A Rank-Corrected Procedure for Matrix Completion with Fixed Basis Coefficients

Defeng Sun

Department of Mathematics and Risk Management Institute National University of Singapore

Based on a joint work with Weimin Miao and Shaohua Pan

Correlation matrix completion

A correlation matrix \bar{X} : symmetric positive semidefinite, $\operatorname{diag}(\bar{X})=e$.

Question: How to recover \bar{X} from observations of entries

$$
\underbrace{\bar{X}_{\left(a_{1}, b_{1}\right)}, \bar{X}_{\left(a_{2}, b_{2}\right)}, \ldots, \bar{X}_{\left(a_{m}, b_{m}\right)},}_{m \text { upper off-diagonal entries }} \quad a_{k}<b_{k} .
$$

(Multiple observations of one entry are allowed.)

Density matrix completion

A density matrix \bar{X} of a quantum system:
Hermitian positive semidefinite matrix, $\operatorname{Tr}(\bar{X})=1$.
Observations: Pauli measurements, i.e., $\operatorname{Re}\left(\operatorname{Tr}\left(\Theta_{i} \bar{X}\right)\right)$,

$$
\Theta_{i} \in \text { Pauli basis : }\left\{\sigma_{s_{1}} \otimes \cdots \otimes \sigma_{s_{l}} \mid\left(s_{1}, \cdots, s_{l}\right) \in\{0,1,2,3\}^{k}\right\},
$$

where

$$
\sigma_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -\sqrt{-1} \\
\sqrt{-1} & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

How to recover the unknown matrix \bar{X} in quantum state tomograph? ${ }^{1}$

[^0]
Matrix completion with fixed basis coefficients

Correlation matrix completion (an example):
\diamond all diagonal entries are fixed, i.e., $\left\langle e_{i} e_{i}^{T}, \bar{X}\right\rangle=1, i=1, \ldots, n$;
\diamond some off-diagonal entries may be fixed as well, [e.g., the correlations among pegged currencies.]

Consider the orthonormal basis $\left(d=d_{1}+d_{2}=n(n+1) / 2\right)$:

$$
\begin{gathered}
\left\{\Theta_{i}\right\}_{i=1}^{d}:=\underbrace{\left\{e_{i} e_{i}^{T} \mid 1 \leq i \leq n\right\} \bigcup\left\{\frac{1}{\sqrt{2}}\right.}_{\Theta_{\alpha}(\mathrm{fixed})} \underbrace{\left.\left(e_{i} e_{j}^{T}+e_{j} e_{i}^{T}\right) \mid 1 \leq i<j \leq n\right\}}_{\Theta_{\beta}} . \\
\alpha=\left\{1, \ldots, d_{1}\right\} \quad \beta=\left\{d_{1}+1, \ldots, d_{1}+d_{2}\right\}
\end{gathered} .
$$

The observation model

\diamond Fixed basis coefficients: $\left\langle\Theta_{k}, \bar{X}\right\rangle, k \in \alpha$.
\diamond The observation model:

$$
y_{i}=\left\langle\Theta_{\omega_{i}}, \bar{X}\right\rangle+\nu \xi_{i}, \quad \omega_{i} \in \beta, i=1, \cdots, m
$$

where ξ_{i} are i.i.d noises with mean 0 and variance 1.

- The sampling probability:

$$
p=(\underbrace{0, \cdots, 0}_{\alpha}, \underbrace{p_{d_{1}+1}, \cdots p_{d_{1}+d_{2}}}_{\beta})^{T}, \quad p_{k}>0 \forall k \in \beta .
$$

Uniform sampling: $p_{k}=1 / d_{2} \forall k \in \beta$.

A problem formulation

$\diamond \quad \mathcal{R}_{\alpha}(X)=\left(\left\langle\Theta_{k}, X\right\rangle\right)_{k \in \alpha}^{T} \in \mathbb{R}^{d_{1}}$.
$\diamond \mathcal{R}_{\beta}(X)=\left(\left\langle\Theta_{k}, X\right\rangle\right)_{k \in \beta}^{T} \in \mathbb{R}^{d_{2}}$.
$\diamond \mathcal{R}_{\Omega}(X):=\left(\left\langle\Theta_{\omega_{1}}, X\right\rangle, \cdots,\left\langle\Theta_{\omega_{m}}, X\right\rangle\right)^{T} \in \mathbb{R}^{m}$.
Suppose that \bar{X} has a low-rank structure. One may recover \bar{X} by solving the following problem

$$
\begin{array}{cl}
\min _{X \in \mathcal{S}^{n}} & \frac{1}{2 m}\left\|y-\mathcal{R}_{\Omega}(X)\right\|_{2}^{2}+\rho_{m} \operatorname{rank}(X) \\
\text { s.t. } & \mathcal{R}_{\alpha}(X)=\mathcal{R}_{\alpha}(\bar{X}), \quad X \in \mathcal{S}_{+}^{n} .
\end{array}
$$

\diamond NP-hard.
\diamond This model is also applicable to covariance matrix completion.

Nuclear norm always fails.

A popular convex relaxation to encourage low-rank solutions:

$$
\operatorname{rank}(X) \quad \Longrightarrow \quad\|X\|_{*}:=\sum_{i=1}^{n} \sigma_{i}(X)
$$

$\diamond \quad$ Nuclear norm - convex envelope of the rank function over the unit ball of the spectral norm.

\diamond Correlation matrices: $\|X\|_{*}=$ constant \Longrightarrow Nuclear norm fails!

The rank constrained problem

A majorized penalty approach proposed by Gao and Sun²:

$$
\begin{aligned}
& \min _{X \in \mathcal{C}}\{h(X): \operatorname{rank}(X) \leq r\} \\
& \qquad \Downarrow \quad\left[\operatorname{rank}(X) \leq r \Longleftrightarrow \sigma_{r+1}(X)+\cdots+\sigma_{n}(X)=0\right] \\
& \min _{X \in \mathcal{C}} h(X)+\rho\left(\|X\|_{*}-s_{r}(X)\right) \\
& \qquad \Downarrow \quad\left[s_{r}(X) \geq s_{r}(Y)+\left\langle G^{Y}, X-Y\right\rangle, G^{Y} \in \partial s_{r}(Y)\right] \\
& X^{k+1}=\arg \min _{X \in \mathcal{C}} \widehat{h}^{k}(X)+\rho\left(\|X\|_{*}-\left\langle G^{k}, X\right\rangle+\frac{\gamma_{k}}{2}\left\|X-X^{k}\right\|_{F}^{2}\right)
\end{aligned}
$$

where $s_{r}(X):=\sum_{i=1}^{r} \sigma_{i}(X), G^{k} \in \partial s_{r}\left(X^{k}\right)$ and \widehat{h}^{k} is a majorized convex function to h at X^{k}.
${ }^{2}$ Gao, Y. and Sun, D., A majorized penalty approach for calibrating rank constrained correlation matrix problems, 2010.

The majorization method

A majorization function $\widehat{g}\left(x, x^{k}\right)$ of g at x^{k} satisfies

$$
\widehat{g}\left(x^{k}, x^{k}\right)=g\left(x^{k}\right) \quad \text { and } \quad \widehat{g}\left(x, x^{k}\right) \geq g(x) \quad \forall x .
$$

Our proposed rank-correction step

Our proposed rank-correction step:

$$
\begin{aligned}
\min _{X \in \mathcal{S}^{n}} & \frac{1}{2 m}\left\|y-\mathcal{R}_{\Omega}(X)\right\|_{2}^{2}+\rho_{m}\left(\left\langle I_{n}-F\left(\widetilde{X}_{m}\right), X\right\rangle+\frac{\gamma_{m}}{2}\left\|X-\widetilde{X}_{m}\right\|_{F}^{2}\right) \\
\text { s.t. } & \mathcal{R}_{\alpha}(X)=\mathcal{R}_{\alpha}(\bar{X}), \quad X \in \mathcal{S}_{+}^{n},
\end{aligned}
$$

$\diamond \quad F$: a spectral operator.
$\diamond \widetilde{X}_{m}$: a reasonable initial estimator, say the (nuclear norm regularized) least squares estimator.
$\diamond \gamma_{m} \geq 0$: ensure the boundness of the optimal solution.

The spectral operator

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be symmetric if
$f(x)=Q^{\mathbb{T}} f(Q x) \quad \forall$ signed permutation matrix Q and $x \in \mathbb{R}^{n}$.
$\diamond f_{i}(x)=0$ if $x_{i}=0$.
The spectral operator ${ }^{3} F: \mathbb{R}^{n_{1} \times n_{2}} \rightarrow \mathbb{R}^{n_{1} \times n_{2}}$ associated with the symmetric function $f: \mathbb{R}^{\min \left(n_{1}, n_{2}\right)} \rightarrow \mathbb{R}^{\min \left(n_{1}, n_{2}\right)}$ is given by

$$
F(X):=U \operatorname{Diag}(f(\sigma(X))) V^{T}, \quad(U, V) \in \mathcal{O}^{n_{1}, n_{2}}(X)^{4}, X \in \mathbb{R}^{n_{1} \times n_{2}} .
$$

\diamond For any $X \in \mathbb{S}_{+}^{n}, F(X)=P \operatorname{Diag}(f(\lambda(X))) P^{T}, P \in \mathcal{O}^{n}(X)^{5}$.

[^1]
Orthogonal decomposition

Suppose that $\operatorname{rank}(\bar{X})=r$. Decompose $\mathcal{S}^{n}=T \oplus T^{\perp}$ with

$$
\begin{gathered}
T:=\left\{X \in \mathcal{S}^{n} \mid X=Y+Y^{T} \text { with } \operatorname{row}(Y) \subseteq \operatorname{row}(\bar{X})\right\}, \\
T^{\perp}:=\left\{X \in \mathcal{S}^{n} \mid \operatorname{row}(X) \perp \operatorname{row}(\bar{X})\right\},
\end{gathered}
$$

where $\operatorname{row}(X)$ denotes the row space of X.
Then, we have that for any $X \in \mathcal{S}^{n}$,

$$
\begin{aligned}
\mathcal{P}_{T}(X)= & \bar{P}_{1} \bar{P}_{1}^{T} X+X \bar{P}_{1} \bar{P}_{1}^{T}-\bar{P}_{1} \bar{P}_{1}^{T} X \bar{P}_{1} \bar{P}_{1}^{T}, \\
& \mathcal{P}_{T^{\perp}}(X)=\bar{P}_{2} \bar{P}_{2}^{T} X \bar{P}_{2} \bar{P}_{2}^{T},
\end{aligned}
$$

where $\left[\begin{array}{ll}\bar{P}_{1} & \bar{P}_{2}\end{array}\right] \in \mathcal{O}^{n}(\bar{X})$ with $\bar{P}_{1} \in \mathbb{R}^{n \times r}$ and $\bar{P}_{2} \in \mathbb{R}^{n \times(n-r)}$.

Error bounds

Let \widehat{X}_{m} be the estimator generated from the rank-correction step.
For simplicity, we set $\gamma_{m}:=0$. Let

$$
a_{m}:=\left\|\bar{P}_{1} \bar{P}_{1}^{T}-\mathcal{P}_{T}\left(F\left(\widetilde{X}_{m}\right)\right)\right\| \quad \text { and } \quad b_{m}:=1-\left\|\mathcal{P}_{T^{\perp}}\left(F\left(\widetilde{X}_{m}\right)\right)\right\| .
$$

Assume $b_{m}>0$. For any constant $\kappa>1$, if

$$
\rho_{m} \geq \frac{\kappa \nu}{b_{m}}\left\|\frac{1}{m} \mathcal{R}_{\Omega}^{*}(\xi)\right\|
$$

then, from the optimality of \widehat{X}_{m}, we have

$$
\frac{1}{2 m}\left\|\mathcal{R}_{\Omega}\left(\widehat{X}_{m}-\bar{X}\right)\right\|_{2}^{2} \leq \sqrt{2 r}\left(a_{m}+\frac{b_{m}}{\kappa}\right) \rho_{m}\left\|\widehat{X}_{m}-\bar{X}\right\|_{F} .
$$

Error bounds (Cont.)

\diamond The sampling operator \mathcal{R}_{Ω} does not satisfy the restricted isometric property (RIP).
\diamond However, \mathcal{R}_{Ω} has a similar property with high probability under certain conditions, such that

$$
\frac{1}{2 m}\left\|\mathcal{R}_{\Omega}\left(\widehat{X}_{m}-\bar{X}\right)\right\|_{2}^{2} \geq C\left\|\widehat{X}_{m}-\bar{X}\right\|_{F}^{2}-\text { a small term }
$$

for some constant C.

Error bounds (Cont.)

We adopt the setting of Klopp (2012) ${ }^{6}$ and correspondingly modify it. Assume that
$\diamond \bar{X}$ is bounded in terms of $\left\|\mathcal{R}_{\beta}(\bar{X})\right\|_{\infty} \leq c$ for some constant c.
$\diamond \xi_{i}$ are subexponential ${ }^{7}$ with mean 0 and variance 1 .
Let \widehat{X}_{m}^{c} be generated from the rank-correction step with an additional constraint $\left\|\mathcal{R}_{\beta}(X)\right\|_{\infty} \leq c$ to the optimization problem.
$\diamond \widehat{X}_{m}^{c}=\widehat{X}_{m}$ if the bound c is not tight.

[^2]
Error bounds (Cont.)

Theorem 1. For any given $\kappa>1$, choose ρ_{m} by

$$
\rho_{m}=\frac{\kappa \nu}{\beta_{m}} C^{*} \sqrt{\frac{\mu_{2} \log (n)}{m n}} .
$$

Then, \exists a constant C s.t. with probability at least $1-1.5 / n$,

$$
\frac{\left\|\widehat{X}_{m}^{c}-\bar{X}\right\|_{F}^{2}}{d_{2}} \leq C \max \left\{\eta_{m} \mu_{1}^{2} \mu_{2} \frac{d_{2} r \log (n)}{m n}, c^{2} \mu_{1} \sqrt{\frac{\log (n)}{m}}\right\}
$$

where

$$
\eta_{m}:=\left(\left(1+\kappa \frac{a_{m}}{b_{m}}\right)^{2} \nu^{2}+\left(\frac{\kappa}{\kappa-1}\right)^{2}\left(1+\frac{a_{m}}{b_{m}}\right)^{2} c^{2}\right) .
$$

$\diamond \mu_{1}$ and μ_{2} are constants, irrelevant to n and d_{2}.
\diamond The sample size to control the error bound is $O(n r \log (n)) \approx$ the order of degree of freedom, since $d_{2} \leq n^{2}$.

The power of the correction term

\diamond The (nuclear norm penalized) least squares estimator:

$$
F \equiv 0 \quad \Longrightarrow \quad a_{m}=b_{m}=\frac{a_{m}}{b_{m}}=1
$$

\diamond The rank-correction step:

$$
\frac{a_{m}}{b_{m}} \leq \frac{\varepsilon_{1}}{1-\varepsilon_{2}} \quad \text { if } \quad\left\{\begin{array}{l}
\left\|\mathcal{P}_{T}\left(F\left(\widetilde{X}_{m}\right)\right)-\bar{P}_{1} \bar{P}_{1}^{T}\right\| \leq \varepsilon_{1} \\
\left\|\mathcal{P}_{T^{\perp}}\left(F\left(\widetilde{X}_{m}\right)\right)\right\| \leq \varepsilon_{2}<1 .
\end{array}\right.
$$

\diamond If we have a reasonable \widetilde{X}_{m}, why not use it as a correction?
\diamond We should construct a spectral operator F such that $F\left(\tilde{X}_{m}\right)$ is close to $\bar{P}_{1} \bar{P}_{1}^{T}$.

Rank consistency

Not only potentially reduce the recovery error, but also the rank!
Definition 1 (Bach, 2008). An estimator X_{m} of the true matrix \bar{X} is said to be rank consistent if

$$
\lim _{m \rightarrow \infty} \mathbb{P}\left(\operatorname{rank}\left(X_{m}\right)=\operatorname{rank}(\bar{X})\right)=1 .
$$

Assumption 1.
$\diamond \quad$ The spectral operator F is continuous at \bar{X}.
\diamond The initial estimator \widetilde{X}_{m} satisfies $\widetilde{X}_{m} \xrightarrow{p} \bar{X}$ as $m \rightarrow \infty .{ }^{8}$

8"The notation \xrightarrow{p} " means convergence in probability.

A local necessary condition for rank consistency

Let $\mathcal{Q}_{\beta}(X):=\sum_{k \in \beta} p_{k}\left\langle\Theta_{k}, X\right\rangle \Theta_{k}$ and $\mathcal{Q}_{\beta}^{\dagger}(X):=\sum_{k \in \beta} \frac{1}{p_{k}}\left\langle\Theta_{k}, X\right\rangle \Theta_{k}$.
Proposition 1. If $\rho_{m} \rightarrow 0, \sqrt{m} \rho_{m} \rightarrow \infty$ and $\gamma_{m}=O_{p}(1)$, then $\rho_{m}^{-1}\left(\widehat{X}_{m}-\bar{X}\right) \xrightarrow{p} \widehat{\Delta}$, where $\widehat{\Delta}$ is the unique optimal solution to

$$
\begin{aligned}
\min _{\Delta \in \mathcal{S}^{n}} & \frac{1}{2}\left\langle\mathcal{Q}_{\beta}(\Delta), \Delta\right\rangle+\left\langle I_{n}-F(\bar{X}), \Delta\right\rangle \\
\text { s.t. } & \mathcal{R}_{\alpha}(\Delta)=0, \quad \bar{P}_{2}^{\mathbb{T}} \Delta \bar{P}_{2} \in \mathcal{S}_{+}^{n-r}
\end{aligned}
$$

A local necessary condition for rank consistency:

$$
\bar{P}_{2}^{T} \widehat{\Delta} \bar{P}_{2}=0
$$

A sufficient condition for rank consistency

Assume that the Slater condition holds. Consider the linear system:

$$
\begin{equation*}
\bar{P}_{2}^{T} \mathcal{Q}_{\beta}^{\dagger}\left(\bar{P}_{2} \Lambda \bar{P}_{2}^{T}\right) \bar{P}_{2}=\bar{P}_{2}^{T} \mathcal{Q}_{\beta}^{\dagger}\left(I_{n}-F(\bar{X})\right) \bar{P}_{2} \tag{1}
\end{equation*}
$$

Theorem 2. If $\rho_{m} \rightarrow 0, m^{1 / 2} \rho_{m} \rightarrow \infty$ and $\gamma_{m}=O_{p}(1)$, then for the rank consistency of \widehat{X}_{m},
\diamond a necessary condition: (1) has a solution $\widehat{\Lambda} \in \mathcal{S}_{+}^{n-r}$.
\diamond a sufficient condition: (1) has a unique solution $\widehat{\Lambda} \in \mathcal{S}_{++}^{n-r}$.
The linear system can be written concisely as

$$
\mathcal{B}_{2}(\Lambda)=\mathcal{B}_{2}\left(I_{n-r}\right)+\mathcal{B}_{1}(\operatorname{Diag}(\widehat{g}(\bar{X}))), \quad \Lambda \in \mathcal{S}^{n-r}
$$

where $\mathcal{B}_{1}(Y):=\bar{P}_{2}^{T} \mathcal{Q}_{\beta}^{\dagger}\left(\bar{P}_{1} Y \bar{P}_{1}^{T}\right) \bar{P}_{2}, \mathcal{B}_{2}(Z):=\bar{P}_{2}^{T} \mathcal{Q}_{\beta}^{\dagger}\left(\bar{P}_{2} Z \bar{P}_{2}^{T}\right) \bar{V}_{2}$ and $\widehat{g}(\bar{X}):=\left(1-f_{1}(\sigma(\bar{X})), \ldots, 1-f_{r}(\sigma(\bar{X}))\right)^{T}$.

Constraint nondegeneracy

We say that the constraint nondegeneracy at \bar{X} if

$$
\mathcal{R}_{\alpha}\left(\operatorname{lin}\left(\mathcal{T}_{\mathcal{S}_{+}^{n}}(\bar{X})\right)\right)=\mathbb{R}^{d_{1}},
$$

where

$$
\operatorname{lin}\left(\mathcal{T}_{\mathcal{S}_{+}^{n}}(\bar{X})\right)=\left\{X \in \mathcal{S}^{n} \mid \bar{P}_{2}^{T} X \bar{P}_{2}=0\right\} .
$$

If constraint nondegeneracy holds at \bar{X}, then
\diamond the linear operators \mathcal{B}_{2} is self-adjoint and positive definite;
\diamond the sufficient condition for rank consistency reduces to

$$
I_{n-r}+\mathcal{B}_{2}^{-1} \mathcal{B}_{1}\left(\operatorname{Diag}\left(g_{r}(\bar{X})\right)\right) \in \mathcal{S}_{++}^{n-r} .
$$

In general, $F(\bar{X})$ is desired to be close to $\bar{P}_{1}^{T} \bar{P}_{1}$ for rank consistency.

Rank consistency for correlation matrix compl.

Theorem 3. For the correlation matrix completion problems with all diagonal entries being fixed as ones under uniform sampling, if $\rho_{m} \rightarrow 0, \sqrt{m} \rho_{m} \rightarrow \infty, \gamma_{m}=O_{p}(1)$ and F is a spectral operator associated with a symmetric function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that for $i=1, \ldots, n$,

$$
\begin{equation*}
f_{i}(x) \geq 0 \quad \forall x \in \mathbb{R}_{+}^{n} \quad \text { and } \quad f_{i}(x)=0 \text { if and only if } x_{i}=0, \tag{2}
\end{equation*}
$$

then the estimator \widehat{X}_{m} generated from the rank-correction step is rank consistent.
\diamond Constraint nondegeneracy holds at \bar{X} automatically.
\diamond This theorem is also applicable to covariance matrix completion with partial positive diagonal entries being fixed.

The construction of F

The results of recovery error and rank consistency suggest a consistent criterion for the construction of the rank-correction function F, if possible, such that

$$
F(X) \rightarrow \bar{P}_{1} \bar{P}_{1}^{T} \quad \text { as } \quad X \rightarrow \bar{X}
$$

When the true rank is known:

$$
\begin{equation*}
F(X):=P_{1} P_{1}^{T}, \tag{3}
\end{equation*}
$$

where $\left(\left[P_{1}, P_{2}\right]\right) \in \mathcal{O}^{n}(X), X \in \mathcal{S}^{n}$ with $P_{1} \in \mathbb{R}^{n \times r}, P_{2} \in \mathbb{R}^{n \times(n-r)}$.
\diamond The rank-correction step reduces to one step of the majorized penalty approach proposed by Gao and Sun (2010).

The construction of F (Cont.)

When the true rank is unknown:

$$
F(X):=P \operatorname{Diag}(f(\sigma(X))) P^{T}
$$

associated with the symmetric function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined as

$$
f_{i}(x)= \begin{cases}\phi\left(\frac{x_{i}}{\|x\|_{\infty}}\right) & \text { if } x \in \mathbb{R}^{n} \backslash\{0\} \\ 0 & \text { if } x=0\end{cases}
$$

where $P \in \mathcal{O}^{n}(X)$ and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ takes the form

$$
\phi(t):=\operatorname{sgn}(t)\left(1+\varepsilon^{\tau}\right) \frac{|t|^{\tau}}{|t|^{\tau}+\varepsilon^{\tau}}, \quad \forall t \in \mathbb{R}
$$

for some $\tau>0$ and $\varepsilon>0$.

The construction of F (Cont.)

\diamond Rank consistency: $\varepsilon \downarrow 0$.
$\diamond \phi(t)$ over $[0,1]$ is concave if $0<\tau \leq 1$ and S-shaped if $\tau>1$.

(a) $\varepsilon=0.1$

(b) $\tau=2$

We recommend the choices $\tau=1,2$ and $\varepsilon=0.01 \sim 0.1$ by considering the optimality and robustness of recovery.

Influence of fixed basis coefficients

$n=1000, \operatorname{rank}=5$, noise level $=10 \%$, sample ratio $=6.38 \%, \tau=2, \varepsilon=0.02$.

Influence of fixed basis coefficients (Cont.)

Performance of different F

Correlation matrix completion with only diagonal entries being fixed:

$$
n=1000, \text { rank }=10, \text { noise level }=10 \%, \text { sample ratio }=7.17 \% .
$$

Initial estimator: (nuclear norm penalized) least squares estimator.

rank-correction function	a_{m}	b_{m}	a_{m} / b_{m}	optimal relerr
zero function	1	1	1	10.85%
$\varepsilon=0.01, \tau=2$	0.1420	0.2351	0.6038	5.96%
$\varepsilon=0.02, \tau=2$	0.1459	0.5514	0.2646	5.80%
$\varepsilon=0.05, \tau=2$	0.1648	0.8846	0.1863	5.75%
$\varepsilon=0.1, \tau=2$	0.2399	0.9681	0.2478	5.77%
$\widetilde{U}_{1} \widetilde{V}_{1}^{\mathbb{T}}$ (initial)	0.1445	0.9815	0.1472	5.75%
$\bar{U}_{1} \bar{V}_{1}^{\mathbb{T}}$ (true)	0	1	0	2.25%

Performance of different F (Cont.)

Covariance matrix completion

$n=500$, rank $=5$, noise level $=10 \%$, sample ratio $=6.37 \%, \tau=2, \varepsilon=0.02$. number of fixed diagonal entries $=n / 5$, number of fixed off-diagonal entries $=n / 5$,

Correlation / covariance matrix completion

r	diag/ off-diag	sample ratio	NNPLS	1st RCS	2st RCS	3rd RCS
			relerr(rank)	relerr (rank)	relerr (rank)	
5	$1000 / 0$	2.40%	$1.95 \mathrm{e}-1(47)$	$1.27 \mathrm{e}-1(5)$	$1.18 \mathrm{e}-1(5)$	$1.12 \mathrm{e}-1(5)$
	$1000 / 0$	7.99%	$6.10 \mathrm{e}-2(51)$	$3.41 \mathrm{e}-2(5)$	$3.37 \mathrm{e}-2(5)$	$3.36 \mathrm{e}-2(5)$
	$500 / 50$	2.39%	$2.01 \mathrm{e}-1(45)$	$1.10 \mathrm{e}-1(5)$	$9.47 \mathrm{e}-2(5)$	$8.97 \mathrm{e}-2(5)$
	$500 / 50$	7.98%	$7.19 \mathrm{e}-2(32)$	$3.77 \mathrm{e}-2(5)$	$3.59 \mathrm{e}-2(5)$	$3.58 \mathrm{e}-2(5)$
10	$1000 / 0$	5.38%	$1.32 \mathrm{e}-1(74)$	$7.68 \mathrm{e}-2(10)$	$7.39 \mathrm{e}-2(10)$	$7.36 \mathrm{e}-2(10)$
	$1000 / 0$	8.96%	$9.18 \mathrm{e}-2(78)$	$5.15 \mathrm{e}-2(10)$	$5.08 \mathrm{e}-2(10)$	$5.08 \mathrm{e}-2(10)$
	$500 / 100$	5.37%	$1.58 \mathrm{e}-1(57)$	$8.66 \mathrm{e}-2(10)$	$7.74 \mathrm{e}-2(10)$	$7.60 \mathrm{e}-2(10)$
	$500 / 100$	8.96%	$1.02 \mathrm{e}-1(49)$	$5.36 \mathrm{e}-2(10)$	$5.24 \mathrm{e}-2(10)$	$5.25 \mathrm{e}-2(10)$

$\diamond n=1000$.
\diamond The algorithm is based on an inexact APG method by Jiang, Sun and Toh (2012). ${ }^{9}$

[^3]
Conclusions

\diamond Our propose rank-correction procedure is also applicable to the general low-rank matrix completion problems.
\diamond For additional linear constraints, all the theoretical results hold with slight modifications.
\diamond This approach can substantially overcome the limitation of the nuclear norm penalization for recovering a low-rank matrix.
\diamond This approach can significantly improve the recovery performance in the sense of both the recovery error and the rank.

- It would be of great interest to extend the asymptotic rank consistency results to the case that the matrix size is allowed to grow.

[^0]: ${ }^{1}$ D. Gross, Y.K. Liu, S.T. Flammia, S. Becker, and J. Eisert. Quantum state tomography via compressed sensing. Physical review letters, 105 (2010).

[^1]: ${ }^{3}$ Ding, C, Ph.D. thesis, National University of Singapore, (2012).
 ${ }^{4}$ For any $X \in \mathbb{R}^{n_{1} \times n_{2}}, \mathcal{O}^{n_{1}, n_{2}}(X):=\left\{(U, V) \in \mathcal{O}^{n_{1}} \times \mathcal{O}^{n_{2}} \mid X=U \operatorname{Diag}(\sigma(X)) V^{T}\right\}$.
 ${ }^{5}$ For any $X \in \mathcal{S}^{n}, \mathcal{O}^{n}(X):=\left\{P \in \mathcal{O}^{n} \mid X=P \operatorname{Diag}(\lambda(X)) P^{T}\right\}$.

[^2]: ${ }^{6}$ Klopp, O., Noisy low-rank matrix completion with general sampling distribution, (2012).
 ${ }^{7} \xi_{i}$ is said to be subexponential, i.e., there exists some $C, c, a>0$ such that for all $t>0$, $\mathbb{P}\left(\left|\xi_{i}\right| \geq t\right) \leq C \exp \left(-c t^{\alpha}\right)$.

[^3]: ${ }^{9}$ Jiang, K., Sun, D., and Toh, K.C., An inexact accelerated proximal gradient method for large scale linearly constrained convex SDP, SIAM Journal on Optimization 22, 22 (2012).

