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Correlation matrix completion
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A correlation matrix X:

symmetric positive semidefinite, diag(X) = e.

Question: How to recover X from observations of entries

X(a1,b1), X(a2,b2), . . . , X(am,bm)︸ ︷︷ ︸, ak < bk.

m upper off-diagonal entries

(Multiple observations of one entry are allowed.)



Density matrix completion
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A density matrix X of a quantum system:

Hermitian positive semidefinite matrix, Tr(X) = 1.

Observations: Pauli measurements, i.e., Re(Tr(ΘiX)),

Θi ∈ Pauli basis :
{
σs1 ⊗ · · · ⊗ σsl | (s1, · · · , sl) ∈ {0, 1, 2, 3}k

}
,

where

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −

√
−1√

−1 0

)
, σ3 =

(
1 0
0 −1

)
.

How to recover the unknown matrix X in quantum state tomograph?1

1D. Gross, Y.K. Liu, S.T. Flammia, S. Becker, and J. Eisert. Quantum state tomography
via compressed sensing. Physical review letters, 105 (2010).



Matrix completion with fixed basis coefficients
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Correlation matrix completion (an example):

⋄ all diagonal entries are fixed, i.e.,〈eieTi , X〉 = 1, i = 1, . . . , n;

⋄ some off-diagonal entries may be fixed as well, [e.g., the
correlations among pegged currencies.]

Consider the orthonormal basis (d = d1 + d2 = n(n+ 1)/2):

{Θi}di=1 :=
{
eie

T
i | 1 ≤ i ≤ n

}⋃{
1√
2
(eie

T
j + eje

T
i )

∣∣∣ 1 ≤ i < j ≤ n

}
.

︸ ︷︷ ︸ ︸ ︷︷ ︸
Θα(fixed) Θβ

α = {1, . . . , d1} β = {d1 + 1, . . . , d1 + d2}



The observation model
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⋄ Fixed basis coefficients: 〈Θk, X〉, k ∈ α.

⋄ The observation model:

yi = 〈Θωi
, X〉+ νξi, ωi ∈ β, i = 1, · · · ,m,

where ξi are i.i.d noises with mean 0 and variance 1.

◦ The sampling probability:

p = (0, · · · , 0︸ ︷︷ ︸, pd1+1, · · · pd1+d2︸ ︷︷ ︸)
T , pk > 0 ∀ k ∈ β.

α β

Uniform sampling: pk = 1/d2 ∀ k ∈ β.



A problem formulation
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⋄ Rα(X) =
(
〈Θk, X〉

)T
k∈α

∈ R
d1.

⋄ Rβ(X) =
(
〈Θk, X〉

)T
k∈β

∈ R
d2.

⋄ RΩ(X) := (〈Θω1
, X〉, · · · , 〈Θωm

, X〉)T ∈ R
m.

Suppose that X has a low-rank structure. One may recover X by
solving the following problem

min
X∈Sn

1

2m
‖y −RΩ(X)‖22 + ρmrank(X)

s.t. Rα(X) = Rα(X), X ∈ Sn
+.

⋄ NP-hard.

⋄ This model is also applicable to covariance matrix completion.



Nuclear norm always fails.
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A popular convex relaxation to encourage low-rank solutions:

rank(X) =⇒ ‖X‖∗ :=
n∑

i=1

σi(X).

⋄ Nuclear norm — convex envelope of the rank function over the
unit ball of the spectral norm.
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⋄ Correlation matrices: ‖X‖∗ = constant =⇒ Nuclear norm fails!



The rank constrained problem
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A majorized penalty approach proposed by Gao and Sun2:

min
X∈C

{
h(X) : rank(X) ≤ r

}

⇓ [rank(X) ≤ r ⇐⇒ σr+1(X) + · · ·+ σn(X) = 0]

min
X∈C

h(X) + ρ
(
‖X‖∗ − sr(X)

)

⇓ [sr(X) ≥ sr(Y ) + 〈GY , X − Y 〉, GY ∈ ∂sr(Y )]

Xk+1 = argmin
X∈C

ĥk(X) + ρ
(
‖X‖∗ − 〈Gk, X〉+ γk

2
‖X −Xk‖2F

)

where sr(X) :=
∑r

i=1 σi(X), Gk ∈ ∂sr(X
k) and ĥk is a majorized

convex function to h at Xk.

2Gao, Y. and Sun, D., A majorized penalty approach for calibrating rank constrained
correlation matrix problems, 2010.



The majorization method
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A majorization function ĝ(x, xk) of g at xk satisfies

ĝ(xk, xk) = g(xk) and ĝ(x, xk) ≥ g(x) ∀ x.



Our proposed rank-correction step
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Our proposed rank-correction step:

min
X∈Sn

1

2m
‖y −RΩ(X)‖22 + ρm

(
〈In−F (X̃m), X〉+ γm

2
‖X − X̃m‖2F

)

s.t. Rα(X) = Rα(X), X ∈ Sn
+,

⋄ F : a spectral operator.

⋄ X̃m: a reasonable initial estimator, say the (nuclear norm
regularized) least squares estimator.

⋄ γm ≥ 0: ensure the boundness of the optimal solution.



The spectral operator
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A function f : Rn → R
n is said to be symmetric if

f(x) = QTf(Qx) ∀ signed permutation matrix Q and x ∈ R
n.

⋄ fi(x) = 0 if xi = 0.

The spectral operator3 F : Rn1×n2 → R
n1×n2 associated with the

symmetric function f : Rmin(n1,n2) → R
min(n1,n2) is given by

F (X) := UDiag
(
f(σ(X))

)
V T , (U, V ) ∈ On1,n2(X)4, X ∈ R

n1×n2.

⋄ For any X ∈ S
n
+, F (X) = PDiag

(
f(λ(X))

)
P T , P ∈ On(X)5.

3Ding, C, Ph.D. thesis, National University of Singapore, (2012).
4For any X ∈ R

n1×n2 , On1,n2(X) :=
{

(U, V ) ∈ On1 ×On2 | X = UDiag
(

σ(X)
)

V T
}

.
5For any X ∈ Sn, On(X) :=

{

P ∈ On | X = PDiag(λ(X))PT
}

.



Orthogonal decomposition
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Suppose that rank(X) = r. Decompose Sn = T ⊕ T⊥ with

T :=
{
X ∈ Sn | X = Y + Y T with row(Y ) ⊆ row(X)

}
,

T⊥ :=
{
X ∈ Sn | row(X) ⊥ row(X)

}
,

where row(X) denotes the row space of X.

Then, we have that for any X ∈ Sn,

PT (X) = P 1P
T

1X +XP 1P
T

1 − P 1P
T

1XP 1P
T

1 ,

PT⊥(X) = P 2P
T

2XP 2P
T

2 ,

where [P 1 P 2] ∈ On(X) with P 1 ∈ R
n×r and P 2 ∈ R

n×(n−r).



Error bounds
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Let X̂m be the estimator generated from the rank-correction step.

For simplicity, we set γm := 0. Let

am := ‖P 1P
T

1 − PT (F (X̃m))‖ and bm := 1− ‖PT⊥(F (X̃m))‖.

Assume bm > 0. For any constant κ > 1, if

ρm ≥ κν

bm

∥∥∥∥
1

m
R∗

Ω(ξ)

∥∥∥∥

then, from the optimality of X̂m, we have

1

2m
‖RΩ(X̂m −X)‖22 ≤

√
2r
(
am +

bm
κ

)
ρm‖X̂m −X‖F .



Error bounds (Cont.)
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⋄ The sampling operator RΩ does not satisfy the restricted
isometric property (RIP).

⋄ However, RΩ has a similar property with high probability under
certain conditions, such that

1

2m
‖RΩ(X̂m −X)‖22 ≥ C‖X̂m −X‖2F − a small term

for some constant C.



Error bounds (Cont.)
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We adopt the setting of Klopp (2012)6 and correspondingly modify
it. Assume that

⋄ X is bounded in terms of ‖Rβ(X)‖∞ ≤ c for some constant c.

⋄ ξi are subexponential 7 with mean 0 and variance 1.

Let X̂c
m be generated from the rank-correction step with an

additional constraint ‖Rβ(X)‖∞ ≤ c to the optimization problem.

⋄ X̂c
m = X̂m if the bound c is not tight.

6Klopp, O., Noisy low-rank matrix completion with general sampling distribution, (2012).
7ξi is said to be subexponential, i.e., there exists some C, c, a > 0 such that for all t > 0,

P(|ξi| ≥ t) ≤ C exp(−ctα).



Error bounds (Cont.)
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Theorem 1. For any given κ > 1, choose ρm by

ρm =
κν

βm

C∗

√
µ2 log(n)

mn
.

Then, ∃ a constant C s.t. with probability at least 1− 1.5/n,

‖X̂c
m −X‖2F
d2

≤ Cmax

{
ηmµ2

1µ2
d2r log(n)

mn
, c2µ1

√
log(n)

m

}
,

where ηm :=

((
1 + κ

am

bm

)2
ν2 +

( κ

κ− 1

)2(
1 +

am

bm

)2
c2
)
.

⋄ µ1 and µ2 are constants, irrelevant to n and d2.

⋄ The sample size to control the error bound is O(nr log(n)) ≈ the
order of degree of freedom, since d2 ≤ n2.



The power of the correction term
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⋄ The (nuclear norm penalized) least squares estimator:

F ≡ 0 =⇒ am = bm =
am
bm

= 1.

⋄ The rank-correction step:

am
bm

≤ ε1
1− ε2

if

{∥∥PT

(
F (X̃m))− P 1P

T

1

∥∥ ≤ ε1,∥∥PT⊥

(
F (X̃m)

)∥∥ ≤ ε2 < 1.

⋄ If we have a reasonable X̃m, why not use it as a correction?

⋄ We should construct a spectral operator F such that

F (X̃m) is close to P 1P
T

1 .



Rank consistency
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Not only potentially reduce the recovery error, but also the rank!

Definition 1 (Bach, 2008). An estimator Xm of the true matrix X is
said to be rank consistent if

lim
m→∞

P
(
rank(Xm) = rank(X)

)
= 1.

Assumption 1.

⋄ The spectral operator F is continuous at X.

⋄ The initial estimator X̃m satisfies X̃m
p→ X as m → ∞.8

8“The notation
p
→” means convergence in probability.



A local necessary condition for rank consistency
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Let Qβ(X) :=
∑

k∈β

pk〈Θk, X〉Θk and Q†
β(X) :=

∑

k∈β

1

pk
〈Θk, X〉Θk.

Proposition 1. If ρm → 0,
√
mρm → ∞ and γm = Op(1), then

ρ−1
m (X̂m −X)

p→ ∆̂, where ∆̂ is the unique optimal solution to

min
∆∈Sn

1

2
〈Qβ(∆),∆〉+ 〈In − F (X),∆〉

s.t. Rα(∆) = 0, P
T

2∆P 2 ∈ Sn−r
+ .

A local necessary condition for rank consistency:

P
T

2 ∆̂P 2 = 0.



A sufficient condition for rank consistency
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Assume that the Slater condition holds. Consider the linear system:

P
T

2Q†
β(P 2ΛP

T

2 )P 2 = P
T

2Q†
β

(
In − F (X)

)
P 2. (1)

Theorem 2. If ρm → 0, m1/2ρm → ∞ and γm = Op(1), then for the
rank consistency of X̂m,

⋄ a necessary condition: (1) has a solution Λ̂ ∈ Sn−r
+ .

⋄ a sufficient condition: (1) has a unique solution Λ̂ ∈ Sn−r
++ .

The linear system can be written concisely as

B2(Λ) = B2(In−r) + B1

(
Diag(ĝ(X))

)
, Λ ∈ Sn−r,

where B1(Y ) := P
T

2Q†
β(P 1Y P

T

1 )P 2, B2(Z) := P
T

2Q†
β(P 2ZP

T

2 )V 2

and ĝ(X) :=
(
1− f1(σ(X)), . . . , 1− fr(σ(X))

)T
.



Constraint nondegeneracy
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We say that the constraint nondegeneracy at X if

Rα

(
lin(TSn

+
(X))

)
= R

d1,

where
lin(TSn

+
(X)) =

{
X ∈ Sn | P T

2XP 2 = 0
}
.

If constraint nondegeneracy holds at X, then

⋄ the linear operators B2 is self-adjoint and positive definite;

⋄ the sufficient condition for rank consistency reduces to

In−r + B−1
2 B1

(
Diag(gr(X))

)
∈ Sn−r

++ .

In general,F (X) is desired to be close toP
T

1 P 1 for rank consistency.



Rank consistency for correlation matrix compl.
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Theorem 3. For the correlation matrix completion problems with all
diagonal entries being fixed as ones under uniform sampling, if
ρm → 0,

√
mρm → ∞, γm = Op(1) and F is a spectral operator

associated with a symmetric function f : Rn → R
n such that for

i = 1, . . . , n,

fi(x) ≥ 0 ∀ x ∈ R
n
+ and fi(x) = 0 if and only if xi = 0, (2)

then the estimator X̂m generated from the rank-correction step is
rank consistent.

⋄ Constraint nondegeneracy holds at X automatically.

⋄ This theorem is also applicable to covariance matrix completion
with partial positive diagonal entries being fixed.



The construction ofF
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The results of recovery error and rank consistency suggest a
consistent criterion for the construction of the rank-correction
function F , if possible, such that

F (X) → P 1P
T

1 as X → X.

When the true rank is known:

F (X) := P1P
T
1 , (3)

where ([P1, P2]) ∈ On(X), X ∈ Sn with P1 ∈ R
n×r, P2 ∈ R

n×(n−r).

⋄ The rank-correction step reduces to one step of the majorized
penalty approach proposed by Gao and Sun (2010).



The construction ofF (Cont.)
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When the true rank is unknown:

F (X) := PDiag
(
f(σ(X))

)
P T ,

associated with the symmetric function f : Rn → R
n defined as

fi(x) =




φ

(
xi

‖x‖∞

)
if x ∈ R

n\{0},

0 if x = 0,

where P ∈ On(X) and φ : R → R takes the form

φ(t) := sgn(t)(1 + ετ )
|t|τ

|t|τ + ετ
, ∀ t ∈ R,

for some τ > 0 and ε > 0.



The construction ofF (Cont.)
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⋄ Rank consistency: ε ↓ 0.

⋄ φ(t) over [0, 1] is concave if 0 < τ ≤ 1 and S-shaped if τ > 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

The function φ(t) with different τ > 0 and ε = 0.1

τ = 0.5

τ = 1

τ = 2

τ = 5

(a) ε = 0.1

0 0.2 0.4 0.6 0.8 1
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0.4

0.6

0.8

1

The function φ(t) with τ = 2 and different ε > 0

ε = 0.01

ε = 0.05

ε = 0.1

ε = 0.5

(b) τ = 2

We recommend the choices τ = 1, 2 and ε = 0.01 ∼ 0.1 by
considering the optimality and robustness of recovery.



Influence of fixed basis coefficients
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n = 1000, rank = 5, noise level = 10%, sample ratio = 6.38%, τ = 2, ε = 0.02.
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Influence of fixed basis coefficients (Cont.)
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Performance of differentF
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Correlation matrix completion with only diagonal entries being fixed:

n = 1000, rank = 10, noise level = 10%, sample ratio = 7.17%.

Initial estimator: (nuclear norm penalized) least squares estimator.

rank-correction function am bm am/bm optimal relerr
zero function 1 1 1 10.85%
ε = 0.01, τ = 2 0.1420 0.2351 0.6038 5.96%
ε = 0.02, τ = 2 0.1459 0.5514 0.2646 5.80%
ε = 0.05, τ = 2 0.1648 0.8846 0.1863 5.75%
ε = 0.1, τ = 2 0.2399 0.9681 0.2478 5.77%

Ũ1Ṽ
T

1 (initial) 0.1445 0.9815 0.1472 5.75%

U 1V
T

1 (true) 0 1 0 2.25%



Performance of differentF (Cont.)
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Covariance matrix completion
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n = 500, rank = 5, noise level = 10%, sample ratio = 6.37%, τ = 2, ε = 0.02.

number of fixed diagonal entries = n/5, number of fixed off-diagonal entries = n/5,
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Covariance matrix completion (n = 500, rank = 5, noise level = 10%, sample ratio = 6.37%, nfix_diag=n/5, nfix_offdiag = n/5)
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diag/ NNPLS 1st RCS 2st RCS 3rd RCS
r

off-diag
sample
ratio relerr (rank) relerr(rank) relerr (rank) relerr (rank)

1000/0 2.40% 1.95e-1 (47) 1.27e-1 (5) 1.18e-1 (5) 1.12e-1 (5)

1000/0 7.99% 6.10e-2 (51) 3.41e-2 (5) 3.37e-2 (5) 3.36e-2 (5)
5

500/50 2.39% 2.01e-1 (45) 1.10e-1 (5) 9.47e-2 (5) 8.97e-2 (5)

500/50 7.98% 7.19e-2 (32) 3.77e-2 (5) 3.59e-2 (5) 3.58e-2 (5)

1000/0 5.38% 1.32e-1 (74) 7.68e-2 (10) 7.39e-2 (10) 7.36e-2 (10)

1000/0 8.96% 9.18e-2 (78) 5.15e-2 (10) 5.08e-2 (10) 5.08e-2 (10)
10

500/100 5.37% 1.58e-1 (57) 8.66e-2 (10) 7.74e-2 (10) 7.60e-2 (10)

500/100 8.96% 1.02e-1 (49) 5.36e-2 (10) 5.24e-2 (10) 5.25e-2 (10)

⋄ n = 1000.

⋄ The algorithm is based on an inexact APG method by Jiang, Sun and Toh
(2012).9

9Jiang, K., Sun, D., and Toh, K.C., An inexact accelerated proximal gradient method for
large scale linearly constrained convex SDP, SIAM Journal on Optimization 22, 22 (2012).
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⋄ Our propose rank-correction procedure is also applicable to the
general low-rank matrix completion problems.

⋄ For additional linear constraints, all the theoretical results hold
with slight modifications.

⋄ This approach can substantially overcome the limitation of the
nuclear norm penalization for recovering a low-rank matrix.

⋄ This approach can significantly improve the recovery
performance in the sense of both the recovery error and the
rank.

⋄ It would be of great interest to extend the asymptotic rank
consistency results to the case that the matrix size is allowed to
grow.
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