}$.

Proof:

The 4×4 submatrix X_{4} (of first 4 rows) is part of Y and hence $X_{4} \in M E T_{4}=C U T_{4}$.
Thus X_{4} is a convex combination of cut matrices $c c^{T}$ of order 4.
If $c=\left(c_{1}, c_{i}, c_{j}, c_{k}\right)$ is such a cut, we consider
$\hat{c}:=\left(c_{1} c_{1}, c_{1} c_{i}, c_{1} c_{j}, c_{1} c_{k}, c_{i} c_{j}, c_{i} c_{k}, c_{j} c_{k}\right)$, which has the structure of $y(x)$.
The convex combination with $\hat{c} \hat{c}^{T}$ instead of the $c c^{T}$ shows that $Y_{1 i j k} \in C U T_{7}$.

Add $C U T_{5}$ constraints

In view of the previous result (and proof), it seems plausible to add constraints of the following type:
Select a 5×5 submatrix of Y, indexed by $i_{1}<i_{2}<i_{3}<i_{4}<i_{5}$ and impose that this submatrix is in $C U T_{5}$, hence can be written as a convex combination of $2^{4}=16$ cut matrices C_{i}.
This is stronger than asking that the associated 11×11 submatrix of the Lasserre matrix is semidefinite.

Preliminary Results

We identify 5 -cliques, by looking at all active triangles (at the optimal solution $Y \in C_{n} \cap M E T_{n}$), and extend them (by enumeration) to 5 -cliques, and check whether the resulting submatrix is in CUT_{5}.
We collect several hundred of these and solve the resulting relaxation, asking that all selected 5 -cliques have their submatrix in CUT_{5}.

n	$C_{n} \cap M E T_{n}$	with 5-cliques	best known cut
80	1301.7	1294.3	1287
80	1496.6	1487.1	1474
100	1373.9	1358.8	1283
100	130.1	128.8	126

Practicalities are still open

This approach an be combined with triangle separation:
Once a set of 5 -cliques is added and the current point is cut off, we may include triangle inequalities until none of them are violated any more.

Then we can again search for violated 5×5 submatrices which are not in $C U T_{5}$, and keep iterating.
What are good strategies to identify candidates for 5×5 submatrices?

We use SeDuMi to solve the relaxations, but perhaps some specially taylored code would be more efficient.

Last Slide

The approach can be seen more generally as asking that $Y \in C_{n} \cap M E T_{n}$ and that all principal $t \times t$ submatrices of Y are in $C U T_{t}$. The first nontrivial case is $t=5$, but $t=6$ or 7 should also be computationally feasible.
The approach can be extended to other problems, like Stable Set or Coloring.
Computational issues need to be addressed. Is this approach competitive in Branch and Bound schemes?

