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Exact Recovery

Machine learning

@ Until about 1990, machine learning was
dominated by logic and rule-based reasoning.

@ E.g., for text processing, make rules for how
parts of speech interact.

@ Starting around 1990, paradigm shift in ML to
data mining and statistics based on large
training sets.

@ Computational problem: finding patterns in
large data sets.



Exact Recovery

Machine learning (cont'd)

@ Often the computational problems of interest,
such as finding a dense cluster of nodes in a
large sparse graph, are NP-hard.

@ Yet the problems are routinely solved
satisfactorily in practice using heuristics.

@ Suggests that real data has hidden structure
that makes finding patterns easier.



Exact Recovery

Generative models

@ How to model this hidden structure? One
popular approach: generative model.

@ Assume that the data is produced by a process
involving deterministic (adversary-based)
choices and random numbers.

@ Try to prove that a particular algorithm can
solve problems produced by the model in
polynomial time with high probability



Exact Recovery

Recent successes with convex optimization

Convex programming exactly solves many NP-hard
data mining problems in polynomial time when the
instance comes from a generative model:
@ Compressive sensing (Donoho; Candes,
Romberg & Tao)
@ Rank minimization (Recht, Fazel, Parrilo)
@ Matrix completion (Candes & Recht; Candes &
Tao)
@ Rank-sparsity decomposition (Chandrasekaran
et al.; Candeés et al.)
o Clique & clustering (Ames & V.)
@ Nonnegative matrix factorization (Doan, Toh &
V) .



Exact Recovery

s it really polynomial time?

@ Except for LP, exact solution to SDP not
attainable. Even for LP, complexity issues must
be resolved.

@ Not obvious that an exact solution to the
original problem is obtained from an
approximate solution to the convex relaxation.
And how approximate?

@ Thus, it is fair to ask whether the above results
are truly exactly solving the original problem in
polynomial time. (Y. Ye)
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Compressive sensing

Compressive sensing LP, min ||x||; s.t. Ax = b,
involves coefficient matrices A that are typically
Bernoulli, Gaussian or random Fourier.

@ Bernoulli: number of bits L to write the input
is poly(m, n). Thus, ellipsoid or interior point
always polynomial time for these cases.

@ Fourier: also poly(m, n) (Adler & Beling, 1991)

@ Gaussian: Tuncel, Todd & Ye (2001) show that
V.-Ye interior point method (real-number
arithmetic) solves LP exactly in poly(m, n)
time with probability very close to 1.

Other choices of A apparently need case-by-case
analvsis. B



Exact Recovery

SDP case

@ Focus on a particular problem and algorithm:
work by Doan, Toh & V. on nonnegative
matrix factorization.

@ Attempt to broaden the idea.



LAROS problem

Finding a feature in a text dataset

Suppose one is given a text corpus, i.e., a collection
of n text documents, and one seeks a topic in the
dataset, that is, a subset of related documents. One
approach:

@ Form the term-document matrix, that is, the
m X n matrix in which /th row corresponds to
the ith term, jth column to jth document, and
A(7,j) is the number of occurrences of term |
in document J.

@ Find a large approximately rank-one submatrix
A(l,J) of A (i.e., A(l,J) =~ whT).
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LAROS problem

Finding a feature in an image dataset

Given an image dataset in which all the n contain
exactly my x my, = m pixels, find a visual feature,
that is, a particular pattern that recurs in the same
subset of pixels in a subset of images.
@ Form an m x n matrix A in which A(/, )
stands for the intensity of pixel / in image j.
@ Find a large approximately rank-one submatrix
(LAROS) A(I, J) of A.
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LAROS problem

WAONENRNVIE

@ Assume A is nonnegative.
@ The above process can be repeated iteratively:
Fori=1:k

Find I;, Ji,w;, h; s.t. A(l;, J;)) =~ w;h].
Pad (W;, h;) with zeros to obtain (w;, h;).
A = max(A—w;h0).

@ Upon completion,

Azwlth+---+wkhkTE WHT,
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Greedy NMF algorithm

@ OK to assume that w; >0, h; > 0
(Perron-Frobenius).

@ Given a nonnegative matrix A, a factorization
A~ WHT is called nonnegative matrix
factorization (NMF) if W H both nonnegative.

@ The algorithm on the previous transparency is a
greedy NMF algorithm (Asgarian & Greiner,
Bergmann et al., Biggs et al., Gillis & Glineur).
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LAROS and SVD

@ Best overall rank-one approximation to A
comes from SVD (Eckart-Young theorem).

0.8 09 0.0 0.0
0.8 1.1 0.0 0.0
0.0 0.0 0.8 0.9
0.0 0.0 1.1 0.8

A:

@ The dominant left singular vector is
~ [1;1;0;0]; SVD has identified A(1:2,1:2).
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LAROS and SVD

@ Best overall rank-one approximation to A
comes from SVD (Eckart-Young theorem).

0.8 09 01 0.2
0.8 1.1 0.0 0.0
0.0 0.0 0.8 0.9
0.0 0.0 1.1 0.8

A:

@ The dominant left singular vector is
~ [1;1;0;0]; SVD has identified A(1:2,1:2).
@ But with a little noise, dominant left singular
vector ~ [1;1;1;1]; SVD fails to identify
LAROS.
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LAROS problem

SVD as optimization

@ The solution to this problem is to modify the
SVD to promote sparsity.

@ Can write SVD as an optimization problem
(Eckart-Young) and add another term, i.e.,

min ||A — cuv’ || + densityPenalty(u, v)

o,uv

@ Unfortunately, Eckart-Young optimization
problem is not convex.
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LAROS problem

SVD as convex optimization

@ Let || - ||. denote the nuclear norm, that is,
Xl = a1(X) + -+ + on(X).

@ Theorem: The nuclear norm is dual to the
2-norm, i.e., | X|[. = max{Z e X : ||Z]» < 1}.

@ Given A, the solution to the convex
optimization problem min{|[X|.: Ae X > 1}
is X = uyv{ /o1, where (o1, uy,vy) is the
dominant singular triple of A.
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LAROS problem

Obtaining a sparse solution

@ In order to enforce sparsity, could add a
(nonconvex) penalty term:
min || X|[« + (/|- |J]) st. Ae X >1;(i,j) ¢
| x J= X(i,j) = 0. where 7(-) is an
increasing penalty function.

@ The optimal X will have necessarily have the
form X = u;v] /71, where (51,011, V1) is the
dominant singular triple of A(/, J) for some
(1,J) padded with zeros.

@ This problem is NP-hard.
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Convex relaxation & recovery

Convex relaxation of sparsity

@ A common technique in the literature to
promote sparsity is adding an /; penalty term.

@ Applying this to the preceding nonconvex
problem yields

min || X}, + 0] X]]
st. AeX > 1.

@ Note: || X||; means |[vec(X)||1;

@ Above problem is convex. (Indeed, it is
semidefinite programming.)

@ Nuclear-plus-1-norm has also appeared in
rank-sparsity decomposition work.
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Recoverability

@ Suppose A > 0 has the form A =uv’ + R
where u,v are sparse and R is random noise.
Can we recover (u,v) from A?

18



Recoverability

@ Suppose A > 0 has the form A =uv’ + R
where u,v are sparse and R is random noise.
Can we recover (u,v) from A?

@ No, but maybe we can recover supp(u) and
supp(v) (positions of nonzero entries).

@ Assume that R is i.i.d. random. Assume u,v
are deterministic and positive.

18



Convex relaxation & recovery

Main theorem on recoverability

@ Say A ¢ RMxN.
| supp(v)| = n.

@ Assume entries of R are i.i.d. subgaussian
about their mean .

supp(u)| = m;

@ Assume the mean of R is bounded in terms of
the divergence of u, v from e.

@ Assume 6 chosen in a certain range.

@ Then convex relaxation recovers
supp(u), supp(v) with prob. exponentially close
to 1 provided m > Q(+v/M) and n > Q(v/N).
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Proof steps

@ To simplify notation, assume support of u, v
are their leading indices.
@ Hypothesize existence of optimal solution of

the form
=T
[ owuv’ O
x=("5"5).

[all = [Jv] = 1.

o KKT condition is A\A =Y + 6Z for some
Y € 0||X|, Z € 9||X]]1, A > 0.

@ KKT condition sufficient for global optimality
in convex optimization.
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Convex relaxation & recovery

Proof steps (cont'd)

@ MA =Y +0Z for some Y € 0| X|
ZE@HX 1, A > 0.

@ Specializing to preceding X this means:
dominant singular triple of Y is
(1,[1; 0], [v; 0]); || Z||c = 1 and
Z11 = ones(m, n).

@ Implies that A must be chosen so that
|AA11 — 0 - ones(m,n)|| = 1.

@ This is an algebraic equation for \; can get
good estimates for \ because there is a good
upper bound known for the norm of a
mean-zero random matrix.

21
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Convex relaxation & recovery

Proof steps (cont'd)

@ Once A is known, u1, v are dominant singular
vectors of AAj; — 0 - ones(m, n).

@ With these choices for A\, u, v, must next fill in
the rest of Y and Z so that || Y| <1 and
12|00 < 1.

@ The requirement || Y|| < 1 couples the four
blocks together, so replace it with the
restriction that || Yj|| <1/2for i,j = 1,2.

bl



Convex relaxation & recovery

Proof steps (cont'd)

o KKT multipliers Y5, and Z5, constructed by
taking the mean of \A into Z», (i.e., make it a
multiple of the all-1's matrix) and deviations
from average in Y2,. Uses the fact that ||R]| is
(unexpectedly?) small when R is a random
mean-0 matrix.

@ Construction of KKT multipliers Yi,, Zi» are
more complicated because condition on
dominant singular triple of Y imposes linear
constraint u’ Y;,=0.

@ Need estimates of i, v; use Wedin's sine
theorem (SVD perturbation theorem).
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Convex relaxation & recovery

Recovery of supp(u), supp(v)

@ The proof of the theorem shows that, under
the assumptions and with high probability,
rank(X) =1, i.e., X = G0 where i is the
extension of i with zeros and similarly for v.

o Furthermore, supp(u) = supp(ti) and

supp(v) = supp(¥).

24



Convex solver

@ Recall our relaxation

min || X|[. + 0[[ X1
st. Ae X > 1.

is convex and indeed SDP-expressible.

@ Interior point SDP solvers (Sedumi, SDPT3)
require O(p®) flops per iteration, where
p = MN (number of unknowns).

@ Interior point methods give accuracy ¢ after
poly(log(1/€)) iterations.

@ Too inefficient for large problems.
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Subgradient descent

@ We use a subgradient descent method.

@ On each step, approximately minimize proximal
point mapping. Proximal-point mapping for
convex ¢(x) defined to be solution to
miny ¢(x) + 5|x — €[ (2-norm for vectors,
F-norm for matrices).

26



Algorithms

Proximal point mapping and new

termination test

@ We do not know how to efficiently minimize
the proximal-point mapping for our objective
function ¢(X) = || X||. + 6| X1 + 5| X — C|%.

@ Therefore, rewrite relaxation as

min [| Xy« + 0] X[y
st. AeX; > 1,
X1 = X

@ This allows us to compute the proximal point
mapping separately for || - ||. and || - [|1.

27



Algorithms

Proximal point mapping for nuclear norm

@ Proximal-point mapping for nuclear norm:
given C, minimizer of || X|, + %HX —C|%is

(01 —1/A)"
0] v,
(o0 —1/A)"

where C = UX VT,

@ Proximal point algorithm requires poly(1/¢)
iterations
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Computational experiments

@ Two black/white image datasets used in
experiments.

@ In both cases, LAROS run repeatedly in order
to extract several features (find approximate
NMF).

@ Termination test: either as on previous
transparency, or achievable accuracy achieved.

@ Choice of 0: heuristic used.
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Frey face data

Frey face dataset consists of 1965 grayscale
mugshots of a person’s face in different poses.
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Algorithms

Applying the method to Frey dataset

@ Can form a 560 x 1965 matrix, one mugshot
per column and look for a large rank-one
submatrix.

@ Feature corresponds to subset of images in
database with common visual feature in the
same groups of pixels.

@ Can find multiple features by iteratively solving
LARQOS and subtracting off previous features.

21



Results
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Algorithms

Results
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Algorithms
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Complexity

Termination test

@ Since only nonzero pattern of optimal X* is
useful, would like to terminate as soon as
nonzero pattern is determined.

@ Test should also confirm that rank(X*) = 1.
(If this equation fails, then exact recovery not
possible.)

@ Would like a test that, when satisfied, certifies
that correct answer has been found.

23



Nonlinear equations

@ Given approximate solution X, find
approximate dominant singular triple (&, 0, V)
and Lagrange multiplier .

@ Consider system of equations:

(>\A11 — Qle)v = u,
()\All — Hle)Tu V,
UTAHV = 1.

where /17 is all 1's.

@ First two express the fact that (1,uy,v;) form
a singular-vector triple; last is nonstandard
normalization.

24



Complexity

Kantorovich theorem

@ Can apply Kantorovich theorem to certify that
the system has an exact solution distance ¢
from (X, 7ii, 7¥).

@ KKT conditions for a rank-one sparse solution
include above equations and also inequalities.

@ Use simple least squares to guess remaining
multipliers.

@ Check whether the inequalities hold for all
points within a ball of radius € around (), ii, ¥).

@ If so, a rank-one solution with correct sparsity
pattern is guaranteed.

25



Complexity

Complexity implication

@ Can carry out a priori analysis to determine
when termination test will be satisfied for data
from generative model.

@ Three requirements in Kantorovich theorem for
certifying existence of nearby exact solution:
(A, u,v):

@ ||P(\ u,v)|| should be small;
o [[VP()\, u,v) ! should be modest; and
o [|[V2P|| should be modest;

where
()\All — (9211)V —u
P\ u,v)= | (M —0Z11)Tu—v
UTA11V —1

26



Analysis of first requirement

P(A, u,v)|| should be small":

@ Third equation of P(\,u,v) = 0 is exact after
scaling.

@ The first two express the condition that
(1,u,v) form a SVD triple of NAy; — 02;.

@ Wedin sine theorem states that perturbing the
matrix by a small amount also perturbs the
singular vectors by a small amount, assuming
strict separation of singular values.

@ Doan and V. show that in the proposed

generative model, the second singular value of
/\A11 — (9211 IS < 1/2

7



Analysis of third requirement

V2P| should be modest”:

@ Observe that P is quadratic hence V°P is a
constant: involves only Aj;.

@ The norm of Ay is bounded in the generative
model.

28



Analysis of second requirement

“IVP(X, u,v)" ] should be modest”:
@ VP(A u,v) has 3 x 3 block structure and is
symmetric.
@ Inverse can be analyzed using block Gaussian
elimination; eliminate u then \.

@ Only complication is inverse S~1 of Schur
complement, S =/ — B"B + gg’ where
B = )\All — (9211 and
g = (Afju+ BT Auv)/[| Auv].

20



Analysis of S =/ — BB +gg’

@ ||B|| = 1; other singular vals < 1/2 + ¢; so
| — B B has one eigenvalue close to 0 and the
others strictly positive

@ Thus, can argue that S > ¢/ provided g has a
big component in the eigenvector of BB
whose eigenvalue is 1.

@ At the solution, this eigenvector is v. Therefore
(\_ITg ~ \_ITAlTll_J + \_ITBTAH\_I)/HAH\_IH =
2vT Al u/||Anv|.

@ This quantity can be lower-bounded by
positivity.

40



Summary of this analysis

@ Analysis shows that Kantorovich requirements
will be satisfied when solution is within
1/poly(m, n) of optimizer.

@ This is polynomial-time even for first-order
methods that have sublinear convergence.

@ Analysis showing that convex relaxation exactly
solves original problem also applies to
Kantorovich test.
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Other possible applications

@ Consider e.g. the matrix completion problem:
given partially specified matrix M € R™*" such
that Mj; known whenever (i, /) C Q (Q sparse
subset of {1,...,m} x {1,...,n}), find the
lowest rank X € R™ " such that Xj; = Mj; for
all (i,7) € Q.

@ Solved in polynomial time via convex relaxation
min || X|[. s.t. X = M;V(i,)) € Q (Candes &
Recht; Candés & Tao) assuming (2, Mq)
generated according to a certain model.

@ Can rank(X) be determined in polynomial time
from an approximate solution to the convex
nroblem? =



KKT condition

@ KKT conditions for relaxation are X|qg = M|q,
G € 0||X]]., G|g = 0. Here Q denotes the
complement of (2.

@ The condition G € 0|/ X||. means that
|G| = 1 and that left and right singular
subspaces associated with o,,,, = 1 contain the
spans of X and X resp.
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KKT condition in rank-one case

@ In the case rank(X) = 1, these conditions
imply that the following equations hold:

Gv = u
Gu = v
UVT‘Q = M‘Q

@ Here, u and v are rescalings of the
nonvanishing left and right singular vectors of
X.

@ This is a square nonlinear system: m + n + (Q|
equations and and equal number of variables
(only the nonzero positions of G are variables).

a4



Open questions

@ For MCP: generalize Kantorovich equation to
rank(X) > 2; prove polynomial-time recovery
of rank.

@ General recipe for termination tests and
certificates of exact recovery?

@ For compressive sensing, do RIP/width/CS-1..3
assumptions also imply polynomial-time exact
LP solution?

@ Make the tests efficient?
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