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Machine learning

Until about 1990, machine learning was
dominated by logic and rule-based reasoning.

E.g., for text processing, make rules for how
parts of speech interact.

Starting around 1990, paradigm shift in ML to
data mining and statistics based on large
training sets.

Computational problem: finding patterns in
large data sets.
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Machine learning (cont’d)

Often the computational problems of interest,
such as finding a dense cluster of nodes in a
large sparse graph, are NP-hard.

Yet the problems are routinely solved
satisfactorily in practice using heuristics.

Suggests that real data has hidden structure
that makes finding patterns easier.
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Generative models

How to model this hidden structure? One
popular approach: generative model.

Assume that the data is produced by a process
involving deterministic (adversary-based)
choices and random numbers.

Try to prove that a particular algorithm can
solve problems produced by the model in
polynomial time with high probability

4



Exact Recovery LAROS problem Convex relaxation & recovery Algorithms Complexity

Recent successes with convex optimization

Convex programming exactly solves many NP-hard
data mining problems in polynomial time when the
instance comes from a generative model:

Compressive sensing (Donoho; Candès,
Romberg & Tao)
Rank minimization (Recht, Fazel, Parrilo)
Matrix completion (Candès & Recht; Candes &
Tao)
Rank-sparsity decomposition (Chandrasekaran
et al.; Candès et al.)
Clique & clustering (Ames & V.)
Nonnegative matrix factorization (Doan, Toh &
V) 5
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Is it really polynomial time?

Except for LP, exact solution to SDP not
attainable. Even for LP, complexity issues must
be resolved.

Not obvious that an exact solution to the
original problem is obtained from an
approximate solution to the convex relaxation.
And how approximate?

Thus, it is fair to ask whether the above results
are truly exactly solving the original problem in
polynomial time. (Y. Ye)

6



Exact Recovery LAROS problem Convex relaxation & recovery Algorithms Complexity

Compressive sensing

Compressive sensing LP, min ‖x‖1 s.t. Ax = b,
involves coefficient matrices A that are typically
Bernoulli, Gaussian or random Fourier.

Bernoulli: number of bits L to write the input
is poly(m, n). Thus, ellipsoid or interior point
always polynomial time for these cases.
Fourier: also poly(m, n) (Adler & Beling, 1991)
Gaussian: Tuncel, Todd & Ye (2001) show that
V.-Ye interior point method (real-number
arithmetic) solves LP exactly in poly(m, n)
time with probability very close to 1.

Other choices of A apparently need case-by-case
analysis. 7
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SDP case

Focus on a particular problem and algorithm:
work by Doan, Toh & V. on nonnegative
matrix factorization.

Attempt to broaden the idea.
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Finding a feature in a text dataset

Suppose one is given a text corpus, i.e., a collection
of n text documents, and one seeks a topic in the
dataset, that is, a subset of related documents. One
approach:

Form the term-document matrix, that is, the
m × n matrix in which ith row corresponds to
the ith term, jth column to jth document, and
A(i , j) is the number of occurrences of term i
in document j .

Find a large approximately rank-one submatrix
A(I , J) of A (i.e., A(I , J) ≈ whT ).
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Finding a feature in an image dataset

Given an image dataset in which all the n contain
exactly m1 ×m2 ≡ m pixels, find a visual feature,
that is, a particular pattern that recurs in the same
subset of pixels in a subset of images.

Form an m × n matrix A in which A(i , j)
stands for the intensity of pixel i in image j .

Find a large approximately rank-one submatrix
(LAROS) A(I , J) of A.
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LAROS and NMF

Assume A is nonnegative.

The above process can be repeated iteratively:

For i = 1 : k
Find Ii , Ji , w̄i , h̄i s.t. A(Ii , Ji) ≈ w̄i h̄T

i .
Pad (w̄i , h̄i) with zeros to obtain (wi ,hi).
A = max(A−wihT

i , 0).

Upon completion,
A ≈ w1hT

1 + · · ·+wkhT
k ≡ WHT .
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Greedy NMF algorithm

OK to assume that wi ≥ 0, hi ≥ 0
(Perron-Frobenius).

Given a nonnegative matrix A, a factorization
A ≈ WHT is called nonnegative matrix
factorization (NMF) if W ,H both nonnegative.

The algorithm on the previous transparency is a
greedy NMF algorithm (Asgarian & Greiner,
Bergmann et al., Biggs et al., Gillis & Glineur).
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LAROS and SVD

Best overall rank-one approximation to A
comes from SVD (Eckart-Young theorem).

A =

⎛
⎜⎜⎝

0.8 0.9 0.0 0.0
0.8 1.1 0.0 0.0
0.0 0.0 0.8 0.9
0.0 0.0 1.1 0.8

⎞
⎟⎟⎠ .

The dominant left singular vector is
≈ [1; 1; 0; 0]; SVD has identified A(1 : 2, 1 : 2).
But with a little noise, dominant left singular
vector ≈ [1; 1; 1; 1]; SVD fails to identify
LAROS.
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SVD as optimization

The solution to this problem is to modify the
SVD to promote sparsity.

Can write SVD as an optimization problem
(Eckart-Young) and add another term, i.e.,

min
σ,u,v

‖A− σuvT‖+ densityPenalty(u, v)

Unfortunately, Eckart-Young optimization
problem is not convex.
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SVD as convex optimization

Let ‖ · ‖∗ denote the nuclear norm, that is,
‖X‖∗ = σ1(X ) + · · ·+ σn(X ).

Theorem: The nuclear norm is dual to the
2-norm, i.e., ‖X‖∗ = max{Z • X : ‖Z‖2 ≤ 1}.
Given A, the solution to the convex
optimization problem min{‖X‖∗ : A • X ≥ 1}
is X = u1vT1 /σ1, where (σ1,u1, v1) is the
dominant singular triple of A.
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Obtaining a sparse solution

In order to enforce sparsity, could add a
(nonconvex) penalty term:
min ‖X‖∗ + π(|I | · |J |) s.t. A • X ≥ 1; (i , j) /∈
I × J ⇒ X (i , j) = 0. where π(·) is an
increasing penalty function.

The optimal X will have necessarily have the
form X = ū1v̄T1 /σ̄1, where (σ̄1, ū1, v̄1) is the
dominant singular triple of A(I , J) for some
(I , J) padded with zeros.

This problem is NP-hard.
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Convex relaxation of sparsity

A common technique in the literature to
promote sparsity is adding an �1 penalty term.
Applying this to the preceding nonconvex
problem yields

min ‖X‖∗ + θ‖X‖1
s.t. A • X ≥ 1.

Note: ‖X‖1 means ‖vec(X )‖1;
Above problem is convex. (Indeed, it is
semidefinite programming.)
Nuclear-plus-1-norm has also appeared in
rank-sparsity decomposition work.
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Recoverability

Suppose A ≥ 0 has the form A = uvT + R
where u,v are sparse and R is random noise.
Can we recover (u, v) from A?

No, but maybe we can recover supp(u) and
supp(v) (positions of nonzero entries).

Assume that R is i.i.d. random. Assume u, v
are deterministic and positive.
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Main theorem on recoverability

Say A ∈ RM×N ; | supp(u)| = m;
| supp(v)| = n.

Assume entries of R are i.i.d. subgaussian
about their mean μ.

Assume the mean of R is bounded in terms of
the divergence of u, v from e.

Assume θ chosen in a certain range.

Then convex relaxation recovers
supp(u), supp(v) with prob. exponentially close
to 1 provided m ≥ Ω(

√
M) and n ≥ Ω(

√
N).
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Proof steps

To simplify notation, assume support of u, v
are their leading indices.
Hypothesize existence of optimal solution of
the form

X =

(
σ1ūv̄T 0

0 0

)
,

‖ū‖ = ‖v̄‖ = 1.
KKT condition is λA = Y + θZ for some
Y ∈ ∂‖X‖∗, Z ∈ ∂‖X‖1, λ ≥ 0.
KKT condition sufficient for global optimality
in convex optimization.
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Proof steps (cont’d)

λA = Y + θZ for some Y ∈ ∂‖X‖∗,
Z ∈ ∂‖X‖1, λ ≥ 0.
Specializing to preceding X this means:
dominant singular triple of Y is
(1, [ū; 0], [v̄; 0]); ‖Z‖∞ = 1 and
Z11 = ones(m, n).
Implies that λ must be chosen so that
‖λA11 − θ · ones(m, n)‖ = 1.
This is an algebraic equation for λ; can get
good estimates for λ because there is a good
upper bound known for the norm of a
mean-zero random matrix.
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Proof steps (cont’d)

Once λ is known, ū, v̄ are dominant singular
vectors of λA11 − θ · ones(m, n).
With these choices for λ, ū, v̄, must next fill in
the rest of Y and Z so that ‖Y ‖ ≤ 1 and
‖Z‖∞ ≤ 1.

The requirement ‖Y ‖ ≤ 1 couples the four
blocks together, so replace it with the
restriction that ‖Yij‖ ≤ 1/2 for i , j = 1, 2.
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Proof steps (cont’d)

KKT multipliers Y22 and Z22 constructed by
taking the mean of λA into Z22 (i.e., make it a
multiple of the all-1’s matrix) and deviations
from average in Y22. Uses the fact that ‖R‖ is
(unexpectedly?) small when R is a random
mean-0 matrix.
Construction of KKT multipliers Y12, Z12 are
more complicated because condition on
dominant singular triple of Y imposes linear
constraint ūTY12=0.
Need estimates of ū, v̄; use Wedin’s sine
theorem (SVD perturbation theorem).
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Recovery of supp(u), supp(v)

The proof of the theorem shows that, under
the assumptions and with high probability,
rank(X ) = 1, i.e., X = ûv̂T where û is the
extension of ū with zeros and similarly for v̂.

Furthermore, supp(u) = supp(û) and
supp(v) = supp(v̂).
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Convex solver

Recall our relaxation

min ‖X‖∗ + θ‖X‖1
s.t. A • X ≥ 1.

is convex and indeed SDP-expressible.

Interior point SDP solvers (Sedumi, SDPT3)
require O(p3) flops per iteration, where
p = MN (number of unknowns).

Interior point methods give accuracy ε after
poly(log(1/ε)) iterations.

Too inefficient for large problems.
25
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Subgradient descent

We use a subgradient descent method.

On each step, approximately minimize proximal
point mapping. Proximal-point mapping for
convex φ(x) defined to be solution to
minx φ(x) +

λ
2‖x− c‖2 (2-norm for vectors,

F-norm for matrices).
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Proximal point mapping and new
termination test

We do not know how to efficiently minimize
the proximal-point mapping for our objective
function φ(X ) = ‖X‖∗ + θ‖X‖1 + λ

2‖X − C‖2F .
Therefore, rewrite relaxation as

min ‖X1‖∗ + θ‖X2‖1
s.t. A • X1 ≥ 1,

X1 = X2

This allows us to compute the proximal point
mapping separately for ‖ · ‖∗ and ‖ · ‖1.
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Proximal point mapping for nuclear norm

Proximal-point mapping for nuclear norm:
given C , minimizer of ‖X‖∗ + λ

2‖X − C‖2F is

U

⎛
⎝ (σ1 − 1/λ)+

. . .
(σn − 1/λ)+

⎞
⎠V T ,

where C = UΣV T .

Proximal point algorithm requires poly(1/ε)
iterations
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Computational experiments

Two black/white image datasets used in
experiments.

In both cases, LAROS run repeatedly in order
to extract several features (find approximate
NMF).

Termination test: either as on previous
transparency, or achievable accuracy achieved.

Choice of θ: heuristic used.
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Frey face data

Frey face dataset consists of 1965 grayscale
mugshots of a person’s face in different poses.
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Applying the method to Frey dataset

Can form a 560× 1965 matrix, one mugshot
per column and look for a large rank-one
submatrix.

Feature corresponds to subset of images in
database with common visual feature in the
same groups of pixels.

Can find multiple features by iteratively solving
LAROS and subtracting off previous features.
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Results
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Results

This SDP has > 106 variables.
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Termination test

Since only nonzero pattern of optimal X ∗ is
useful, would like to terminate as soon as
nonzero pattern is determined.

Test should also confirm that rank(X ∗) = 1.
(If this equation fails, then exact recovery not
possible.)

Would like a test that, when satisfied, certifies
that correct answer has been found.
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Nonlinear equations

Given approximate solution X̃ , find
approximate dominant singular triple (σ̃, ũ, ṽ)
and Lagrange multiplier λ̃.
Consider system of equations:

(λA11 − θZ11)v = u,

(λA11 − θZ11)
Tu = v,

uTA11v = 1.

where Z11 is all 1’s.
First two express the fact that (1,u1, v1) form
a singular-vector triple; last is nonstandard
normalization.
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Kantorovich theorem

Can apply Kantorovich theorem to certify that
the system has an exact solution distance ε
from (λ̃, τ ũ, τ ṽ).

KKT conditions for a rank-one sparse solution
include above equations and also inequalities.

Use simple least squares to guess remaining
multipliers.

Check whether the inequalities hold for all
points within a ball of radius ε around (λ̃, ũ, ṽ).

If so, a rank-one solution with correct sparsity
pattern is guaranteed.
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Complexity implication

Can carry out a priori analysis to determine
when termination test will be satisfied for data
from generative model.
Three requirements in Kantorovich theorem for
certifying existence of nearby exact solution:
(λ,u, v):

‖P(λ,u, v)‖ should be small;
‖∇P(λ,u, v)−1‖ should be modest; and
‖∇2P‖ should be modest;

where

P(λ,u, v) =

⎛
⎝ (λA11 − θZ11)v − u

(λA11 − θZ11)
Tu− v

uTA11v − 1

⎞
⎠ .
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Analysis of first requirement

“‖P(λ,u, v)‖ should be small”:

Third equation of P(λ,u, v) = 0 is exact after
scaling.

The first two express the condition that
(1,u, v) form a SVD triple of λA11 − θZ11.

Wedin sine theorem states that perturbing the
matrix by a small amount also perturbs the
singular vectors by a small amount, assuming
strict separation of singular values.

Doan and V. show that in the proposed
generative model, the second singular value of
λA11 − θZ11 is ≤ 1/2.
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Analysis of third requirement

“‖∇2P‖ should be modest”:

Observe that P is quadratic hence ∇2P is a
constant: involves only A11.

The norm of A11 is bounded in the generative
model.
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Analysis of second requirement

“‖∇P(λ,u, v)−1‖ should be modest”:

∇P(λ,u, v) has 3× 3 block structure and is
symmetric.

Inverse can be analyzed using block Gaussian
elimination; eliminate u then λ.

Only complication is inverse S−1 of Schur
complement, S = I − BTB + ggT where
B = λA11 − θZ11 and
g = (AT

11u+ BTA11v)/‖A11v‖.
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Analysis of S = I − BTB + ggT

‖B‖ ≈ 1; other singular vals ≤ 1/2 + ε; so
I − BTB has one eigenvalue close to 0 and the
others strictly positive

Thus, can argue that S ≥ δI provided g has a
big component in the eigenvector of BTB
whose eigenvalue is 1.

At the solution, this eigenvector is v̄. Therefore
(v̄Tg ≈ v̄TAT

11ū+ v̄TBTA11v̄)/‖A11v̄‖ =
2v̄TAT

11ū/‖A11v̄‖.
This quantity can be lower-bounded by
positivity.

40



Exact Recovery LAROS problem Convex relaxation & recovery Algorithms Complexity

Summary of this analysis

Analysis shows that Kantorovich requirements
will be satisfied when solution is within
1/poly(m, n) of optimizer.

This is polynomial-time even for first-order
methods that have sublinear convergence.

Analysis showing that convex relaxation exactly
solves original problem also applies to
Kantorovich test.
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Other possible applications

Consider e.g. the matrix completion problem:
given partially specified matrix M ∈ Rm×n such
that Mij known whenever (i , j) ⊂ Ω (Ω sparse
subset of {1, . . . ,m} × {1, . . . , n}), find the
lowest rank X ∈ Rm×n such that Xij = Mij for
all (i , j) ∈ Ω.
Solved in polynomial time via convex relaxation
min ‖X‖∗ s.t. Xij = Mij∀(i , j) ∈ Ω (Candès &
Recht; Candès & Tao) assuming (Ω,MΩ)
generated according to a certain model.
Can rank(X ) be determined in polynomial time
from an approximate solution to the convex
problem? 42
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KKT condition

KKT conditions for relaxation are X |Ω = M |Ω,
G ∈ ∂‖X‖∗, G |Ω̄ = 0. Here Ω̄ denotes the
complement of Ω.

The condition G ∈ ∂‖X‖∗ means that
‖G‖ = 1 and that left and right singular
subspaces associated with σmax = 1 contain the
spans of X and XT resp.
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KKT condition in rank-one case

In the case rank(X ) = 1, these conditions
imply that the following equations hold:

Gv = u

GTu = v

uvT |Ω = M |Ω
Here, u and v are rescalings of the
nonvanishing left and right singular vectors of
X .
This is a square nonlinear system: m + n + |Ω|
equations and and equal number of variables
(only the nonzero positions of G are variables).
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Open questions

For MCP: generalize Kantorovich equation to
rank(X ) ≥ 2; prove polynomial-time recovery
of rank.

General recipe for termination tests and
certificates of exact recovery?

For compressive sensing, do RIP/width/CS-1..3
assumptions also imply polynomial-time exact
LP solution?

Make the tests efficient?
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