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In this talk

» What is warmstarting and when is it applicable?

v

Example: Rolling horizon optimization

v

Reasons why warmstarting is difficult for interior point methods

» Two new warmstarting schemes

v

Example: Robust portfolio selection

v

Computational experiments

Motivation

» Useful for many applications, especially in conic integer optimization

» Lots of phone calls from MOSEK customers
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Warmstarting

P = an optimization problem (LP, QP, SOCP, QCQP, ...)
P = a different optimization problem of the same type
» Assume: z* = solution(P) and

>» PP (different but similar)

Can we make use of z* when solving P 7

» Warmstarting:

» Using z*, compute a “warm” starting point 20
» initialize algorithm to solve P starting from z°

> In this talk: we focus on Interior Point Method (=: 1PM)
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Why?
Many situations: Need to solve a series of optimization problems:
7317 P27 P?n P4a oo

where

Examples:
» Rolling horizon optimization (LP, QCQP, ...)
» Efficient frontier computation (QP, SOCP)
> Relaxations in integer programming (LP, QP, SDP)

» If you just have a confident solution guess

N)
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Example: Rolling horizon optimization of charging of PEVs

Electricity prices from EEX
€/MWh 12/5/11—12/11/11
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Hour

Given driving schedule, when to charge to minimize cost?
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Simple (discrete time) battery model

Tpg1 = 1 + Ts(n/ Qn)ug — Tody

x, = battery power storage at time t;, zx € [0, 1]
uj, = charging power at time
dj, = driving at time t,
Ts = time interval length
1 = charger efficiency

@), = nominal capacity of battery
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Economic Model Predictive Control

N-1
min E Di Uk
T,u

=0

(LP) St Ty = 3 + Ts(n/Qn)uk — Tydp, keN
Umin < U < Umax k ke N
0.2 < <0.8 ke N

N={0,1,2,...,N -1}
7, = battery power storage at time
ug, = charging power at time
pr = (predicted) electricity price at time #;
dy, = given driving schedule
Umax,k = Pmax, but 0 if dj >0

|
x
to e tep1 oo ~ iy



Model Predictive Control Loop:
for k=0,1,2,..., do
» Solve (LP) and obtain uj = (u,io), u,(cl), cees u,(cNfl))
» Apply u,(CO) at time {; to system

end

—o— Reference trajectory

—e— Predicted output
/ Measured output
|, Predicted control input
—— Past control input

6
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> This is series of related(!) linear programs
» Good reason to believe uy ; “similar” to u}

» Therefore: We should utilize information from solution of problem &
when solving problem &k + 1

*
ug uy u3 u3

T T T T

LPg — LP; —> LPy —F LP3 —
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v

v

v

This is series of related(!) linear programs
Good reason to believe uy_ , “similar” to uj,

Therefore: We should utilize information from solution of problem &
when solving problem &k + 1

Warmstarting:

u U
\T\ \T
L0—>P—> LPy — LP3 —
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Problem Perturbation |

P = {mgn ¢z, st Az < b}
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Problem Perturbation |

P = {mgn ¢z, st Az < b}
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Problem Perturbation Il

73:

~

'P:

{
{

min ch, s.t. Az < b}
T

min CT:L’, st. Az < b
T

j
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Problem Perturbation Il
7) =
P =

T

min ¢~ x,

{m
{

min cT:c
T

s.t. Az <

s.t. Ax

%/—‘R/—’
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Problem Perturbation Ill

P = {min T, st Az < b}
P = {min ch, s.t. Az < }

5
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Problem Perturbation IV
P = {min cle, st Az < b}

x

P = {minETx, s.t. Az < b}

x
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Problem Perturbation IV
P = {min cle, st Az < b}

x

P = {minETx, s.t. Az < b}

x
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Many Problems Can Happen

These examples show

» z* might be infeasible in P

» although P ~ P, solution may “jump”

> problem may even change status: e.g. from feasible to infeasible
» z* might be on or close to boundary in P (algorithmic problem)

solution z* is not a continuous function of the data (4, b, ¢). ‘

12/39



Interior Point Algorithms for LP

LP(A, b, c) = {minx cle, st. Az =10, 2> O}

e |terates

@ Optimal point
{z: Az = b}

13 /39



Warmstarting Research

v

The Simplex Method: works well.

v

Active set: Often works well! (though no guarantee).

» 1PMs are perceived fundamentally deficient w.r.t. warmstarting

» z* on boundary of feasible region for P
» close to the boundary, 1PMs behave badly

v

Previously tried for IPMs:

» Solve P with IPM, store all iterates:

I= {.’E(O), M 22 glfinal) o x*}

» search [ for an element that “looks good” for P.

14 /39



Warmstarting Research for IPM

Original Lp: P =1pP(4,b,¢) = {mingE Tz, st. Az =05, z> ()}

~>

Perturbed LP: P = LP(4, b, ¢) = {minx Tz, st. Az=b, z> O}

® D-iterates @ P optimal point
@ 7 starting point {z: Az = b}
@ P optimal point  —{z: Az = b}
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A practical problem with the approach

» Optimization algorithms are used as black-box routines

» Usually no output of intermediate iterates

» Only output is primal solution and sometimes also dual.

Our goal:

Warmstarting procedure using only

» primal optimal or final solution of P or
» primal and dual optimal or final solution of P

when initializing algorithm to solve P.

16

39



Homogeneous and Self-Dual Model for Linear Programming

Given a linear program LP(A, b, ¢) = {min, ¢Tz, st. Az =1b, z >0},

find (x, 7,9, s, k) that satisfies
Az —br =0
ATy —s+er=0
—cTz+bTy—k=0
(z,7) 20, (5,k) 20,y € R™

> If 7> 0 then (z,y,s)/7 is optimal for LP(4, b, ¢).
> If k > 0 then LP(A, b, ¢) is infeasible.

The convergence efficiency is measured by the primal-dual potential
function:

é(z,8) = (n+ p)log(z”'s) Zlog ;5;).
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Initialization of algorithm to solve HSD-model
» Usually, (z°,79,4°, 5%, k%) = (e,1,0,¢,1) is used (=: cold-start)
where e := (1,1,...,1) and ¢(2°, s°) = plog(n).
Our warmstarting schemes

» When only primal solution z* is available:

¥ = A+ (1-Ne
O = 00!
(W) ¥ =0
0 =1
KO = 0

where
» A e[0,1], pul >0

» (2Y)~! denotes the elementwise reciprocal of z°

18 /39



29 =Xz* + (1= Ne

0 = 10(z0)~1

.73 starting point @73 optimal point z*
@ 7 optimal point {z: Az = b}
—{z: Az =10}

(1 — X)e added to z° to ensure interiority (needed for 1PM)

sY chosen so that 20 0 s° = u%¢, where o := elementwise product.
19 /39



Our warmstarting schemes

» When both primal z* and dual solutions (y*, s*) are available:

0 = Az*+(1-Ne

9 = As*+(1—Ne
(Wep) ¥ o= Ay

0 =1

K0 (2°)Ts%/n

> Also 3 = Ay* + (1 — \)0.

If new primal variables and/or new dual variables are added, they are set
to default values without warmstarting.

20 /39



Our warmstarting schemes

¥ = ¥+ (1-Ne ¥ = A"+ (1-Ne

0 = uO>a")! 9 = A+ (1—Ne
(We) ¥ =0 (Wep) o= Ay

0 =1 ™ =1

KO = 0 K = ()T

» W; suited when

» Just z* is available (black box)
» Just one problem is to be solved, but you have a “good guess”

» Wpp suited when

» (z*,y*, s*) is available (better black box)
but still no intermediate iterates

21/39



Warmstarting for the electric vehicle example
> uf = (u,(co), u,(cl), e u,(cNfl)) solution at time ¢
» Then in place of “z*" in warmstarting schemes, we use

1 N-1) (N-1
(u,(c),...,u,(€ ),u,(C ))

i.e. uj, translated one place

Past Future

—e— Reference trajectory
—— Predicted output
/ Measured output
Predicted control input
—— Past control input

P Prediction horizon




Charging Schedule for Electric Vehicle and Warmstarting Performance

%
80 — — — — — — —
Battery
60 charge

40
= Driving

20
n I o [ n [ n
08:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00
€/MWh

4 80

Electricity
3 160 price
2 | wemm Charging

0 n L L L L L L L 20
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Iterations
15

= Coldstart

10
= \Narmstart
WPD
5 | | | | | | | ]
00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00
Time
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Linear Programs from NETLIB
» ~90 real-life Linear Programs, varying size and sparsity
» For all problems, do

» Solve P. Optimal solution: (2*, y*, s*)
» Generate P by a random perturbation of P:

» A=A+6AA or b=b+56Ab or ¢=c+05Ac
» J measures perturbation magnitude

> Solve P coldstarting and warmstarting using z* and (y*, s*)

> Measure of warmstarting improvement:

R #lterations to solve P warmstarted

#lterations to solve P coldstarted

» and entire problem set:

g = K’Rl...’RK

24 /39



Q (Warmstarting improvement)

Warmstarting Performance on NETLIB Linear Programs

S
1.1+ c
vV Wp
1.0 @ wy,

i n n n P | n n n P
102 10~1! 100
& (Magnitude of problem perturbation) 25 /39



Theoretical Justification

» The primal-dual potential function initial value remains bounded by
O(plog(n)) for any fixed 0 < A < 1.

v

Conservative approach requires A < 1

v

In practice: use much more aggressive choice of A (i.e. close to 1)

v

For experiments above: A = 0.99.

v

Similar results for wp

Anders Skajaa, Erling D. Andersen and Yinyu Ye. Warmstarting the
Homogeneous and Self-Dual Interior Point Method for Linear and Conic
Quadratic Problems. Working paper to appear in Math. Prog. Computation.

26
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Portfolio selection and efficient frontier

» Available for investment: n different assets

» Denote
r; = random variable, return of asset %
r = vector stacking the r;
» Assume
r~ N(:“’? E)
where

[t = mean returns

Y = covariance matrix

27 /39



r; = RV, return of asset ¢
Classical Markowitz portfolio selection r = vector stacking the 7;

r~N(u,X)

» ¢; = fraction of wealth in asset ¢
> ¢ = vector stacking the ¢; (entire portfolio)
» Then
Expected return of portfolio ¢ is
E[rT¢]=p"¢
“risk” of portfolio =

Var(rT¢) = ¢T2¢

28 /39



uT¢ = expected return of ¢
¢TX¢p = risk of ¢
Classical Markowitz portfolio selection

» Markowitz portfolio optimization:
Optimize a trade-off between max(return) and min(risk)
» Assuming we know with certainty the data (y,Y),

we can compute the classical Markowitz portfolio from:

minimizey R )
subject to plo >t
(qp) .
etp=1
$»>0

i.e.. minimize variance s.t. expected return > ¢

29 /39



minimize T2
subject to uT¢p >t
(QP) €T¢ =1

Efficient frontier >0

t = demanded minimal expected return

v

Denote the minimum risk by ¢(t)

v

Efficient frontier: (t, ¢(t)) for a range of ¢

v

A series of related QPs, use warmstarting!
» Data:

» 500 assets from S&P 500 index
» expected returns p and covariances Y estimated from
800 daily closing prices 2007-2011

30/39



Warmstarting performance when computing the efficient frontier

expected
return t

1.0029 |-
1.0025 -
1.0021
1.0017
1.0013
1.0009
1.0005
1.0001

Iterations

! ! ! ! ! ! ! !
1.0001 1.0005 1.0009 1.0013 1.0017 1.0021 1.0025 1.0029

t




r; = RV, return of asset ¢
Robust portfolio selection r = vector stacking the 7;

» Now assume

r~N(uY) where ©=VTFV+D
» and data in uncertainty sets:

pe S, ={p:p=mp+& |& <}
D€ Sp:={D:D=diag(d), 0<d; < d;}
VeSy={V:V=V+W, |[Wie<w}

D. Goldfarb and G. lyengar. Robust portfolio selection problems. Math.
Oper. Res., Feb. 2003.
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r; = RV, return of asset ¢

r = vector stacking the r;

r ~Nuw), Z=VITFV+D

uT¢ = expected return of ¢
Robust portfolio selection ¢TEp = risk of ¢

Sz = uncertainty set of x

» Find portfolio ¢ minimizing worst-case risk (variance):

L T
minimize Ve ér‘}ageSD{qS Yo}

Robust portfolio

selection subject to min {NT¢} >t
HES,

e'p=1, ¢>0

33/39



r; = RV, return of asset ¢

r = vector stacking the r;

r ~Nuw), Z=VITFV+D

uT¢ = expected return of ¢
Robust portfolio selection ¢TEp = risk of ¢

Sz = uncertainty set of x

» Find portfolio ¢ minimizing worst-case risk (variance):

e T
minimize max by
¢ Vesv,DesD&b o}
Robust portfolio

selection subject to min {NT¢} >t
HES,

efo=1, ¢>0
minimizeg oTxe

subject to pT¢ >t
efo=1,6>0

Compare with
classical
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Robust portfolio selection

ming  maxves,,nes, {07 o}
» The robust portfolio selection problem st minges, {nTe} >t
eTop=1, ¢>0

can be formulated as equivalent Second Order Cone Program:

mingg .} v+46

subject to ugqﬁ — 'yTw >t
r>wly, —p<p<o
elp=1, ¢>0
r+elt <v, 0 <1/Amax(H)
2r,o—T)2<oc+T
vy, 1 —oXi—t)|2<1—0cXi+t; i=1,....,m
1(2DY2¢,1 = 8)2 <146

> SOCPs can be solved as efficiently as QPs

» Warm points generalized via Jordan algebra operations associated
with convex cones
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Robust portfolio selection

estin

» Frequent rebalancing of portfolio:

now
repeat:

Estimate problem-data po,7,... and uncertainty sets
based on observed data from previous time window
Rebalance portfolio by solving robust portfolio selection
problem

end
> Series of related SOCPs
» Faster solution — more frequent rebalancing

» Warmstarting! (use previous portfolio as “z*").

35
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Return

Iterations

Portfolio rebalancing and warmstarting performance

Rebalancing every

3.5 250 days
50 days
3.0r 10 days
2.5 S&P500
2.0
1.5
10 F~ | | | | | | | |
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° w ° ° ® e® © 0 Warm
10} % e hg o ) } Wep
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0 200 400 600 800 1000 1200 1400 1600

Trading days
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Concluding remarks

» Warmstarting schemes seem effective in practice

» Easy to compute
» Require only final solution of P (OK with black-boxes)

» Significant work reductions in practice
» Work at least for LP, QP, SOCP

» More details and examples in working paper:
» More linear programs and rolling horizon conic examples
» QP subproblems in cutting-plane/bundle methods

» Future

» Easily extend-able to sSDP, but computational experiments
remain to be seen

» Applications in integer optimization with branching and cutting

» Theoretical question: if the perturbation is random, prove that
the scheme works with high probability!
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Concluding remarks

» Warmstarting schemes seem effective in practice

» Easy to compute
» Require only final solution of P (OK with black-boxes)

» Significant work reductions in practice
» Work at least for LP, QP, SOCP

» More details and examples in working paper:
» More linear programs and rolling horizon conic examples
» QP subproblems in cutting-plane/bundle methods

» Future

» Easily extend-able to sSDP, but computational experiments
remain to be seen

» Applications in integer optimization with branching and cutting

» Theoretical question: if the perturbation is random, prove that
the scheme works with high probability!

Thank you!
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Linear Programs from NETLIB
> We define P by randomly perturbing data A, b and c:

» Assume v € RM is vector we want to perturb
» s = random number, [0, 1]-uniform
» if s <min{0.1,20/M}

S or if [v;] <1076
"l (1490r)v;  otherwise

where 7 = random number, [—1, 1]-uniform
» otherwise don't change

» On average, min{10%, 20} of the elements are changed

> “Magnitude” of perturbation measured by §
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Example: Portfolio selection and efficient frontier

» Available for investment: n different assets

» Denote
r; = random variable, return of asset 7
r = vector stacking the r;
» Assume
r=pu+ VTft+e
where

(4 = mean returns

f = random returns of “factors” that drive market
V = factor loading matrix, V € R™*"

€ = “residuals” assumed normally distributed
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Classical Markowitz portfolio selection 7

-
> Assume "

e ~N(0,D)

» Then
r~N(,Y) where ¥ =VTFV 4D

» ¢; = fraction of wealth in asset ¢ and ¢ = entire portfolio
» Then
Expected return of portfolio ¢ is
E[rT¢]=p"¢
“risk” of portfolio =

Var(rT¢) = ¢T2¢

RV, return of asset ¢
vector stacking the r;
p+ VTf+e
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