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In this talk

I What is warmstarting and when is it applicable?
I Example: Rolling horizon optimization
I Reasons why warmstarting is difficult for interior point methods
I Two new warmstarting schemes
I Example: Robust portfolio selection
I Computational experiments

Motivation

I Useful for many applications, especially in conic integer optimization
I Lots of phone calls from MOSEK customers
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Warmstarting

P = an optimization problem (lp, qp, socp, qcqp, . . . )

P̂ = a different optimization problem of the same type
I Assume: x∗ = solution(P) and

I P ∼ P̂ (different but similar)

Can we make use of x∗ when solving P̂ ?

I Warmstarting:
I Using x∗, compute a “warm” starting point x0

I initialize algorithm to solve P̂ starting from x0

I In this talk: we focus on Interior Point Method (=: ipm)
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Why?

Many situations: Need to solve a series of optimization problems:

P1,P2,P3,P4, . . .

where
Pi ∼ Pi+1, i = 1, 2, . . .

Examples:
I Rolling horizon optimization (lp, qcqp, . . . )
I Efficient frontier computation (qp, socp)
I Relaxations in integer programming (lp, qp, sdp)
I If you just have a confident solution guess
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Example: Rolling horizon optimization of charging of PEVs
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Simple (discrete time) battery model

xk+1 = xk + Ts(η/Qn)uk − Tsdk

xk = battery power storage at time tk , xk ∈ [0, 1]
uk = charging power at time tk

dk = driving at time tk

Ts = time interval length
η = charger efficiency

Qn = nominal capacity of battery

-

t0 t1 · · · tk tk+1 · · · t︸︷︷︸
Ts
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Economic Model Predictive Control

(lp)



min
x,u

N−1∑
i=0

pkuk

s.t. xk+1 = xk + Ts(η/Qn)uk − Tsdk k ∈ N
umin ≤ uk ≤ umax,k k ∈ N
0.2 ≤ xk ≤ 0.8 k ∈ N

N = {0, 1, 2, . . . ,N − 1}
xk = battery power storage at time tk

uk = charging power at time tk

pk = (predicted) electricity price at time tk

dk = given driving schedule
umax,k = Pmax, but 0 if dk > 0

-

t0 t1 · · · tk tk+1 · · · ttN
︸︷︷︸
Ts 5 / 39



Model Predictive Control Loop:
for k = 0, 1, 2, . . . , do

I Solve (lp) and obtain u∗k = (u(0)
k , u(1)

k , . . . , u(N−1)
k )

I Apply u(0)
k at time tk to system

end

Past Future

Prediction horizon

Reference trajectory
Predicted output
Measured output
Predicted control input
Past control input

t0
t1 t2 · · · Ts
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I This is series of related(!) linear programs
I Good reason to believe u∗k+1 “similar” to u∗k
I Therefore: We should utilize information from solution of problem k

when solving problem k + 1

lp0 lp1 lp2 lp3 · · ·−→ −→ −→ −→
↑ ↑ ↑ ↑
u∗0 u∗1 u∗2 u∗3

I Warmstarting:

H
HHj

H
HHj

H
HHj
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Problem Perturbation I

P =
{

min
x

cTx, s.t. Ax ≤ b
}

c

x∗

@
@
@R

8 / 39



Problem Perturbation I

P =
{

min
x

cTx, s.t. Ax ≤ b
}

c

x∗

@
@
@R

8 / 39



Problem Perturbation II

P =
{

min
x

cTx, s.t. Ax ≤ b
}

P̂ =
{

min
x

cTx, s.t. Âx ≤ b̂
}

c

x∗
x̂

P̂

@
@
@R
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Problem Perturbation III

P =
{

min
x

cTx, s.t. Ax ≤ b
}

P̂ =
{

min
x

cTx, s.t. Âx ≤ b̂
}

c

x∗
x̂ P̂

@
@
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Problem Perturbation IV
P =

{
min

x
cTx, s.t. Ax ≤ b

}
P̂ =

{
min

x
ĉTx, s.t. Ax ≤ b

}

x∗

x̂

cĉ

y−−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

@
@
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Problem Perturbation IV
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Many Problems Can Happen

These examples show
I x∗ might be infeasible in P̂
I although P ≈ P̂, solution may “jump”
I problem may even change status: e.g. from feasible to infeasible
I x∗ might be on or close to boundary in P̂ (algorithmic problem)

solution x∗ is not a continuous function of the data (A, b, c).
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Interior Point Algorithms for LP

lp(A, b, c) =
{

minx cTx, s.t. Ax = b, x ≥ 0
}

x0

x1

x j

x∗
c

Iterates Optimal point
{x : Ax = b}

���:
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Warmstarting Research

I The Simplex Method: works well.
I Active set: Often works well! (though no guarantee).
I ipms are perceived fundamentally deficient w.r.t. warmstarting

I x∗ on boundary of feasible region for P
I close to the boundary, ipms behave badly

I Previously tried for IPMs:
I Solve P with ipm, store all iterates:

I =
{

x(0), x(1), x(2), . . . , x(final) ≈ x?
}

I search I for an element that “looks good” for P̂.
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Warmstarting Research for IPM

Original lp: P = lp(A, b, c) =
{

minx cTx, s.t. Ax = b, x ≥ 0
}

Perturbed lp: P̂ = lp(Â, b̂, c) =
{

minx cTx, s.t. Âx = b̂, x ≥ 0
}

c

P̂ starting point
P-iterates P optimal point

P̂ optimal point
{x : Ax = b}
{x : Âx = b̂}

���:
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A practical problem with the approach

I Optimization algorithms are used as black-box routines
I Usually no output of intermediate iterates
I Only output is primal solution and sometimes also dual.

Our goal:

Warmstarting procedure using only
I primal optimal or final solution of P or
I primal and dual optimal or final solution of P

when initializing algorithm to solve P̂.
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Homogeneous and Self-Dual Model for Linear Programming

Given a linear program lp(A, b, c) =
{

minx cTx, s.t. Ax = b, x ≥ 0
}
,

find (x, τ, y, s, κ) that satisfies

Ax − bτ = 0
−ATy − s + cτ = 0
−cTx + bTy − κ = 0

(x, τ) ≥ 0, (s, κ) ≥ 0, y ∈ Rm

I If τ > 0 then (x, y, s)/τ is optimal for lp(A, b, c).
I If κ > 0 then lp(A, b, c) is infeasible.

The convergence efficiency is measured by the primal-dual potential
function:

φ(x, s) = (n + ρ) log(xTs)−
n∑

j=1
log(xjsj).
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Initialization of algorithm to solve HSD-model

I Usually, (x0, τ0, y0, s0, κ0) = (e, 1, 0, e, 1) is used (=: cold-start)
where e := (1, 1, . . . , 1) and φ(x0, s0) = ρ log(n).

Our warmstarting schemes

I When only primal solution x∗ is available:

(wp)


x0 = λx∗ + (1− λ)e
s0 = µ0(x0)−1

y0 = 0
τ0 = 1
κ0 = µ0

where
I λ ∈ [0, 1], µ0 > 0
I (x0)−1 denotes the elementwise reciprocal of x0
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c

e

x0
λ = 0

λ = 1

P̂ starting point P optimal point x∗

P̂ optimal point {x : Ax = b}
{x : Âx = b̂}

���:

x0 = λx∗ + (1− λ)e
s0 = µ0(x0)−1

(1− λ)e added to x0 to ensure interiority (needed for ipm)
s0 chosen so that x0 ◦ s0 = µ0e, where ◦ := elementwise product.
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Our warmstarting schemes

I When both primal x∗ and dual solutions (y∗, s∗) are available:

(wpd)


x0 = λx∗ + (1− λ)e
s0 = λs∗ + (1− λ)e
y0 = λy∗
τ0 = 1
κ0 = (x0)Ts0/n

I Also y0 = λy∗ + (1− λ)0.

If new primal variables and/or new dual variables are added, they are set
to default values without warmstarting.
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Our warmstarting schemes

(wp)


x0 = λx∗ + (1− λ)e
s0 = µ0(x0)−1

y0 = 0
τ0 = 1
κ0 = µ0

(wpd)


x0 = λx∗ + (1− λ)e
s0 = λs∗ + (1− λ)e
y0 = λy∗
τ0 = 1
κ0 = (x0)Ts0/n

I wp suited when
I Just x∗ is available (black box)
I Just one problem is to be solved, but you have a “good guess”

I wpd suited when
I (x∗, y∗, s∗) is available (better black box)

but still no intermediate iterates
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Warmstarting for the electric vehicle example

I u∗k = (u(0)
k , u(1)

k , . . . , u(N−1)
k ) solution at time tk

I Then in place of “x∗” in warmstarting schemes, we use

(u(1)
k , . . . , u(N−1)

k , u(N−1)
k )

i.e. u∗k translated one place

Past Future

Prediction horizon

Reference trajectory
Predicted output
Measured output
Predicted control input
Past control input

t0
t1 t2 · · · Ts
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Charging Schedule for Electric Vehicle and Warmstarting Performance
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Linear Programs from NETLIB
I ∼90 real-life Linear Programs, varying size and sparsity
I For all problems, do

I Solve P. Optimal solution: (x∗, y∗, s∗)
I Generate P̂ by a random perturbation of P:

I Â = A + δ∆A or b̂ = b + δ∆b or ĉ = c + δ∆c
I δ measures perturbation magnitude

I Solve P̂ coldstarting and warmstarting using x∗ and (y∗, s∗)
I Measure of warmstarting improvement:

R = #Iterations to solve P̂ warmstarted
#Iterations to solve P̂ coldstarted

I and entire problem set:

G = K
√
R1 · · ·RK
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Warmstarting Performance on NETLIB Linear Programs
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Theoretical Justification
I The primal-dual potential function initial value remains bounded by

O(ρ log(n)) for any fixed 0 ≤ λ < 1.

I Conservative approach requires λ� 1
I In practice: use much more aggressive choice of λ (i.e. close to 1)
I For experiments above: λ = 0.99.
I Similar results for wp

Anders Skajaa, Erling D. Andersen and Yinyu Ye. Warmstarting the
Homogeneous and Self-Dual Interior Point Method for Linear and Conic
Quadratic Problems. Working paper to appear in Math. Prog. Computation.
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Portfolio selection and efficient frontier

I Available for investment: n different assets
I Denote

ri = random variable, return of asset i
r = vector stacking the ri

I Assume
r ∼ N (µ,Σ)

where

µ = mean returns
Σ = covariance matrix
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ri = RV, return of asset i
r = vector stacking the riClassical Markowitz portfolio selection

r ∼ N (µ,Σ)

I φi = fraction of wealth in asset i
I φ = vector stacking the φi (entire portfolio)
I Then

Expected return of portfolio φ is

E [rTφ] = µTφ

“risk” of portfolio =̂

Var(rTφ) = φTΣφ
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µTφ = expected return of φ
φT Σφ =̂ risk of φ

Classical Markowitz portfolio selection
I Markowitz portfolio optimization:

Optimize a trade-off between max(return) and min(risk)
I Assuming we know with certainty the data (µ,Σ),

we can compute the classical Markowitz portfolio from:

(qp)


minimizeφ φTΣφ
subject to µTφ ≥ t

eTφ = 1
φ ≥ 0

i.e.: minimize variance s.t. expected return ≥ t
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(qp)


minimizeφ φT Σφ
subject to µTφ ≥ t

eTφ = 1
φ ≥ 0Efficient frontier

t = demanded minimal expected return
I Denote the minimum risk by q(t)
I Efficient frontier: (t, q(t)) for a range of t
I A series of related qps, use warmstarting!
I Data:

I 500 assets from S&P 500 index
I expected returns µ and covariances Σ estimated from

800 daily closing prices 2007–2011
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Warmstarting performance when computing the efficient frontier
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ri = RV, return of asset i
r = vector stacking the riRobust portfolio selection

I Now assume

r ∼ N (µ,Σ) where Σ = V TFV + D

I and data in uncertainty sets:

µ ∈ Sµ := {µ : µ = µ0 + ξ, |ξi | ≤ γi}
D ∈ SD :=

{
D : D = diag(d), 0 ≤ di ≤ d̄i

}
V ∈ SV := {V : V = V0 + W , ‖W:i‖G ≤ w̄i}

D. Goldfarb and G. Iyengar. Robust portfolio selection problems. Math.
Oper. Res., Feb. 2003.
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ri = RV, return of asset i
r = vector stacking the ri
r ∼ N (µ,Σ), Σ = V T FV + D
µTφ = expected return of φ
φT Σφ =̂ risk of φ
Sx = uncertainty set of x

Robust portfolio selection

I Find portfolio φ minimizing worst-case risk (variance):
Robust portfolio

selection

minimizeφ max
V∈SV ,D∈SD

{φTΣφ}

subject to min
µ∈Sµ

{µTφ} ≥ t

eTφ = 1, φ ≥ 0

Compare with
classical

{
minimizeφ φT Σφ
subject to µTφ ≥ t

eTφ = 1, φ ≥ 0
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{
minφ maxV∈SV ,D∈SD{φ

T Σφ}
s.t. minµ∈Sµ{µTφ} ≥ t

eTφ = 1, φ ≥ 0

Robust portfolio selection

I The robust portfolio selection problem

can be formulated as equivalent Second Order Cone Program:

min{φ,... } ν + δ

subject to µT
0 φ− γTψ ≥ t

r ≥ wTψ, −φ ≤ ψ ≤ φ

eTφ = 1, φ ≥ 0

τ + eT t ≤ ν, σ ≤ 1/λmax(H)
‖(2r , σ − τ)‖2 ≤ σ + τ

‖(2vi , 1− σλi − ti)‖2 ≤ 1− σλi + ti , i = 1, . . . ,m

‖(2D̄1/2φ, 1− δ)‖2 ≤ 1 + δ

I socps can be solved as efficiently as qps
I Warm points generalized via Jordan algebra operations associated

with convex cones
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now

futurepast

estimation window
@R -�

Robust portfolio selection

I Frequent rebalancing of portfolio:
repeat:

· Estimate problem-data µ0, γ, . . . and uncertainty sets
based on observed data from previous time window

· Rebalance portfolio by solving robust portfolio selection
problem

end
I Series of related socps
I Faster solution −→ more frequent rebalancing
I Warmstarting! (use previous portfolio as “x∗”).
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Portfolio rebalancing and warmstarting performance
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Concluding remarks

I Warmstarting schemes seem effective in practice
I Easy to compute
I Require only final solution of P (OK with black-boxes)
I Significant work reductions in practice
I Work at least for lp, qp, socp

I More details and examples in working paper:
I More linear programs and rolling horizon conic examples
I qp subproblems in cutting-plane/bundle methods

I Future
I Easily extend-able to sdp, but computational experiments

remain to be seen
I Applications in integer optimization with branching and cutting
I Theoretical question: if the perturbation is random, prove that

the scheme works with high probability!

Thank you!
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Linear Programs from NETLIB
I We define P̂ by randomly perturbing data A, b and c:

I Assume v ∈ RM is vector we want to perturb
I s = random number, [0, 1]-uniform
I if s ≤ min{0.1, 20/M}

vi :=
{
δr if |vi | ≤ 10−6

(1 + δr)vi otherwise

where r = random number, [−1, 1]-uniform
I otherwise don’t change

I On average, min{10%, 20} of the elements are changed
I “Magnitude” of perturbation measured by δ
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Example: Portfolio selection and efficient frontier
I Available for investment: n different assets
I Denote

ri = random variable, return of asset i
r = vector stacking the ri

I Assume
r = µ+ V T f + ε

where

µ = mean returns
f = random returns of “factors” that drive market

V = factor loading matrix, V ∈ Rm×n

ε = “residuals” assumed normally distributed
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ri = RV, return of asset i
r = vector stacking the ri
r = µ+ V T f + ε

Classical Markowitz portfolio selection
I Assume

ε ∼ N (0,D)
f ∼ N (0,F)

I Then
r ∼ N (µ,Σ) where Σ = V TFV + D

I φi = fraction of wealth in asset i and φ = entire portfolio
I Then

Expected return of portfolio φ is

E [rTφ] = µTφ

“risk” of portfolio =̂

Var(rTφ) = φTΣφ
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