Computational Experience with Warmstarting Strategies for Interior Point Methods

Yinyu Ye, Stanford University

Erling D. Andersen, MOSEK Anders Skajaa, Technical University of Denmark

November 23, 2012

In this talk

- What is warmstarting and when is it applicable?
- Example: Rolling horizon optimization
- ► Reasons why warmstarting is difficult for interior point methods
- Two new warmstarting schemes
- ► Example: Robust portfolio selection
- Computational experiments

Motivation

- ► Useful for many applications, especially in conic integer optimization
- Lots of phone calls from MOSEK customers

Warmstarting

 $\mathcal{P}=$ an optimization problem (LP, QP, SOCP, QCQP, ...)

 $\widehat{\mathcal{P}}=\mathsf{a}$ different optimization problem of the same type

- Assume: $x^* = \text{solution}(\mathcal{P})$ and
- $\mathcal{P} \sim \widehat{\mathcal{P}}$ (different but similar)

Can we make use of x^* when solving $\widehat{\mathcal{P}}$?

- Warmstarting:
 - Using x^* , compute a "warm" starting point x^0
 - initialize algorithm to solve $\widehat{\mathcal{P}}$ starting from x^0

▶ In this talk: we focus on Interior Point Method (=: IPM)

Why?

Many situations: Need to solve a series of optimization problems:

```
\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3, \mathcal{P}_4, \ldots
```

where

$$\mathcal{P}_i \sim \mathcal{P}_{i+1}, \quad i = 1, 2, \dots$$

Examples:

- ▶ Rolling horizon optimization (LP, QCQP, ...)
- ▶ Efficient frontier computation (QP, SOCP)
- ► Relaxations in integer programming (LP, QP, SDP)
- ► If you just have a confident solution guess

Example: Rolling horizon optimization of charging of PEVs

Given driving schedule, when to charge to minimize cost?

Simple (discrete time) battery model

$$x_{k+1} = x_k + T_s(\eta/Q_n)u_k - T_sd_k$$

 $x_k =$ battery power storage at time $t_k, x_k \in [0, 1]$

- $u_k = charging power at time t_k$
- $d_k = driving at time t_k$

 $T_s = time interval length$

 $\eta = \text{charger efficiency}$

 $Q_n =$ nominal capacity of battery

Economic Model Predictive Control

$$(LP) \begin{cases} \min_{x,u} \sum_{i=0}^{N-1} p_k u_k \\ \text{s.t.} \quad x_{k+1} = x_k + T_s(\eta/Q_n)u_k - T_s d_k \\ u_{\min} \le u_k \le u_{\max,k} \\ 0.2 \le x_k \le 0.8 \end{cases} \qquad k \in \mathcal{N} \end{cases}$$

Model Predictive Control Loop:

for
$$k = 0, 1, 2, ..., do$$

• Solve (LP) and obtain $u_k^* = (u_k^{(0)}, u_k^{(1)}, ..., u_k^{(N-1)})$
• Apply $u_k^{(0)}$ at time t_k to system
end

- This is series of related(!) linear programs
- ▶ Good reason to believe u_{k+1}^* "similar" to u_k^*
- ▶ Therefore: We should utilize information from solution of problem k when solving problem k + 1

- This is series of related(!) linear programs
- ▶ Good reason to believe u_{k+1}^* "similar" to u_k^*
- ▶ Therefore: We should utilize information from solution of problem k when solving problem k + 1

► Warmstarting:

Problem Perturbation I

$$\mathcal{P} = \left\{ \min_{x} c^{T} x, \text{ s.t. } A x \le b \right\}$$

Problem Perturbation I

Problem Perturbation II

$$\begin{aligned} \mathcal{P} &= \left\{ \min_{x} c^{T} x, \; \text{ s.t. } A x \leq b \right\} \\ \widehat{\mathcal{P}} &= \left\{ \min_{x} c^{T} x, \; \text{ s.t. } \widehat{A} x \leq \widehat{b} \right\} \end{aligned}$$

Problem Perturbation II

Problem Perturbation III

$$\mathcal{P} = \left\{ \min_{x} c^{T} x, \text{ s.t. } Ax \leq b \right\}$$
$$\widehat{\mathcal{P}} = \left\{ \min_{x} c^{T} x, \text{ s.t. } \widehat{A}x \leq \widehat{b} \right\}$$

Problem Perturbation IV

$$\mathcal{P} = \left\{ \min_{x} c^{T} x, \text{ s.t. } Ax \leq b \right\}$$
$$\widehat{\mathcal{P}} = \left\{ \min_{x} \widehat{c}^{T} x, \text{ s.t. } Ax \leq b \right\}$$

Problem Perturbation IV

$$\mathcal{P} = \left\{ \min_{x} c^{T} x, \text{ s.t. } Ax \leq b \right\}$$
$$\widehat{\mathcal{P}} = \left\{ \min_{x} \widehat{c}^{T} x, \text{ s.t. } Ax \leq b \right\}$$

Many Problems Can Happen

These examples show

- x^* might be infeasible in $\widehat{\mathcal{P}}$
- although $\mathcal{P} \approx \widehat{\mathcal{P}}$, solution may "jump"
- ▶ problem may even change status: e.g. from feasible to infeasible
- x^* might be on or close to boundary in $\widehat{\mathcal{P}}$ (algorithmic problem)

solution x^* is not a continuous function of the data (A, b, c).

Interior Point Algorithms for LP

$$LP(A, b, c) = \{ \min_{x} c^{T} x, \text{ s.t. } Ax = b, x \ge 0 \}$$

Warmstarting Research

- ► The Simplex Method: works well.
- ► Active set: Often works well! (though no guarantee).
- ▶ IPMs are perceived fundamentally deficient w.r.t. warmstarting
 - x^* on boundary of feasible region for \mathcal{P}
 - close to the boundary, IPMs behave badly
- Previously tried for IPMs:
 - ► Solve *P* with IPM, store *all* iterates:

$$I = \left\{ x^{(0)}, x^{(1)}, x^{(2)}, \dots, x^{(\text{final})} \approx x^{\star} \right\}$$

• search I for an element that "looks good" for $\widehat{\mathcal{P}}$.

Warmstarting Research for IPM

Original LP: $\mathcal{P} = LP(A, b, c) = \{\min_x c^T x, \text{ s.t. } Ax = b, x \ge 0\}$ Perturbed LP: $\widehat{\mathcal{P}} = LP(\widehat{A}, \widehat{b}, c) = \{\min_x c^T x, \text{ s.t. } \widehat{A}x = \widehat{b}, x \ge 0\}$

A practical problem with the approach

- Optimization algorithms are used as black-box routines
- Usually no output of intermediate iterates
- Only output is primal solution and sometimes also dual.

Our goal:

Warmstarting procedure using only

- \blacktriangleright primal optimal or final solution of ${\cal P}$ or
- \blacktriangleright primal and dual optimal or final solution of ${\cal P}$

when initializing algorithm to solve $\widehat{\mathcal{P}}$.

Homogeneous and Self-Dual Model for Linear Programming

Given a linear program $LP(A, b, c) = \{\min_x c^T x, \text{ s.t. } Ax = b, x \ge 0\}$, find (x, τ, y, s, κ) that satisfies

$$Ax - b\tau = 0$$
$$-A^T y - s + c\tau = 0$$
$$-c^T x + b^T y - \kappa = 0$$
$$(x, \tau) \ge 0, \ (s, \kappa) \ge 0, \ y \in \mathbb{R}^m$$

- If $\tau > 0$ then $(x, y, s)/\tau$ is optimal for LP(A, b, c).
- If $\kappa > 0$ then LP(A, b, c) is infeasible.

The convergence efficiency is measured by the primal-dual potential function:

$$\phi(x,s) = (n+\rho)\log(x^T s) - \sum_{j=1}^{n}\log(x_j s_j).$$

Initialization of algorithm to solve HSD-model

► Usually,
$$(x^0, \tau^0, y^0, s^0, \kappa^0) = (e, 1, 0, e, 1)$$
 is used (=: cold-start)
where $e := (1, 1, ..., 1)$ and $\phi(x^0, s^0) = \rho \log(n)$.

Our warmstarting schemes

• When only primal solution x^* is available:

$$(W_{P}) \begin{cases} x^{0} = \lambda x^{*} + (1 - \lambda)e \\ s^{0} = \mu^{0}(x^{0})^{-1} \\ y^{0} = 0 \\ \tau^{0} = 1 \\ \kappa^{0} = \mu^{0} \end{cases}$$

where

•
$$\lambda \in [0,1], \ \mu^0 > 0$$

 $\blacktriangleright \ (x^0)^{-1}$ denotes the elementwise reciprocal of x^0

$$x^{0} = \lambda x^{*} + (1 - \lambda)e$$

$$s^{0} = \mu^{0}(x^{0})^{-1}$$

$$\overset{e}{\lambda} = 0$$

$$\overset{e}{\lambda} = 0$$

$$\overset{e}{\lambda} = 1$$

$$\overset{e}{\rho} \text{ starting point}$$

$$\overset{e}{\mathcal{P}} \text{ optimal point } x^{*}$$

$$\overset{e}{\mathcal{P}} \text{ optimal point}$$

$$\overset{e}{\mathcal{P}} x : Ax = b \}$$

$$\overset{e}{\mathcal{F}} x : \widehat{Ax} = \widehat{b} \}$$

 $(1-\lambda)e$ added to x^0 to ensure interiority (needed for IPM) s^0 chosen so that $x^0 \circ s^0 = \mu^0 e$, where $\circ :=$ elementwise product.

Our warmstarting schemes

• When both primal x^* and dual solutions (y^*, s^*) are available:

$$(W_{PD}) \begin{cases} x^{0} = \lambda x^{*} + (1 - \lambda)e \\ s^{0} = \lambda s^{*} + (1 - \lambda)e \\ y^{0} = \lambda y^{*} \\ \tau^{0} = 1 \\ \kappa^{0} = (x^{0})^{T} s^{0}/n \end{cases}$$

• Also
$$y^0 = \lambda y^* + (1 - \lambda)0$$
.

If new primal variables and/or new dual variables are added, they are set to default values without warmstarting.

Our warmstarting schemes

$$(W_{P}) \begin{cases} x^{0} = \lambda x^{*} + (1 - \lambda)e \\ s^{0} = \mu^{0} (x^{0})^{-1} \\ y^{0} = 0 \\ \tau^{0} = 1 \\ \kappa^{0} = \mu^{0} \end{cases} \qquad (W_{PD}) \begin{cases} x^{0} = \lambda x^{*} + (1 - \lambda)e \\ s^{0} = \lambda s^{*} + (1 - \lambda)e \\ y^{0} = \lambda s^{*} + (1 - \lambda)e \\ y^{0} = \lambda s^{*} + (1 - \lambda)e \\ r^{0} = 1 \\ \kappa^{0} = (x^{0})^{T} s^{0}/n \end{cases}$$

- W_P suited when
 - ► Just *x*^{*} is available (black box)
 - Just one problem is to be solved, but you have a "good guess"
- W_{PD} suited when
 - ► (x*, y*, s*) is available (better black box) but still no intermediate iterates

Warmstarting for the electric vehicle example

- $\boldsymbol{u}_k^* = (u_k^{(0)}, u_k^{(1)}, \dots, u_k^{(N-1)})$ solution at time t_k
- \blacktriangleright Then in place of " x^* " in warmstarting schemes, we use

$$(u_k^{(1)}, \dots, u_k^{(N-1)}, u_k^{(N-1)})$$

i.e. \boldsymbol{u}_k^* translated one place

Charging Schedule for Electric Vehicle and Warmstarting Performance

Linear Programs from NETLIB

- ► ~90 real-life Linear Programs, varying size and sparsity
- ► For all problems, do
 - ▶ Solve \mathcal{P} . Optimal solution: (x^*, y^*, s^*)
 - Generate $\widehat{\mathcal{P}}$ by a random perturbation of \mathcal{P} :
 - $\blacktriangleright \ \widehat{A} = A + \delta \Delta A \quad \text{or} \quad \widehat{b} = b + \delta \Delta b \quad \text{or} \quad \widehat{c} = c + \delta \Delta c$
 - δ measures perturbation magnitude
 - \blacktriangleright Solve $\widehat{\mathcal{P}}$ coldstarting and warmstarting using x^* and (y^*,s^*)
- Measure of warmstarting improvement:

$$\mathcal{R} = \frac{\# \text{Iterations to solve } \widehat{\mathcal{P}} \text{ warmstarted}}{\# \text{Iterations to solve } \widehat{\mathcal{P}} \text{ coldstarted}}$$

▶ and entire problem set:

$$\mathcal{G} = \sqrt[K]{\mathcal{R}_1 \cdots \mathcal{R}_K}$$

Warmstarting Performance on NETLIB Linear Programs

Theoretical Justification

- The primal-dual potential function initial value remains bounded by O(ρ log(n)) for any fixed 0 ≤ λ < 1.</p>
- Conservative approach requires $\lambda \ll 1$
- In practice: use much more aggressive choice of λ (i.e. close to 1)
- For experiments above: $\lambda = 0.99$.
- ► Similar results for W_P

Anders Skajaa, Erling D. Andersen and Yinyu Ye. *Warmstarting the Homogeneous and Self-Dual Interior Point Method for Linear and Conic Quadratic Problems.* Working paper to appear in Math. Prog. Computation.

Portfolio selection and efficient frontier

► Available for investment: *n* different assets

Denote

$$\label{eq:risk} \begin{split} r_i = \text{random variable, return of asset } i \\ r = \text{vector stacking the } r_i \end{split}$$

Assume

 $r \sim \mathcal{N}(\mu, \Sigma)$

where

$$\label{eq:mean returns} \begin{split} \mu &= \text{mean returns} \\ \Sigma &= \text{covariance matrix} \end{split}$$

Classical Markowitz portfolio selection

 $r_i = \mathsf{RV}$, return of asset ir = vector stacking the r_i

 $r \sim \mathcal{N}(\mu, \Sigma)$

- $\phi_i = \text{fraction of wealth in asset } i$
- $\phi =$ vector stacking the ϕ_i (entire portfolio)
- ► Then

Expected return of portfolio ϕ is

$$E[r^T\phi] = \mu^T\phi$$

"risk" of portfolio $\widehat{=}$

$$\mathsf{Var}(r^{\,T}\phi)=\phi^{\,T}\Sigma\phi$$

 $\begin{array}{ll} \mu^{T}\phi & = \text{expected return of } \phi \\ \phi^{T}\Sigma\phi \stackrel{\scriptscriptstyle \frown}{=} \text{risk of } \phi \end{array}$

Classical Markowitz portfolio selection

Markowitz portfolio optimization:

Optimize a trade-off between max(return) and min(risk)

• Assuming we know with certainty the data (μ, Σ) ,

we can compute the classical Markowitz portfolio from:

$$(\text{QP}) \begin{cases} \text{minimize}_{\phi} & \phi^T \Sigma \phi \\ \text{subject to} & \mu^T \phi \ge t \\ & e^T \phi = 1 \\ & \phi \ge 0 \end{cases}$$

i.e.: minimize variance s.t. expected return $\geq t$

$(\text{QP}) \begin{cases} & \text{minimize}_{\phi} & \phi^T \Sigma \phi \\ & \text{subject to} & \mu^T \phi \ge t \\ & e^T \phi = 1 \\ & \phi \ge 0 \end{cases}$

Efficient frontier

- t = demanded minimal expected return
- Denote the minimum risk by q(t)
- Efficient frontier: (t, q(t)) for a range of t
- ► A series of related QPs, use warmstarting!
- Data:
 - 500 assets from S&P 500 index
 - expected returns μ and covariances Σ estimated from 800 daily closing prices 2007–2011

Warmstarting performance when computing the efficient frontier

 $r_i = \mathsf{RV}$, return of asset ir = vector stacking the r_i

Robust portfolio selection

Now assume

$$r \sim \mathcal{N}(\mu, \Sigma)$$
 where $\Sigma = V^T F V + D$

and data in uncertainty sets:

$$\mu \in S_{\mu} := \{ \mu : \mu = \mu_0 + \xi, \ |\xi_i| \le \gamma_i \}$$
$$D \in S_D := \{ D : D = \text{diag}(d), \ 0 \le d_i \le \bar{d}_i \}$$
$$V \in S_V := \{ V : V = V_0 + W, \ \|W_{:i}\|_G \le \bar{w}_i \}$$

D. Goldfarb and G. Iyengar. *Robust portfolio selection problems.* Math. Oper. Res., Feb. 2003.

$$\begin{split} r_i &= \mathsf{RV}, \text{ return of asset } i \\ r &= \text{vector stacking the } r_i \\ r &\sim \mathcal{N}(\mu, \Sigma), \quad \Sigma = V^T F V + D \\ \mu^T \phi &= \text{expected return of } \phi \\ \phi^T \Sigma \phi \triangleq \text{risk of } \phi \\ S_x &= \text{ uncertainty set of } x \end{split}$$

• Find portfolio ϕ minimizing *worst-case* risk (variance):

 $\begin{array}{ll} \text{Robust portfolio} \\ \text{selection} \end{array} \left\{ \begin{array}{ll} \text{minimize}_{\phi} & \max_{V \in S_V, D \in S_D} \{\phi^T \Sigma \phi\} \\ \text{subject to} & \min_{\mu \in S_\mu} \{\mu^T \phi\} \geq t \\ & e^T \phi = 1, \quad \phi \geq 0 \end{array} \right.$

$$\begin{split} r_i &= \mathsf{RV}, \text{ return of asset } i \\ r &= \text{vector stacking the } r_i \\ r &\sim \mathcal{N}(\mu, \Sigma), \quad \Sigma = V^T F V + D \\ \mu^T \phi &= \text{expected return of } \phi \\ \phi^T \Sigma \phi \triangleq \text{risk of } \phi \\ S_x &= \text{ uncertainty set of } x \end{split}$$

► Find portfolio ϕ minimizing *worst-case* risk (variance):

 $\begin{array}{ll} \text{Robust portfolio} \\ \text{selection} \end{array} \left\{ \begin{array}{ll} \text{minimize}_{\phi} & \max_{V \in S_V, D \in S_D} \{\phi^T \Sigma \phi\} \\ \text{subject to} & \min_{\mu \in S_\mu} \{\mu^T \phi\} \geq t \\ & e^T \phi = 1, \quad \phi \geq 0 \end{array} \right.$

$$\begin{array}{c} \text{Compare with} \\ \text{classical} \end{array} \begin{cases} \begin{array}{c} \text{minimize}_{\phi} & \phi^T \Sigma \phi \\ \text{subject to} & \mu^T \phi \geq t \\ & e^T \phi = 1, \ \phi \geq 0 \end{array} \end{cases}$$

 $\blacktriangleright \text{ The robust portfolio selection problem } \begin{cases} \min_{\phi} \max_{V \in S_V, D \in S_D} \{\phi^T \Sigma \phi\} \\ \text{s.t. } \min_{\mu \in S_\mu} \{\mu^T \phi\} \ge t \\ e^T \phi = 1, \quad \phi > 0 \end{cases}$

can be formulated as equivalent Second Order Cone Program:

$$\begin{split} \min_{\{\phi,\dots\}} & \nu + \delta \\ \text{subject to} & \mu_0^T \phi - \gamma^T \psi \ge t \\ & r \ge w^T \psi, \quad -\phi \le \psi \le \phi \\ & e^T \phi = 1, \quad \phi \ge 0 \\ & \tau + e^T t \le \nu, \quad \sigma \le 1/\lambda_{\max}(H) \\ & \|(2r, \sigma - \tau)\|_2 \le \sigma + \tau \\ & \|(2v_i, 1 - \sigma\lambda_i - t_i)\|_2 \le 1 - \sigma\lambda_i + t_i, \quad i = 1,\dots, m \\ & \|(2\bar{D}^{1/2}\phi, 1 - \delta)\|_2 \le 1 + \delta \end{split}$$

- SOCPs can be solved as efficiently as QPs
- Warm points generalized via Jordan algebra operations associated with convex cones

► Frequent *rebalancing* of portfolio:

repeat:

- Estimate problem-data μ_0, γ, \ldots and uncertainty sets based on observed data from previous time window
- Rebalance portfolio by solving robust portfolio selection problem

end

- Series of related SOCPs
- Faster solution \longrightarrow more frequent rebalancing
- Warmstarting! (use previous portfolio as " x^* ").

Portfolio rebalancing and warmstarting performance

Concluding remarks

- ► Warmstarting schemes seem effective in practice
 - Easy to compute
 - ► Require *only* final solution of *P* (OK with black-boxes)
 - Significant work reductions in practice
 - ► Work at least for LP, QP, SOCP
- More details and examples in working paper:
 - ► More linear programs and rolling horizon conic examples
 - ► QP subproblems in cutting-plane/bundle methods
- ► Future
 - ► Easily extend-able to SDP, but computational experiments remain to be seen
 - Applications in integer optimization with branching and cutting
 - ► Theoretical question: if the perturbation is random, prove that the scheme works with high probability!

Concluding remarks

- ► Warmstarting schemes seem effective in practice
 - Easy to compute
 - ► Require *only* final solution of *P* (OK with black-boxes)
 - Significant work reductions in practice
 - ► Work at least for LP, QP, SOCP
- More details and examples in working paper:
 - ► More linear programs and rolling horizon conic examples
 - ► QP subproblems in cutting-plane/bundle methods
- ► Future
 - ► Easily extend-able to SDP, but computational experiments remain to be seen
 - Applications in integer optimization with branching and cutting
 - ► Theoretical question: if the perturbation is random, prove that the scheme works with high probability!

Thank you!

Linear Programs from NETLIB

- We define $\widehat{\mathcal{P}}$ by randomly perturbing data A, b and c:
 - Assume $v \in \mathbb{R}^M$ is vector we want to perturb
 - s = random number, [0, 1]-uniform
 - if $s \le \min\{0.1, 20/M\}$

$$v_i := \left\{ \begin{array}{ll} \delta r & \text{if } |v_i| \leq 10^{-6} \\ (1+\delta r) v_i & \text{otherwise} \end{array} \right.$$

where r = random number, [-1, 1]-uniform

- otherwise don't change
- ▶ On average, $\min\{10\%, 20\}$ of the elements are changed
- \blacktriangleright "Magnitude" of perturbation measured by δ

Example: Portfolio selection and efficient frontier

- ► Available for investment: *n* different assets
- Denote

$$\label{eq:risk} \begin{split} r_i = \mbox{random variable, return of asset } i \\ r = \mbox{vector stacking the } r_i \end{split}$$

Assume

$$r = \mu + V^T f + \epsilon$$

where

 $\mu = \text{mean returns}$

f = random returns of "factors" that drive market

- $V = \mathsf{factor} \ \mathsf{loading} \ \mathsf{matrix}, \ V \in \mathbb{R}^{m imes n}$
- $\boldsymbol{\epsilon} = \text{``residuals''}$ assumed normally distributed

Classical Markowitz portfolio selection

Assume

 $\begin{array}{rcl} r_i & = & {\rm RV}, \mbox{ return of asset } i \\ r & = & \mbox{ vector stacking the } r_i \\ r & = & \mu + V^T f + \epsilon \end{array}$

 $\epsilon \sim \mathcal{N}(0, D)$ $f \sim \mathcal{N}(0, F)$

Then

$$r \sim \mathcal{N}(\mu, \Sigma)$$
 where $\Sigma = V^T F V + D$

▶ ϕ_i = fraction of wealth in asset i and ϕ = entire portfolio

► Then

Expected return of portfolio ϕ is

$$E[r^T\phi] = \mu^T\phi$$

"risk" of portfolio $\widehat{=}$

$$\mathsf{Var}(r^T\phi) = \phi^T \Sigma \phi$$