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Copolymer

A copolymer is a polymer consisting of monomers of two or
more different types, e.g. hydrophilic and hydrophobic.

Copolymers are used as surfactants, emulsifiers, foaming/
anti-foaming agents.

Case of interest: Copolymer with randomly arranged monomer
types located near a linear interface separating two immiscible
solvents that have affinity for the monomer types.



The model

Polymer configuration is a directed path in N0 × Z

Π =
{
π = (k , πk )k∈N0 : π0 = 0, sign(πk )+sign(πk−1) 6= 0, k ∈ N

}
.

P∗-probability measure on Π such that excursions below and
above the linear interface N× {0} occur with equal probability
and ρ(k) := P∗(π1, · · · , πk−1 6= 0, πk = 0), for k ∈ N, satisfies

lim
k→∞
ρ(k)>0

log ρ(k)

log k
= −α, for some α ∈ [1,∞).

Monomer disorder: ω = (ωn)n∈N is an R-valued i.i.d.
sequence with law P = ν⊗N such that E(ω1) = 0, E(ω2

1) = 1 and

M(λ) = log
∫

R
e−λω1 ν(dω1) <∞ ∀λ ∈ R.



The model

Quenched copolymer model is the path measure

Pβ,h,ω
n (π) =

1

Z̃β,h,ω
n

e
β
∑n

k=1(ωk +h)∆k P∗(π), π ∈ Π, n ∈ N

where ∆k = ±1 if the k th edge of π is above or below the
interface, ω ∈ RN, β ≥ 0 and h ≥ 0 are respectively the
interaction strength (inverse temperature) and the disorder bias
and Z̃β,h,ω

n is the normalizing partition sum.

Example: P∗ = simple random walk (α = 3
2 ) and ν = 1

2(δ− + δ+)
models copolymer with hydrophilic (ωi = −1) and hydrophobic
(ωi = +1) monomers near a linear interface separating oil and
water [Garel, Huse, Leibler and Orland (1986)].



Localization-Delocalization Transition:
Quenched version

localized delocalized

The quenched free energy per monomer

f que(β,h) = lim
n→∞

1
n

log Z̃β,h,ω
n = lim

n→∞

1
n

log

(∑
π∈Π

e
β
∑n

k=1(ωk +h)∆k P∗(π)

)

exists and is constant ω-a.s., and satisfies

f que(β,h) ≥ βh.



Localization-Delocalization Transition:
Quenched version

The quenched excess free energy

gque(β,h) = f que(β,h)− βh

is the free energy per monomer for the model with partition sum

Zβ,h,ω
n,0 =

∑
π∈Π;πn=0

P(π) exp

[
β

n∑
k=1

(ωk + h)[∆k−1]

]
.

and it exhibits a localization-delocalization transition with
Dque = {(β,h) : gque(β,h) = 0},
Lque = {(β,h) : gque(β,h) > 0}.

The two phases are separated by a quenched critical curve

hque
c (β) = inf{h ≥ 0 : gque(β,h) = 0}, β ≥ 0.

The phase transition is the result of a competition between
entropy and energy.



Localization-Delocalization Transition:
Annealed version

The annealed version of the model has excess free energy

gann(β,h) = lim
n→∞

1
n

log E(Zβ,h,ω
n,0 ),

which also exhibits a localization-delocalization transition with

Dann = {(β,h) : gann(β,h) = 0} ,
Lann = {(β,h) : gann(β,h) > 0} .

The two phases are separated by an annealed critical curve

hann
c (β) = inf{h ≥ 0 : gann(β,h) = 0}, β ≥ 0.



Basic facts

1. Closed form expressions are known for hann
c and gann:

hann
c (β) = (2β)−1M(2β), β > 0,

gann(β,h) = 0 ∨ [M(2β)− 2βh], β, h ≥ 0.

0

M(2β)

h

gann(β,h)

r
hann

c (β) 0 β

hann
c (β)

r
Lann

Dann



Basic facts

2. No closed form expressions are known for hque
c and gque.

They satisfy the bounds

hann
c (β/α) ≤ hque

c (β) ≤ hann
c (β) , β > 0,

gque(β,h) ≤ gann(β,h), β, h ≥ 0.

0 h

gque(β,h)

hque
c (β)

0 β

hque
c (β)

Lque

Dque

Many interesting related results have been obtained in the past
10 years by: Biskup, Bodineau, Caravenna, Giacomin, Lacoin,
Pétrélis, Rechnitzer, Soteros, Toninelli, Whittington,. . .



Main results:

Theorem

For every β,h > 0, there are lower semi-continuous, convex
and non-increasing functions

g 7→ Sque(β,h; g),

g 7→ Sann(β,h; g),

given by explicit variational formulas, such that

gque(β,h) = inf{g ∈ R : Sque(β,h; g) < 0},
gann(β,h) = inf{g ∈ R : Sann(β,h; g) < 0}.



Main results:

Theorem

For every β > 0 and g = 0, the maps

h 7→ Sque(β,h; 0),

h 7→ Sann(β,h; 0)

are lower semi-continuous, convex and non-increasing
functions.

The critical curves hque
c (β) and hann

c (β) are respectively the
unique h-values that solve the equations

Sque(β,h; 0) = 0,
Sann(β,h; 0) = 0.



Quenched variational formulas

Suppose that up to time n, the path π ∈ Π makes N ≤ n visits to
the interface N0 × {0}. Then w.r.t. π

β

n∑
k=1

(ωk + h)[∆k − 1] = −2β
N∑

i=1

1Ai

∑
k∈Ii

(ωk + h)

where Ii is the i th excursion interval and Ai is the event that the
i th excursion is below the interface.

The contribution of the i th excursion to the partition sum Zβ,h,ω
n,0

is
φβ,h(ωIi ) =

1
2

(
1 + e−2β

∑
k∈Ii

(ωk +h)
)
,

where ωIi is the word cut out from ω by the i th excursion
interval.



Quenched variational formulas

Hence Zβ,h,ω
n,0 =

n∑
N=1

∑
0=k0<k1<···<kN =n

(
N∏

i=1

ρ(ki − ki−1)

)

× e
∑N

i=1 logφβ,h(ωIi
).

A key tool is the generating function of Zβ,h,ω
n,0 :∑

n∈N
e−gn Zβ,h,ω

n,0 =
∑
N∈N

Fβ,h,ω
N (g), g ∈ [0,∞), with

Fβ,h,ω
N (g) = N (g)N

∑
0=k0<k1<···<kN<∞

(
N∏

i=1

ρg(ki − ki−1)

)

× e
∑N

i=1 logφβ,h(ωIi
)

ρg(n) =
e−ng

N (g)
ρ(n), N (g) =

∑
n∈N

ρ(n)e−gn, g ≥ 0.



Quenched variational formulas

Let R̃ = ∪n∈NRn (finite word space ).
τ1

τ2
τ3

τ4

τ5

T1 T2 T3 T4 T5

Y (1) Y (2) Y (3) Y (4) Y (5)
X

The random word sequence Y = (Y (i))i∈N, with Y (i) = ωIi ,
under the law P⊗ P∗g is an i.i.d. R̃-valued sequence of random
variables with marginal law qρg ,ν given by

qρg ,ν

(
dω1, . . . ,dωn

)
= ρg(n) ν(dω1)× · · · × ν(dωn),

n ∈ N, ω1, . . . , ωn ∈ R.

Let P inv(R̃N) be the set of probability measures on the sentence
space R̃N, invariant under the left shift θ̃ acting on R̃N.



Quenched variational formulas

Let (ωI1 , . . . , ωIN ) be the N-tupple of words cut out from ω by the
first N-excursions and define the empirical process of N-tupple
of words as

Rω
N =

1
N

N−1∑
i=0

δ
θ̃i (ωI1

,...,ωIN
)per ∈ P inv(R̃N).

This implies that

Fβ,h,ω
N (g) = N (g)NE∗g

(
eN Φβ,h(RωN )

)
where

Φβ,h(Q) =

∫
R̃

(π1Q)(dy) logφβ,h(y),

and π1Q is the single-word marginal of Q ∈ P inv
(
R̃N).



Quenched variational formulas

The radius of convergence of the power series∑
n∈N

e−gn Zβ,h,ω
n,0

equals gque(β,h), and is the unique value of g where

Sque(β,h; g) = lim sup
N→∞

1
N

log Fβ,h,ω
N (g)

= logN (g) + lim sup
N→∞

1
N

log E∗g
(

eN Φβ,h(RωN )
)

ω − a.s.

changes sign.



Annealed large deviation principle (LDP)

[Birkner (2008) and Birkner, Greven and den Hollander (2010)]

For Q ∈ P inv(R̃N), the specific relative entropy of Q w.r.t. q⊗N
ρg ,ν is

defined as

H(Q|q⊗N
ρg ,ν) = lim

n→∞

1
n

h(πnQ|q⊗n
ρg ,ν).

Theorem

For every g ∈ [0,∞), the family P⊗ P∗g(Rω
N ∈ · ), N ∈ N,

satisfies the LDP on P inv(R̃N) with rate N and with rate function
Iann
g given by Iann

g (Q) = H
(
Q | q⊗N

ρg ,ν

)
, Q ∈ P inv(R̃N).

In particular,

Iann
g (Q) = Iann(Q) + gEQ(τ1) + logN (g).



Quenched LDP

1. The concatenation map κ : R̃N → RN glues a word
sequence together into letter sequence.

2. For Q ∈ P inv(R̃N) such that mQ = EQ(τ1) <∞, define

ΨQ =
1

mQ
EQ

(
τ1−1∑
k=0

δθkκ(Y )

)
∈ P inv(RN),

where θ is the left-shift acting on RN and τ1 is the length of the
first word.

3. Let
R =

{
Q ∈ P inv(R̃N) : ΨQ = ν⊗N

}
.



Quenched LDP

Theorem

For P–almost all ω and all g ∈ [0,∞), the family P∗g(Rω
N ∈ · | ω),

N ∈ N, satisfies the LDP on P inv(R̃N) with rate N and with
deterministic rate function Ique

g given for g > 0 by

Ique
g (Q) =

{
Iann
g (Q), if Q ∈ R,
∞, otherwise,

and for g = 0 by

Ique(Q) = H(Q | q⊗N
ρ,ν ) + (α− 1) mQ H

(
ΨQ | ν⊗N),

when mQ <∞, and by its truncation approximation when
mQ =∞.



Quenched variational formulas

Let Cfin =
{

Q ∈ P inv(R̃N) : Iann(Q) <∞, mQ <∞
}
.

Theorem

1. For every β,h > 0 and ω-a.s

gque(β,h) = inf
{

g ∈ R : Sque(β,h; g) < 0
}
, where

Sque(β,h; g) = sup
Q∈Cfin∩R

[
Φβ,h(Q)− gmQ − Iann(Q)

]
.

2. Alternatively, for g = 0

Sque(β,h; 0) = Sque
∗ (β,h) := sup

Q∈Cfin

[
Φβ,h(Q)− Ique(Q)

]
.

3. For every β,h > 0, Sque(β,h; g) <∞, for g > 0.



Quenched variational formulas

g

Sque(β,h; g)
∞

rb

h < hque
c (β)

g

Sque(β,h; g)
∞

r
b

h = hque
c (β)

g

Sque(β,h; g)
∞

r

b

h > hque
c (β)

Corollary

For β > 0 and h ≤ hque
c (β), gque(β,h) is the unique g-value that

solves the equation

Sque(β,h; g) = 0.



Quenched variational formulas

h

Sque(β,h; 0)

hque
c (β)r

rb

− log 2

@
@@R

hann
c ( β

α )

∞

Corollary

For every β > 0 and g = 0,

Sque(β,h; 0)


=∞ for h < hann

c (β/α),
> 0 for h = hann

c (β/α),
<∞ for h > hann

c (β/α).

hque
c (β) is the unique h−value that solves the equation

Sque(β,h; 0) = 0.



Annealed variational formulas

Similarly, gann(β,h) is the unique value of g where

Sann(β,h; g) = lim sup
N→∞

1
N

log E
(

Fβ,h,ω
N (g)

)
changes sign.

Theorem

For β,h ≥ 0,

gann(β,h) = inf
{

g ≥ 0 : Sann(β,h; g) < 0
}
, where

Sann(β,h; g) = sup
Q∈Cfin

[
Φβ,h(Q)− gmQ − Iann(Q)

]
= log

[1
2 N (g) + 1

2 N
(
g − [M(2β)− 2βh]

)]
.



Annealed variational formulas

g

Sann(β,h; g)
∞

r

b

h < hann
c (β)

g

Sann(β,h; g)
∞

r
b

h = hann
c (β)

g

Sann(β,h; g)
∞

r

b

h > hann
c (β)

Corollary

For every β ≥ 0 and h = hann
c (β), gann(β,h) is the unique

g-value that solves the equation

Sann(β,h; g) = 0.



Annealed variational formulas

h

Sann(β,h; 0)

hann
c (β)

∞

0

log( 1
2 )

s
c

Corollary

For every β > 0, hann
c (β) is the unique h-value that solves the

equation
Sann(β,h; 0) = 0.



Consequences of variational formulas

Corollary

1. For any β > 0 and α ∈ (1,∞),

hann
c

(
β

α

)
< hque

c (β) < hann
c (β).

2.

lim inf
β↓0

hque
c (β)

β
≥

{ 1
αB(α), for 1 < α < 2,
1+α
2α , for α ≥ 2,

for some 1 < B(α) <∞.

3. For any (β,h) ∈ Lann and α ∈ [1,∞),

gque(β,h) < gann(β,h).



Other applications

The variational approach has been successfully applied to
Study the phase diagram of copolymer with pinning model
[den Hollander, A.O.]
Settle a conjecture about existence of an intermediate
phase in pinning of random walk by random walk [den
Hollander, A.O.]
Random pinning model [D. Cheliotis, F. den Hollander]



Open problems

1. The order of the phase transition.

2. The weak interaction limit

lim
β↓0

hque
c (β)

β
, α ∈ (1,∞).

3. Analyticity of

β 7→ hque
c (β) on (0,∞),

(β,h) 7→ gque(β,h) on Lque.
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