Abstract. The paper proposes the corrected likelihood ratio test (LRT) and large dimensional trace criterion to test the independence of two large sets of multivariate variables when the dimension p and the sample size n tend to infinity simultaneously. Both theoretical and simulation results demonstrate that the traditional χ² approximation of the LRT perform poorly when the dimension p is large relative to the sample size n, and the corrected LRT and large dimensional trace criterion behave well when the dimension is either small or large relatively to the sample size. Moreover, the trace criterion can be used in the case of p₂ > n − p₁, while the corrected LRT is unfeasible due to p₂/(n − 1 − p₁) → r₂(a constant) ≥ 1, where p₁ and p₂ are the dimensions of the subvectors X_i, i = 1, 2 from the partition of X, respectively.

Keywords: large-dimensional data analysis; independence test; random F-matrices

1