Computational Experience with Warmstarting Strategies for Interior Point Methods

Yinyu Ye, Stanford University

Erling D. Andersen, MOSEK
Anders Skajaa, Technical University of Denmark

November 23, 2012

In this talk

- What is warmstarting and when is it applicable?
- Example: Rolling horizon optimization
- Reasons why warmstarting is difficult for interior point methods
- Two new warmstarting schemes
- Example: Robust portfolio selection
- Computational experiments

Motivation

- Useful for many applications, especially in conic integer optimization
- Lots of phone calls from MOSEK customers

Warmstarting

$\mathcal{P}=$ an optimization problem (LP, QP, SOCP, QCQP, ...)
$\widehat{\mathcal{P}}=$ a different optimization problem of the same type

- Assume: $x^{*}=\operatorname{solution}(\mathcal{P})$ and
- $\mathcal{P} \sim \widehat{\mathcal{P}}$ (different but similar)

Can we make use of x^{*} when solving $\widehat{\mathcal{P}}$?

- Warmstarting:
- Using x^{*}, compute a "warm" starting point x^{0}
- initialize algorithm to solve $\widehat{\mathcal{P}}$ starting from x^{0}
- In this talk: we focus on Interior Point Method (=: IPM)

Why?

Many situations: Need to solve a series of optimization problems:

$$
\mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{P}_{3}, \mathcal{P}_{4}, \ldots
$$

where

$$
\mathcal{P}_{i} \sim \mathcal{P}_{i+1}, \quad i=1,2, \ldots
$$

Examples:

- Rolling horizon optimization (LP, QCQP, ...)
- Efficient frontier computation (QP, SOCP)
- Relaxations in integer programming (LP, QP, SDP)
- If you just have a confident solution guess

Example: Rolling horizon optimization of charging of PEVs

Given driving schedule, when to charge to minimize cost?

Simple (discrete time) battery model

$$
x_{k+1}=x_{k}+T_{s}\left(\eta / Q_{n}\right) u_{k}-T_{s} d_{k}
$$

$x_{k}=$ battery power storage at time $t_{k}, x_{k} \in[0,1]$
$u_{k}=$ charging power at time t_{k}
$d_{k}=$ driving at time t_{k}
$T_{s}=$ time interval length
$\eta=$ charger efficiency
$Q_{n}=$ nominal capacity of battery

Economic Model Predictive Control

(LP) $\left\{\begin{array}{lll}\min _{x, u} & \sum_{i=0}^{N-1} p_{k} u_{k} & \\ \text { s.t. } & x_{k+1}=x_{k}+T_{s}\left(\eta / Q_{n}\right) u_{k}-T_{s} d_{k} & k \in \mathcal{N} \\ & u_{\min } \leq u_{k} \leq u_{\max , k} & k \in \mathcal{N} \\ & 0.2 \leq x_{k} \leq 0.8 & k \in \mathcal{N}\end{array}\right.$

$$
\mathcal{N}=\{0,1,2, \ldots, N-1\}
$$

$$
x_{k}=\text { battery power storage at time } t_{k}
$$

$$
u_{k}=\text { charging power at time } t_{k}
$$

$$
p_{k}=(\text { predicted }) \text { electricity price at time } t_{k}
$$

$d_{k}=$ given driving schedule

$$
u_{\max , k}=P_{\max }, \text { but } 0 \text { if } d_{k}>0
$$

Model Predictive Control Loop:

(for $k=0,1,2, \ldots$, do

- Solve (LP) and obtain $\boldsymbol{u}_{k}^{*}=\left(u_{k}^{(0)}, u_{k}^{(1)}, \ldots, u_{k}^{(N-1)}\right)$
- Apply $u_{k}^{(0)}$ at time t_{k} to system
end

- This is series of related(!) linear programs
- Good reason to believe \boldsymbol{u}_{k+1}^{*} "similar" to \boldsymbol{u}_{k}^{*}
- Therefore: We should utilize information from solution of problem k when solving problem $k+1$

- This is series of related(!) linear programs
- Good reason to believe \boldsymbol{u}_{k+1}^{*} "similar" to \boldsymbol{u}_{k}^{*}
- Therefore: We should utilize information from solution of problem k when solving problem $k+1$
- Warmstarting:

Problem Perturbation I

$$
\mathcal{P}=\left\{\min _{x} c^{T} x, \text { s.t. } A x \leq b\right\}
$$

Problem Perturbation I

$$
\mathcal{P}=\left\{\min _{x} c^{T} x, \text { s.t. } A x \leq b\right\}
$$

Problem Perturbation II

$$
\begin{aligned}
& \mathcal{P}=\left\{\min _{x} c^{T} x, \text { s.t. } A x \leq b\right\} \\
& \widehat{\mathcal{P}}=\left\{\min _{x} c^{T} x, \text { s.t. } \widehat{A} x \leq \widehat{b}\right\}
\end{aligned}
$$

Problem Perturbation II

$$
\begin{aligned}
& \mathcal{P}=\left\{\min _{x} c^{T} x, \text { s.t. } A x \leq b\right\} \\
& \widehat{\mathcal{P}}=\left\{\min _{x} c^{T} x, \text { s.t. } \widehat{A} x \leq \widehat{b}\right\}
\end{aligned}
$$

Problem Perturbation III

$$
\begin{aligned}
& \mathcal{P}=\left\{\min _{x} c^{T} x, \text { s.t. } A x \leq b\right\} \\
& \widehat{\mathcal{P}}=\left\{\min _{x} c^{T} x, \text { s.t. } \widehat{A} x \leq \widehat{b}\right\}
\end{aligned}
$$

Problem Perturbation IV

$$
\begin{aligned}
& \mathcal{P}=\left\{\min _{x} c^{T} x, \text { s.t. } A x \leq b\right\} \\
& \widehat{\mathcal{P}}=\left\{\min _{x} \widehat{c}^{T} x, \text { s.t. } A x \leq b\right\}
\end{aligned}
$$

Problem Perturbation IV

$$
\begin{aligned}
& \mathcal{P}=\left\{\min _{x} c^{T} x, \text { s.t. } A x \leq b\right\} \\
& \widehat{\mathcal{P}}=\left\{\min _{x} \widehat{c}^{T} x, \text { s.t. } A x \leq b\right\}
\end{aligned}
$$

Many Problems Can Happen

These examples show

- x^{*} might be infeasible in $\widehat{\mathcal{P}}$
- although $\mathcal{P} \approx \widehat{\mathcal{P}}$, solution may "jump"
- problem may even change status: e.g. from feasible to infeasible
- x^{*} might be on or close to boundary in $\widehat{\mathcal{P}}$ (algorithmic problem)
solution x^{*} is not a continuous function of the data (A, b, c).

Interior Point Algorithms for LP

$$
\operatorname{LP}(A, b, c)=\left\{\min _{x} c^{T} x, \text { s.t. } A x=b, x \geq 0\right\}
$$

- Iterates
- Optimal point
- $\{x: A x=b\}$

Warmstarting Research

- The Simplex Method: works well.
- Active set: Often works well! (though no guarantee).
- IPMs are perceived fundamentally deficient w.r.t. warmstarting
- x^{*} on boundary of feasible region for \mathcal{P}
- close to the boundary, IPMs behave badly
- Previously tried for IPMs:
- Solve \mathcal{P} with IPM, store all iterates:

$$
I=\left\{x^{(0)}, x^{(1)}, x^{(2)}, \ldots, x^{(\text {final })} \approx x^{\star}\right\}
$$

- search I for an element that "looks good" for $\widehat{\mathcal{P}}$.

Warmstarting Research for IPM

Original LP: $\quad \mathcal{P}=\operatorname{LP}(A, b, c)=\left\{\min _{x} c^{T} x\right.$, s.t. $\left.A x=b, x \geq 0\right\}$
Perturbed LP: $\widehat{\mathcal{P}}=\operatorname{LP}(\widehat{A}, \widehat{b}, c)=\left\{\min _{x} c^{T} x\right.$, s.t. $\left.\widehat{A} x=\widehat{b}, x \geq 0\right\}$

A practical problem with the approach

- Optimization algorithms are used as black-box routines
- Usually no output of intermediate iterates
- Only output is primal solution and sometimes also dual.

Our goal:

Warmstarting procedure using only

- primal optimal or final solution of \mathcal{P} or
- primal and dual optimal or final solution of \mathcal{P}
when initializing algorithm to solve $\widehat{\mathcal{P}}$.

Homogeneous and Self-Dual Model for Linear Programming

Given a linear program $\operatorname{LP}(A, b, c)=\left\{\min _{x} c^{T} x\right.$, s.t. $\left.A x=b, x \geq 0\right\}$, find (x, τ, y, s, κ) that satisfies

$$
\begin{array}{r}
A x-b \tau=0 \\
-A^{T} y-s+c \tau=0 \\
-c^{T} x+b^{T} y-\kappa=0 \\
(x, \tau) \geq 0,(s, \kappa) \geq 0, y \in \mathbb{R}^{m}
\end{array}
$$

- If $\tau>0$ then $(x, y, s) / \tau$ is optimal for $\operatorname{LP}(A, b, c)$.
- If $\kappa>0$ then $\operatorname{LP}(A, b, c)$ is infeasible.

The convergence efficiency is measured by the primal-dual potential function:

$$
\phi(x, s)=(n+\rho) \log \left(x^{T} s\right)-\sum_{j=1}^{n} \log \left(x_{j} s_{j}\right)
$$

Initialization of algorithm to solve HSD-model

- Usually, $\left(x^{0}, \tau^{0}, y^{0}, s^{0}, \kappa^{0}\right)=(e, 1,0, e, 1)$ is used (=: cold-start) where $e:=(1,1, \ldots, 1)$ and $\phi\left(x^{0}, s^{0}\right)=\rho \log (n)$.

Our warmstarting schemes

- When only primal solution x^{*} is available:

$$
\left(\mathrm{W}_{\mathrm{P}}\right)\left\{\begin{aligned}
x^{0} & =\lambda x^{*}+(1-\lambda) e \\
s^{0} & =\mu^{0}\left(x^{0}\right)^{-1} \\
y^{0} & =0 \\
\tau^{0} & =1 \\
\kappa^{0} & =\mu^{0}
\end{aligned}\right.
$$

where

- $\lambda \in[0,1], \mu^{0}>0$
- $\left(x^{0}\right)^{-1}$ denotes the elementwise reciprocal of x^{0}
$x^{0}=\lambda x^{*}+(1-\lambda) e$
$s^{0}=\mu^{0}\left(x^{0}\right)^{-1}$

$\widehat{\mathcal{P}}$ starting point
- \mathcal{P} optimal point x^{*}
- $\widehat{\mathcal{P}}$ optimal point
$=\{x: A x=b\}$
$-\{x: \widehat{A} x=\widehat{b}\}$
($1-\lambda$) e added to x^{0} to ensure interiority (needed for IPM)
s^{0} chosen so that $x^{0} \circ s^{0}=\mu^{0} e$, where $\circ:=$ elementwise product.

Our warmstarting schemes

- When both primal x^{*} and dual solutions $\left(y^{*}, s^{*}\right)$ are available:

$$
\left(\mathrm{W}_{\mathrm{PD}}\right)\left\{\begin{aligned}
x^{0} & =\lambda x^{*}+(1-\lambda) e \\
s^{0} & =\lambda s^{*}+(1-\lambda) e \\
y^{0} & =\lambda y^{*} \\
\tau^{0} & =1 \\
\kappa^{0} & =\left(x^{0}\right)^{T} s^{0} / n
\end{aligned}\right.
$$

- Also $y^{0}=\lambda y^{*}+(1-\lambda) 0$.

If new primal variables and/or new dual variables are added, they are set to default values without warmstarting.

Our warmstarting schemes

$$
\left(\mathrm{W}_{\mathrm{P}}\right)\left\{\begin{array} { r l }
{ x ^ { 0 } } & { = \lambda x ^ { * } + (1 - \lambda) e } \\
{ s ^ { 0 } } & { = \mu ^ { 0 } (x ^ { 0 }) ^ { - 1 } } \\
{ y ^ { 0 } } & { = 0 } \\
{ \tau ^ { 0 } } & { = 1 } \\
{ \kappa ^ { 0 } } & { = \mu ^ { 0 } }
\end{array} \quad (\mathrm { W } _ { \mathrm { PD } }) \left\{\begin{array}{rl}
x^{0} & =\lambda x^{*}+(1-\lambda) e \\
s^{0} & =\lambda s^{*}+(1-\lambda) e \\
y^{0} & =\lambda y^{*} \\
\tau^{0} & =1 \\
\kappa^{0} & =\left(x^{0}\right)^{T} s^{0} / n
\end{array}\right.\right.
$$

- W_{P} suited when
- Just x^{*} is available (black box)
- Just one problem is to be solved, but you have a "good guess"
- $W_{\text {PD }}$ suited when
- $\left(x^{*}, y^{*}, s^{*}\right)$ is available (better black box) but still no intermediate iterates

Warmstarting for the electric vehicle example

- $\boldsymbol{u}_{k}^{*}=\left(u_{k}^{(0)}, u_{k}^{(1)}, \ldots, u_{k}^{(N-1)}\right)$ solution at time t_{k}
- Then in place of " x^{*} " in warmstarting schemes, we use

$$
\left(u_{k}^{(1)}, \ldots, u_{k}^{(N-1)}, u_{k}^{(N-1)}\right)
$$

i.e. \boldsymbol{u}_{k}^{*} translated one place

Charging Schedule for Electric Vehicle and Warmstarting Performance

 \%

Iterations

Linear Programs from NETLIB

- ~90 real-life Linear Programs, varying size and sparsity
- For all problems, do
- Solve \mathcal{P}. Optimal solution: $\left(x^{*}, y^{*}, s^{*}\right)$
- Generate $\widehat{\mathcal{P}}$ by a random perturbation of \mathcal{P} :
- $\widehat{A}=A+\delta \Delta A$ or $\widehat{b}=b+\delta \Delta b$ or $\widehat{c}=c+\delta \Delta c$
- δ measures perturbation magnitude
- Solve $\widehat{\mathcal{P}}$ coldstarting and warmstarting using x^{*} and $\left(y^{*}, s^{*}\right)$
- Measure of warmstarting improvement:

$$
\mathcal{R}=\frac{\# \text { Iterations to solve } \widehat{\mathcal{P}} \text { warmstarted }}{\# \text { Iterations to solve } \widehat{\mathcal{P}} \text { coldstarted }}
$$

- and entire problem set:

$$
\mathcal{G}=\sqrt[K]{\mathcal{R}_{1} \cdots \mathcal{R}_{K}}
$$

Warmstarting Performance on NETLIB Linear Programs

Theoretical Justification

- The primal-dual potential function initial value remains bounded by $O(\rho \log (n))$ for any fixed $0 \leq \lambda<1$.
- Conservative approach requires $\lambda \ll 1$
- In practice: use much more aggressive choice of λ (i.e. close to 1)
- For experiments above: $\lambda=0.99$.
- Similar results for W_{P}

Anders Skajaa, Erling D. Andersen and Yinyu Ye. Warmstarting the Homogeneous and Self-Dual Interior Point Method for Linear and Conic Quadratic Problems. Working paper to appear in Math. Prog. Computation.

Portfolio selection and efficient frontier

- Available for investment: n different assets
- Denote

$$
\begin{aligned}
r_{i} & =\text { random variable, return of asset } i \\
r & =\text { vector stacking the } r_{i}
\end{aligned}
$$

- Assume

$$
r \sim \mathcal{N}(\mu, \Sigma)
$$

where

$$
\begin{aligned}
& \mu=\text { mean returns } \\
& \Sigma=\text { covariance matrix }
\end{aligned}
$$

Classical Markowitz portfolio selection

$$
r_{i}=\mathrm{RV}, \text { return of asset } i
$$

$r=$ vector stacking the r_{i}

$$
r \sim \mathcal{N}(\mu, \Sigma)
$$

- $\phi_{i}=$ fraction of wealth in asset i
- $\phi=$ vector stacking the ϕ_{i} (entire portfolio)
- Then

Expected return of portfolio ϕ is

$$
E\left[r^{T} \phi\right]=\mu^{T} \phi
$$

"risk" of portfolio $\widehat{=}$

$$
\operatorname{Var}\left(r^{T} \phi\right)=\phi^{T} \Sigma \phi
$$

Classical Markowitz portfolio selection

$$
\begin{aligned}
& \mu^{T} \phi=\text { expected return of } \phi \\
& \phi^{T} \Sigma \phi \hat{=} \text { risk of } \phi
\end{aligned}
$$

- Markowitz portfolio optimization:

Optimize a trade-off between max(return) and min(risk)

- Assuming we know with certainty the data (μ, Σ), we can compute the classical Markowitz portfolio from:

$$
(\mathrm{QP}) \begin{cases}\text { minimize }_{\phi} & \phi^{T} \Sigma \phi \\ \text { subject to } & \mu^{T} \phi \geq t \\ & e^{T} \phi=1 \\ & \phi \geq 0\end{cases}
$$

i.e.: minimize variance s.t. expected return $\geq t$

Efficient frontier

$$
(\mathrm{QP})\left\{\begin{array}{cl}
\text { minimize }_{\phi} & \phi^{T} \Sigma \phi \\
\text { subject to } & \mu^{T} \phi \geq t \\
& e^{T} \phi=1 \\
& \phi \geq 0
\end{array}\right.
$$

$t=$ demanded minimal expected return

- Denote the minimum risk by $q(t)$
- Efficient frontier: $(t, q(t))$ for a range of t
- A series of related QPs, use warmstarting!
- Data:
- 500 assets from S\&P 500 index
- expected returns μ and covariances Σ estimated from 800 daily closing prices 2007-2011

Warmstarting performance when computing the efficient frontier

Iterations

Robust portfolio selection

$r_{i}=\mathrm{RV}$, return of asset i
$r=$ vector stacking the r_{i}

- Now assume

$$
r \sim \mathcal{N}(\mu, \Sigma) \quad \text { where } \quad \Sigma=V^{T} F V+D
$$

- and data in uncertainty sets:

$$
\begin{aligned}
\mu \in S_{\mu} & :=\left\{\mu: \mu=\mu_{0}+\xi,\left|\xi_{i}\right| \leq \gamma_{i}\right\} \\
D \in S_{D} & :=\left\{D: D=\operatorname{diag}(d), 0 \leq d_{i} \leq \bar{d}_{i}\right\} \\
V \in S_{V} & :=\left\{V: V=V_{0}+W,\left\|W_{: i}\right\|_{G} \leq \bar{w}_{i}\right\}
\end{aligned}
$$

D. Goldfarb and G. Iyengar. Robust portfolio selection problems. Math. Oper. Res., Feb. 2003.
Robust portfolio selection

$$
\begin{aligned}
& r_{i}=\mathrm{RV}, \text { return of asset } i \\
& r=\text { vector stacking the } r_{i} \\
& r \sim \mathcal{N}(\mu, \Sigma), \quad \Sigma=V^{T} F V+D \\
& \mu^{T} \phi=\text { expected return of } \phi \\
& \phi^{T} \Sigma \phi \hat{=} \text { risk of } \phi \\
& S_{x}=\text { uncertainty set of } x
\end{aligned}
$$

- Find portfolio ϕ minimizing worst-case risk (variance):

Robust portfolio | selection |
| ---: | :--- | \(\begin{cases}\operatorname{minimize}_{\phi} \& \max _{V \in S_{V}, D \in S_{D}}\left\{\phi^{T} \Sigma \phi\right\}

subject to \& \min _{\mu \in S_{\mu}}\left\{\mu^{T} \phi\right\} \geq t

\& e^{T} \phi=1, \quad \phi \geq 0\end{cases}\)
Robust portfolio selection

$$
\begin{aligned}
& r_{i}=\mathrm{RV}, \text { return of asset } i \\
& r=\text { vector stacking the } r_{i} \\
& r \sim \mathcal{N}(\mu, \Sigma), \quad \Sigma=V^{T} F V+D \\
& \mu^{T} \phi=\text { expected return of } \phi \\
& \phi^{T} \Sigma \phi \hat{=} \text { risk of } \phi \\
& S_{x}=\text { uncertainty set of } x
\end{aligned}
$$

- Find portfolio ϕ minimizing worst-case risk (variance):

Robust portfolio | selection |
| ---: | :--- | \(\begin{cases}\operatorname{minimize}_{\phi} \& \max _{V \in S_{V}, D \in S_{D}}\left\{\phi^{T} \Sigma \phi\right\}

subject to \& \min _{\mu \in S_{\mu}}\left\{\mu^{T} \phi\right\} \geq t

\& e^{T} \phi=1, \quad \phi \geq 0\end{cases}\)

$$
\underset{\text { Compare with }}{\text { classical }}\left\{\begin{array}{cl}
\text { minimize }_{\phi} & \phi^{T} \Sigma \phi \\
\text { subject to } & \mu^{T} \phi \geq t \\
& e^{T} \phi=1, \phi \geq 0
\end{array}\right.
$$

Robust portfolio selection

- The robust portfolio selection problem $\left\{\begin{aligned} \min _{\phi} & \max _{V \in S_{V}, D \in S_{D}}\left\{\phi^{T} \Sigma \phi\right\} \\ \text { s.t. } & \min _{\mu \in S_{\mu}}\left\{\mu^{T} \phi\right\} \geq t \\ & e^{T} \phi=1, \quad \phi \geq 0\end{aligned}\right.$
can be formulated as equivalent Second Order Cone Program:

$$
\begin{array}{ll}
\min _{\{\phi, \ldots\}} & \nu+\delta \\
\text { subject to } & \mu_{0}^{T} \phi-\gamma^{T} \psi \geq t \\
& r \geq w^{T} \psi, \quad-\phi \leq \psi \leq \phi \\
& e^{T} \phi=1, \phi \geq 0 \\
& \tau+e^{T} t \leq \nu, \quad \sigma \leq 1 / \lambda_{\max }(H) \\
& \|(2 r, \sigma-\tau)\|_{2} \leq \sigma+\tau \\
& \left\|\left(2 v_{i}, 1-\sigma \lambda_{i}-t_{i}\right)\right\|_{2} \leq 1-\sigma \lambda_{i}+t_{i}, i=1, \ldots, m \\
& \left\|\left(2 \bar{D}^{1 / 2} \phi, 1-\delta\right)\right\|_{2} \leq 1+\delta
\end{array}
$$

- SOCPs can be solved as efficiently as QPS
- Warm points generalized via Jordan algebra operations associated with convex cones

Robust portfolio selection

- Frequent rebalancing of portfolio: repeat:

- Estimate problem-data μ_{0}, γ, \ldots and uncertainty sets based on observed data from previous time window
- Rebalance portfolio by solving robust portfolio selection problem
end
- Series of related socps
- Faster solution \longrightarrow more frequent rebalancing
- Warmstarting! (use previous portfolio as " $x^{* "}$).

Portfolio rebalancing and warmstarting performance

Concluding remarks

- Warmstarting schemes seem effective in practice
- Easy to compute
- Require only final solution of \mathcal{P} (OK with black-boxes)
- Significant work reductions in practice
- Work at least for LP, QP, SOCP
- More details and examples in working paper:
- More linear programs and rolling horizon conic examples
- QP subproblems in cutting-plane/bundle methods
- Future
- Easily extend-able to SDP, but computational experiments remain to be seen
- Applications in integer optimization with branching and cutting
- Theoretical question: if the perturbation is random, prove that the scheme works with high probability!

Concluding remarks

- Warmstarting schemes seem effective in practice
- Easy to compute
- Require only final solution of \mathcal{P} (OK with black-boxes)
- Significant work reductions in practice
- Work at least for LP, QP, SOCP
- More details and examples in working paper:
- More linear programs and rolling horizon conic examples
- QP subproblems in cutting-plane/bundle methods
- Future
- Easily extend-able to SDP, but computational experiments remain to be seen
- Applications in integer optimization with branching and cutting
- Theoretical question: if the perturbation is random, prove that the scheme works with high probability!

Thank you!

Linear Programs from NETLIB

- We define $\widehat{\mathcal{P}}$ by randomly perturbing data A, b and c :
- Assume $v \in \mathbb{R}^{M}$ is vector we want to perturb
- $s=$ random number, [0,1$]$-uniform
- if $s \leq \min \{0.1,20 / M\}$

$$
v_{i}:= \begin{cases}\delta r & \text { if }\left|v_{i}\right| \leq 10^{-6} \\ (1+\delta r) v_{i} & \text { otherwise }\end{cases}
$$

where $r=$ random number, $[-1,1]$-uniform

- otherwise don't change
- On average, $\min \{10 \%, 20\}$ of the elements are changed
- "Magnitude" of perturbation measured by δ

Example: Portfolio selection and efficient frontier

- Available for investment: n different assets
- Denote

$$
\begin{aligned}
r_{i} & =\text { random variable, return of asset } i \\
r & =\text { vector stacking the } r_{i}
\end{aligned}
$$

- Assume

$$
r=\mu+V^{T} f+\epsilon
$$

where

$$
\mu=\text { mean returns }
$$

$f=$ random returns of "factors" that drive market
$V=$ factor loading matrix, $V \in \mathbb{R}^{m \times n}$
$\epsilon=$ "residuals" assumed normally distributed

Classical Markowitz portfolio selection
$r_{i}=\mathrm{RV}$, return of asset i

- Assume

$$
\begin{aligned}
& \epsilon \sim \mathcal{N}(0, D) \\
& f \sim \mathcal{N}(0, F)
\end{aligned}
$$

- Then

$$
r \sim \mathcal{N}(\mu, \Sigma) \quad \text { where } \quad \Sigma=V^{T} F V+D
$$

- $\phi_{i}=$ fraction of wealth in asset i and $\phi=$ entire portfolio
- Then

Expected return of portfolio ϕ is

$$
E\left[r^{T} \phi\right]=\mu^{T} \phi
$$

"risk" of portfolio $\widehat{=}$

$$
\operatorname{Var}\left(r^{T} \phi\right)=\phi^{T} \Sigma \phi
$$

