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The Max-Cut Problem

Unconstrained quadratic 1/-1 optimization:

max xT Lx such that x ∈ {−1, 1}n

This is Max-Cut as a binary quadratic problem.
Unconstrained quadratic 0/1 minimization:

min xT Qx + cT x such that x ∈ {0, 1}n

This is equivalent to Max-Cut, by simple variable
transformation.
Q could either be assumed to be upper triangular, or
symmetric, with zero diagonal.
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Basic semidefinite relaxation

Consider the polytope Mcut:=conv{xxT : x ∈ {−1, 1}n}.
It is contained in the set

Cn := {X : diag(X) = e, X � 0}

of correlation matrices. Since xT Lx = 〈L, xxT 〉 we get

zmc = max{〈L,X〉 : X ∈ Mcut}

≤ max{〈L,X〉 : X ∈ Cn} := zsdp−basic

Goemans, Williamson (1995) worst-case error analysis (at
most 14 % above optimum if weights nonnegative).

Nesterov (1997) error at most 57 % if L � 0.
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Max-Cut and Cutting Planes

This SDP relaxation can be further tightened by including
Combinatorial Cutting Planes:

A simple observation:
Barahona, Mahjoub (1986): Cut Polytope, Deza, Laurent
(1997): Hypermetric Inequalities

x ∈ {−1, 1}n, f = (1, 1, 1, 0, . . . , 0)T ⇒ |fT x| ≥ 1.

Results in xT f fT x = 〈(xxT ), (ffT )〉 = 〈X,ffT〉 ≥ 1.
Can be applied to any triangle i < j < k.
Nonzeros of f can also be -1.

There are 4
(

n
3

)

such triangle inequality constraints. Direct
application of standard methods not possible for n ≈ 100.
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Metric Polytope

We collect all the triangle inequalities

xij + xik + xjk ≥ −1, xij − xik − xjk ≥ −1

in the metric polytope METn.

Optimizing over METn results in a difficult (highly
degenerate) LP.

Optimizing over Metn ∩ Cn provides the currently strongest
bounds for Max-Cut.

Exact optimization over METn ∩ Cn feasible if n ≈ 200.

Can be approximated for large instances, n ≈ 1000.
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Another look at basic relaxation

With x ∈ {−1, 1}n consider y ∈ {−1, 1}n with

y = x1 · x = (1, x1x2, x1x3, . . . , x1xn)T .

Then yyT = x2
1xxT = xxT .

Anjos, Wolkowicz (2002) and Lasserre (2002) consider

y(x) = (1, xixj) with 1 ≤ i < j ≤ n.

and study relaxations based on M2
cut:= conv(yyT ).

Note that M2
cut is contained in the space of symmetric

matrices of order
(

n
2

)

+ 1.
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Basic structural properties of M 2
cut
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1 y23 y24 y25 y13 y14 y15 z1 z2 z3

1 y34 y35 y12 z1 z2 y14 y15 z4

1 y45 z1 y12 z3 y13 z4 y15

1 z2 z3 y12 z4 y13 y14

1 y34 y35 y24 y25 z5

1 y45 y23 z5 y25
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1 y45 y35

1 y35
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Basic Properties (2)

A matrix Y ∈ M2
cut (of order

(

n
2

)

+ 1) has the following
properties:

• main diagonal equal one, and off diagonal elements of
two types:

• yij for i < j ≤ n. These are already part of basic n × n
model.

• zijkl for every 4-tupel of vertices.

These reflect commutativity of the term xixjxkxl, hence

Yij,kl = Yik,jl = Yil,jk = zijkl.

Q := {Y : Y has structure given through yij , zijkl, Y � 0}
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Hierarchy of relaxations

zSDP := max{〈L,X〉 : X ∈ Cn}

zSDPMET := max{〈L,X〉 : X ∈ Cn ∩ METn}

zQ := max{〈L̃, Y 〉 : Y ∈ Q}

Cost function L̃ has Laplacian L as principal submatrix.

zQMET := max{〈L̃, Y 〉 : Y ∈ Q ∩ MET(n

2
)+1

}

zSDP ≥ zSDPMET≥zQ ≥ zQMET ≥ zMC .

and all inequalities can be strict. The only nontrivial
condition is zSDPMET ≥ ZQ.

The last relaxation zQMET has not been investigated.
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A tiny example (n=5) (Laurent (2004))

L = −
1

2

















0 14 13 14 12

14 0 13 15 17

13 13 0 13 11

14 15 13 0 14

12 17 11 14 0

















optimize over optimal value
Cn 38.263

Cn ∩ METn 36.143
Q 34.340

Q ∩ MET(n

2
)+1

34.000

Max-Cut 34.000
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Another example (n=7)

Grishukhin inequality, facet for CUT7:

optimize over optimal value
Cn 6.9518

Cn ∩ METn 6.0584
AW 5.7075

Q 5.6152
Q ∩ MET(n

2
)+1

5.5730

Max-Cut 5.0000

The last three relaxations are intractable for values of n
beyond, say n ≈ 30.
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Optimizing over Cn

We solve max〈L,X〉 : X ∈ Cn.
Matrices of order n and Cn = {X : diag(X) = e, X � 0}

n seconds
1000 12
2000 102
3000 340
4000 782
5000 1570

Computing times to solve the SDP on a my laptop.
Implementation in MATLAB, 30 lines of source code
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Practical experience withCn ∩ METn

graph n SDP SDPMET time(min) cut
g1d 100 396.1 352.374 1.10 324
g2d 200 1268.9 1167.978 7.00 1050
g3d 300 2359.6 2215.233 14.01 1953
g1s 100 144.6 130.007 2.60 126
g2s 200 377.3 343.149 8.24 318
g3s 300 678.5 635.039 13.73 555

spin5 125 125.3 109.334 11.40 108

All relaxations solved exactly. The cut value is not known to
be optimal.
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Optimizing over Q

• Laurent shows that optimizing over Q may provide an
improvement by studying facets of Mcut for small values of
n, n ≤ 7.

• Solving this relaxation for n ≥ 30 is nontrivial.

The Q relaxation can be strenthened by adding triangle
conditions, leading to optimizing over Q ∩ MET .
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Toward optimizing over Q ∩ MET

It is computationally prohibitive to work with matrices of
order

(

n
2

)

.

Our approach: Select small submatrices of Q and impose
semidefiniteness as additional constraints (semidefinite
cuts).

Starting point is optimal n × n matrix Y ∈ Cn ∩ METn.

Main task: Identify small candidate submatrices of Lasserre
matrix, which cut off current point Y .

Singapore 2012 – p.15/25



Simplest idea: addK3

We have x ∈ {−1, 1}n and form y = y(x) = x1 · x. Then
xxT = yyT and Y = (yij) ∈ Cn ∩ METn is starting point.
First Idea: extend y(x) by adding only one term xixj for
2 ≤ i < j.

Hence we consider
y = y(x) := (1, x1x2, . . . , x1xn, xixj) ∈ {−1, 1}n+1.

Of the (n + 1) × (n + 1) matrix yyT we focus on the
submatrix indexed by (1, [1i], [1j], [ij]). It contains only
elements from Y .

Y1ij :=











1 y1i y1j yij

y1i 1 yij y1j

y1j yij 1 y1i

yij y1j y1j 1
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K3 expansion does not work

Theorem Let Y ∈ Cn. Then Y ∈ METn if and only if
Yijk � 0 ∀i, j, k

The first direction was already shown by Anjos and
Wolkowicz and also Laurent.

If Yijk � 0, then eT Y1ije = 4(1 + xij + xik + xjk) ≥ 0. The
other inequalities from MET are obtained in a similar way.

If Y ∈ MET , then observe that all principal 3 × 3
submatrices of Y1ij have same determinant, and the first is
by assumption semidefinite. It can be verified that

det(Y1ij) = (1 + x1i + x1j + xij)(1 + x1i − x1j − xij)(. . .)(. . .),

which is ≥ 0 because all factors are nonnegative.
Hence including Y1ij � 0 is satisfied once Y ∈ Cn ∩ METn.
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K3 expansion (2)

Extending y(x) by a single edge [ij] does not improve the
relaxation.

If some triangle constraint from MET , say on i, j, k is tight,
the proof also shows that the semidefinite matrix Yijk is
singular.

So we try to add edges from a K4 to extend the relaxation.

Hence we consider y = y(x) =

(1, x1x2, x1x3, . . . , x1xn, xixj , xixk, xjxk) ∈ {−1, 1}n+3.

The relevant 7 × 7 submatrix of the Lasserre matrix has all
but one entry specified by Y .
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The 7 × 7 submatrix

Y1ijk(ξ) :=

























1 y1i y1j y1k yij yik yjk

y1i 1 yij yik y1j y1k ξ

y1j yij 1 yjk y1i ξ y1k

y1k yik yjk 1 ξ y1i y1j

yij y1j y1i ξ 1 yjk yik

yik y1k ξ y1i yjk 1 yij

yjk ξ y1k y1j yik yij 1

























The unspecified parameter is ξ = z1ijk, and represents the
products x1xixjxk.
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K4 expansion

Note that in case the triangle on i, j, k is tight, the principal
submatrix indexed by [1, ij, ik, jk] is singular.

This makes it seem unlikely that Y1ikl is completable to a
semidefinite matrix.

If Y ∈ Cn but Y /∈ MET , then it is easy to show that Y1ikl

may not be sdp completable.

Since we do not only ask for sdp-completability but also that
the unspecified parameter ξ is the same throughout, we can
not use standard results for sdp-completability.
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K4 extension does not work

Theorem. Let Y ∈ Cn ∩ MET and consider Y1ijk as defined
before. Then Y1ijk ∈ CUT7.

Proof:
The 4 × 4 submatrix X4 (of first 4 rows) is part of Y and
hence X4 ∈ MET4 = CUT4.
Thus X4 is a convex combination of cut matrices ccT of
order 4.
If c = (c1, ci, cj , ck) is such a cut, we consider
ĉ := (c1c1, c1ci, c1cj , c1ck, cicj , cick, cjck), which has the
structure of y(x).
The convex combination with ĉĉT instead of the ccT shows
that Y1ijk ∈ CUT7.
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Add CUT5 constraints

In view of the previous result (and proof), it seems plausible
to add constraints of the following type:

Select a 5 × 5 submatrix of Y , indexed by
i1 < i2 < i3 < i4 < i5 and impose that this submatrix is in
CUT5, hence can be written as a convex combination of
24 = 16 cut matrices Ci.

This is stronger than asking that the associated 11 × 11
submatrix of the Lasserre matrix is semidefinite.
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Preliminary Results

We identify 5-cliques, by looking at all active triangles (at
the optimal solution Y ∈ Cn ∩ METn), and extend them (by
enumeration) to 5-cliques, and check whether the resulting
submatrix is in CUT5.
We collect several hundred of these and solve the resulting
relaxation, asking that all selected 5-cliques have their
submatrix in CUT5.

n Cn ∩ METn with 5-cliques best known cut
80 1301.7 1294.3 1287
80 1496.6 1487.1 1474

100 1373.9 1358.8 1283
100 130.1 128.8 126
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Practicalities are still open

This approach an be combined with triangle separation:

Once a set of 5-cliques is added and the current point is cut
off, we may include triangle inequalities until none of them
are violated any more.

Then we can again search for violated 5 × 5 submatrices
which are not in CUT5, and keep iterating.

What are good strategies to identify candidates for 5 × 5
submatrices?

We use SeDuMi to solve the relaxations, but perhaps some
specially taylored code would be more efficient.
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Last Slide

The approach can be seen more generally as asking that
Y ∈ Cn ∩ METn and that all principal t × t submatrices of Y
are in CUTt. The first nontrivial case is t = 5, but t = 6 or 7
should also be computationally feasible.

The approach can be extended to other problems, like
Stable Set or Coloring.

Computational issues need to be addressed. Is this
approach competitive in Branch and Bound schemes?
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