A copolymer at a linear selective interface: Variational characterization of the free energy

Alex A. Opoku
 Mathematical Institute, University of Leiden, The Netherlands

Workshop on Random Polymers and Related Topics, IMS, NUS, Singapore

Joint work with E. Bolthausen and F. den Hollander

Outline

1 The Model

2 Localization-Delocalization Transition
■ Quenched version

- Annealed version
- Basic facts

3 Variational Characterization
■ Main results

- Quenched variational formulas

■ Annealed variational formulas

Copolymer

A copolymer is a polymer consisting of monomers of two or more different types, e.g. hydrophilic and hydrophobic.

Copolymers are used as surfactants, emulsifiers, foaming/ anti-foaming agents.

Case of interest: Copolymer with randomly arranged monomer types located near a linear interface separating two immiscible solvents that have affinity for the monomer types.

The model

Polymer configuration is a directed path in $\mathbb{N}_{0} \times \mathbb{Z}$
$\Pi=\left\{\pi=\left(k, \pi_{k}\right)_{k \in \mathbb{N}_{0}}: \pi_{0}=0, \operatorname{sign}\left(\pi_{k}\right)+\operatorname{sign}\left(\pi_{k-1}\right) \neq 0, k \in \mathbb{N}\right\}$.
P^{*}-probability measure on Π such that excursions below and above the linear interface $\mathbb{N} \times\{0\}$ occur with equal probability and $\rho(k):=P^{*}\left(\pi_{1}, \cdots, \pi_{k-1} \neq 0, \pi_{k}=0\right)$, for $k \in \mathbb{N}$, satisfies

$$
\lim _{\substack{k \rightarrow \infty \\ \rho(k)>0}} \frac{\log \rho(k)}{\log k}=-\alpha, \quad \text { for some } \quad \alpha \in[1, \infty)
$$

Monomer disorder: $\omega=\left(\omega_{n}\right)_{n \in \mathbb{N}}$ is an \mathbb{R}-valued i.i.d. sequence with law $\mathbb{P}=\nu^{\otimes \mathbb{N}}$ such that $\mathbb{E}\left(\omega_{1}\right)=0, \mathbb{E}\left(\omega_{1}^{2}\right)=1$ and

$$
M(\lambda)=\log \int_{\mathbb{R}} e^{-\lambda \omega_{1}} \nu\left(d \omega_{1}\right)<\infty \quad \forall \lambda \in \mathbb{R}
$$

The model

Quenched copolymer model is the path measure

$$
P_{n}^{\beta, h, \omega}(\pi)=\frac{1}{\widetilde{Z}_{n}^{\beta, h, \omega}} e^{\beta \sum_{k=1}^{n}\left(\omega_{k}+h\right) \Delta_{k}} P^{*}(\pi), \quad \pi \in \Pi, \quad n \in \mathbb{N}
$$

where $\Delta_{k}= \pm 1$ if the k th edge of π is above or below the interface, $\omega \in \mathbb{R}^{\mathbb{N}}, \beta \geq 0$ and $h \geq 0$ are respectively the interaction strength (inverse temperature) and the disorder bias and $\widetilde{Z}_{n}^{\beta, h, \omega}$ is the normalizing partition sum.

Example: $P^{*}=$ simple random walk ($\alpha=\frac{3}{2}$) and $\nu=\frac{1}{2}\left(\delta_{-}+\delta_{+}\right)$ models copolymer with hydrophilic ($\omega_{i}=-1$) and hydrophobic $\left(\omega_{i}=+1\right)$ monomers near a linear interface separating oil and water [Garel, Huse, Leibler and Orland (1986)].

Localization-Delocalization Transition: Quenched version

The quenched free energy per monomer
$f^{\text {que }}(\beta, h)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \widetilde{Z}_{n}^{\beta, h, \omega}=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\sum_{\pi \in \Pi} e^{\beta \sum_{k=1}^{n}\left(\omega_{k}+h\right) \Delta_{k}} P^{*}(\pi)\right)$
exists and is constant ω-a.s., and satisfies

$$
f^{\text {que }}(\beta, h) \geq \beta h .
$$

Localization-Delocalization Transition:

Quenched version

The quenched excess free energy

$$
g^{\mathrm{que}}(\beta, h)=f^{\text {que }}(\beta, h)-\beta h
$$

is the free energy per monomer for the model with partition sum

$$
Z_{n, 0}^{\beta, h, \omega}=\sum_{\pi \in \Pi ; \pi_{n}=0} P(\pi) \exp \left[\beta \sum_{k=1}^{n}\left(\omega_{k}+h\right)\left[\Delta_{k}-1\right]\right] .
$$

and it exhibits a localization-delocalization transition with

$$
\begin{aligned}
& \mathcal{D}^{\text {que }}=\{(\beta, h): \\
& \mathcal{L}^{\text {que }}=\{(\beta, h): \\
& g^{\text {que }}(\beta, h \\
&(\beta, h)>0\} .
\end{aligned}
$$

The two phases are separated by a quenched critical curve

$$
h_{c}^{\mathrm{que}}(\beta)=\inf \left\{h \geq 0: g^{\mathrm{que}}(\beta, h)=0\right\}, \quad \beta \geq 0
$$

The phase transition is the result of a competition between entropy and energy.

Localization-Delocalization Transition: Annealed version

The annealed version of the model has excess free energy

$$
g^{\mathrm{ann}}(\beta, h)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E}\left(Z_{n, 0}^{\beta, h, \omega}\right)
$$

which also exhibits a localization-delocalization transition with

$$
\begin{aligned}
\mathcal{D}^{\mathrm{ann}} & =\left\{(\beta, h): g^{\mathrm{ann}}(\beta, h)=0\right\}, \\
\mathcal{L}^{\text {ann }} & =\left\{(\beta, h): g^{\mathrm{ann}}(\beta, h)>0\right\}
\end{aligned}
$$

The two phases are separated by an annealed critical curve

$$
h_{c}^{\mathrm{ann}}(\beta)=\inf \left\{h \geq 0: g^{\mathrm{ann}}(\beta, h)=0\right\}, \quad \beta \geq 0
$$

Basic facts

1. Closed form expressions are known for $h_{c}^{\text {ann }}$ and $g^{\text {ann }}$:

$$
\begin{gathered}
h_{c}^{\mathrm{ann}}(\beta)=(2 \beta)^{-1} M(2 \beta), \quad \beta>0, \\
g^{\mathrm{ann}}(\beta, h)=0 \vee[M(2 \beta)-2 \beta h], \quad \beta, h \geq 0
\end{gathered}
$$

Basic facts

2. No closed form expressions are known for $h_{c}^{\text {que }}$ and $g^{\text {que }}$. They satisfy the bounds

$$
\begin{aligned}
& h_{c}^{\text {ann }}(\beta / \alpha) \leq h_{c}^{\text {que }}(\beta) \leq h_{c}^{\text {ann }}(\beta), \quad \beta>0, \\
& g^{\text {que }}(\beta, h) \leq g^{\mathrm{ann}}(\beta, h), \quad \beta, h \geq 0 \\
& g^{\text {que }}(\beta, h)
\end{aligned}
$$

Many interesting related results have been obtained in the past 10 years by: Biskup, Bodineau, Caravenna, Giacomin, Lacoin, Pétrélis, Rechnitzer, Soteros, Toninelli, Whittington,...

Main results:

Theorem

For every $\beta, h>0$, there are lower semi-continuous, convex and non-increasing functions

$$
\begin{aligned}
& g \mapsto S^{\text {que }}(\beta, h ; g), \\
& g \mapsto S^{\text {ann }}(\beta, h ; g),
\end{aligned}
$$

given by explicit variational formulas, such that

$$
\begin{aligned}
& g^{\text {que }}(\beta, h)=\inf \left\{g \in \mathbb{R}: S^{\text {que }}(\beta, h ; g)<0\right\} \\
& g^{\text {ann }}(\beta, h)=\inf \left\{g \in \mathbb{R}: S^{\text {ann }}(\beta, h ; g)<0\right\}
\end{aligned}
$$

Main results:

Theorem
For every $\beta>0$ and $g=0$, the maps

$$
\begin{aligned}
& h \mapsto S^{\text {que }}(\beta, h ; 0), \\
& h \mapsto S^{\text {ann }}(\beta, h ; 0)
\end{aligned}
$$

are lower semi-continuous, convex and non-increasing functions.

The critical curves $h_{c}^{\text {que }}(\beta)$ and $h_{c}^{\text {ann }}(\beta)$ are respectively the unique h-values that solve the equations

$$
\begin{aligned}
& S^{\text {que }}(\beta, h ; 0)=0 \\
& S^{\mathrm{ann}}(\beta, h ; 0)=0
\end{aligned}
$$

Quenched variational formulas

Suppose that up to time n, the path $\pi \in \Pi$ makes $N \leq n$ visits to the interface $\mathbb{N}_{0} \times\{0\}$. Then w.r.t. π

$$
\beta \sum_{k=1}^{n}\left(\omega_{k}+h\right)\left[\Delta_{k}-1\right]=-2 \beta \sum_{i=1}^{N} 1_{A_{i}} \sum_{k \in I_{i}}\left(\omega_{k}+h\right)
$$

where l_{i} is the i th excursion interval and A_{i} is the event that the i th excursion is below the interface.
The contribution of the i th excursion to the partition $\operatorname{sum} Z_{n, 0}^{\beta, h, \omega}$ is

$$
\phi_{\beta, h}\left(\omega_{l_{i}}\right)=\frac{1}{2}\left(1+e^{-2 \beta \sum_{k \in l_{i}}\left(\omega_{k}+h\right)}\right),
$$

where $\omega_{l_{i}}$ is the word cut out from ω by the ith excursion interval.

Quenched variational formulas

Hence

$$
\begin{gathered}
Z_{n, 0}^{\beta, h, \omega}=\sum_{N=1}^{n} \sum_{0=k_{0}<k_{1}<\cdots<k_{N}=n}\left(\prod_{i=1}^{N} \rho\left(k_{i}-k_{i-1}\right)\right) \\
\times e^{\sum_{i=1}^{N} \log \phi_{\beta, h}\left(\omega_{l_{i}}\right)}
\end{gathered}
$$

A key tool is the generating function of $Z_{n, 0}^{\beta, h, \omega}$:

$$
\sum_{n \in \mathbb{N}} e^{-g n} Z_{n, 0}^{\beta, h, \omega}=\sum_{N \in \mathbb{N}} F_{N}^{\beta, h, \omega}(g), \quad g \in[0, \infty), \quad \text { with }
$$

$$
\begin{aligned}
F_{N}^{\beta, h, \omega}(g)=\mathcal{N}(g)^{N} \sum_{0=k_{0}<k_{1}<\cdots<k_{N}<\infty} & \left(\prod_{i=1}^{N} \rho_{g}\left(k_{i}-k_{i-1}\right)\right) \\
& \times e^{\sum_{i=1}^{N} \log \phi_{\beta, n}\left(\omega_{i}\right)} \\
\rho_{g}(n)= & \frac{e^{-n g}}{\mathcal{N}(g)} \rho(n), \quad \mathcal{N}(g)=\sum_{n \in \mathbb{N}} \rho(n) e^{-g n}, \quad g \geq 0 .
\end{aligned}
$$

Quenched variational formulas

Let $\widetilde{\mathbb{R}}=\cup_{n \in \mathbb{N}} \mathbb{R}^{n}$ (finite word space).

The random word sequence $Y=\left(Y^{(i)}\right)_{i \in \mathbb{N}}$, with $Y^{(i)}=\omega_{l_{i}}$, under the law $\mathbb{P} \otimes P_{g}^{*}$ is an i.i.d. $\widetilde{\mathbb{R}}$-valued sequence of random variables with marginal law $q_{\rho g, \nu}$ given by

$$
\begin{aligned}
q_{\rho g, \nu}\left(d \omega_{1}, \ldots, d \omega_{n}\right)= & \rho_{g}(n) \nu\left(d \omega_{1}\right) \times \cdots \times \nu\left(d \omega_{n}\right), \\
& n \in \mathbb{N}, \quad \omega_{1}, \ldots, \omega_{n} \in \mathbb{R} .
\end{aligned}
$$

Let $\mathcal{P}^{\text {inv }}\left(\widetilde{\mathbb{R}^{\mathbb{N}}}\right)$ be the set of probability measures on the sentence space $\widetilde{\mathbb{R}}^{\mathbb{N}}$, invariant under the left shift $\widetilde{\theta}$ acting on $\widetilde{\mathbb{R}}^{\mathbb{N}}$.

Quenched variational formulas

Let $\left(\omega_{l_{1}}, \ldots, \omega_{l_{N}}\right)$ be the N-tupple of words cut out from ω by the first N-excursions and define the empirical process of N-tupple of words as

$$
\left.R_{N}^{\omega}=\frac{1}{N} \sum_{i=0}^{N-1} \delta_{\widetilde{\theta}^{i}\left(\omega_{1}, \ldots, \omega /{ }_{l}\right.}\right)^{\text {per }} \in \mathcal{P}^{\text {inv }}\left(\widetilde{\mathbb{R}}^{\mathbb{N}}\right)
$$

This implies that

$$
F_{N}^{\beta, h, \omega}(g)=\mathcal{N}(g)^{N} E_{g}^{*}\left(e^{N \Phi_{\beta, h}\left(R_{N}^{\omega}\right)}\right)
$$

where

$$
\Phi_{\beta, h}(Q)=\int_{\widetilde{\mathbb{R}}}\left(\pi_{1} Q\right)(d y) \log \phi_{\beta, h}(y)
$$

and $\pi_{1} Q$ is the single-word marginal of $Q \in \mathcal{P}^{\text {inv }}\left(\widetilde{\mathbb{R}}^{\mathbb{N}}\right)$.

Quenched variational formulas

The radius of convergence of the power series

$$
\sum_{n \in \mathbb{N}} e^{-g n} Z_{n, 0}^{\beta, h, \omega}
$$

equals $g^{\text {que }}(\beta, h)$, and is the unique value of g where

$$
\begin{aligned}
S^{\text {que }}(\beta, h ; g) & =\limsup _{N \rightarrow \infty} \frac{1}{N} \log F_{N}^{\beta, h, \omega}(g) \\
& =\log \mathcal{N}(g)+\limsup _{N \rightarrow \infty} \frac{1}{N} \log E_{g}^{*}\left(e^{N \Phi_{\beta, h}\left(R_{N}^{\omega}\right)}\right) \quad \omega-\text { a.s. }
\end{aligned}
$$

changes sign.

Annealed large deviation principle (LDP)

[Birkner (2008) and Birkner, Greven and den Hollander (2010)]
For $Q \in \mathcal{P}^{\text {inv }}\left(\widetilde{\mathbb{R}}^{\mathbb{N}}\right)$, the specific relative entropy of Q w.r.t. $q_{\rho_{g}, \nu}^{\otimes \mathbb{N}}$ is defined as

$$
H\left(Q \mid q_{\rho_{g}, \nu}^{\otimes \mathbb{N}}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} h\left(\pi_{n} Q \mid q_{\rho_{g}, \nu}^{\otimes n}\right) .
$$

Theorem

For every $g \in[0, \infty)$, the family $\mathbb{P} \otimes P_{g}^{*}\left(R_{N}^{\omega} \in \cdot\right), N \in \mathbb{N}$, satisfies the LDP on $\mathcal{P}^{\text {inv }}\left(\widetilde{\mathbb{R}}^{\mathbb{N}}\right)$ with rate N and with rate function $l_{g}^{\text {ann }}$ given by $\quad l_{g}^{\text {ann }}(Q)=H\left(Q \mid q_{\rho g, \nu}^{\otimes \mathbb{N}}\right), \quad Q \in \mathcal{P}^{\text {inv }}\left(\widetilde{\mathbb{R}}^{\mathbb{N}}\right)$. In particular,

$$
I_{g}^{\mathrm{ann}}(Q)=I^{\mathrm{ann}}(Q)+g \mathbb{E}_{Q}\left(\tau_{1}\right)+\log \mathcal{N}(g)
$$

Quenched LDP

1. The concatenation map $\kappa: \widetilde{\mathbb{R}}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ glues a word sequence together into letter sequence.
2. For $Q \in \mathcal{P}^{\text {inv }}\left(\widetilde{\mathbb{R}}^{\mathbb{N}}\right)$ such that $m_{Q}=E_{Q}\left(\tau_{1}\right)<\infty$, define

$$
\Psi_{Q}=\frac{1}{m_{Q}} E_{Q}\left(\sum_{k=0}^{\tau_{1}-1} \delta_{\theta^{k} \kappa(Y)}\right) \in \mathcal{P}^{\mathrm{inv}}\left(\mathbb{R}^{\mathbb{N}}\right)
$$

where θ is the left-shift acting on $\mathbb{R}^{\mathbb{N}}$ and τ_{1} is the length of the first word.
3. Let

$$
\mathcal{R}=\left\{Q \in \mathcal{P}^{\text {inv }}\left(\widetilde{\mathbb{R}}^{\mathbb{N}}\right): \Psi_{Q}=\nu^{\otimes \mathbb{N}}\right\}
$$

Quenched LDP

Theorem

For \mathbb{P}-almost all ω and all $g \in[0, \infty)$, the family $P_{g}^{*}\left(R_{N}^{\omega} \in \cdot \mid \omega\right)$, $N \in \mathbb{N}$, satisfies the $L D P$ on $\mathcal{P}^{\text {inv }}\left(\widetilde{\mathbb{R}}^{\mathbb{N}}\right)$ with rate N and with deterministic rate function $l_{g}^{\text {que }}$ given for $g>0$ by

$$
I_{g}^{\text {que }}(Q)= \begin{cases}l_{g}^{\mathrm{ann}}(Q), & \text { if } Q \in \mathcal{R} \\ \infty, & \text { otherwise }\end{cases}
$$

and for $g=0$ by

$$
\rho^{\text {que }}(Q)=H\left(Q \mid q_{\rho, \nu}^{\otimes \mathbb{N}}\right)+(\alpha-1) m_{Q} H\left(\Psi_{Q} \mid \nu^{\otimes \mathbb{N}}\right)
$$

when $m_{Q}<\infty$, and by its truncation approximation when $m_{Q}=\infty$.

Quenched variational formulas

Let $\mathcal{C}^{\text {fin }}=\left\{Q \in \mathcal{P}^{\text {inv }}\left(\widetilde{\mathbb{R}}^{\mathbb{N}}\right): I^{\text {ann }}(Q)<\infty, m_{Q}<\infty\right\}$.

Theorem

1. For every $\beta, h>0$ and ω-a.s

$$
\begin{aligned}
g^{\mathrm{que}}(\beta, h) & =\inf \left\{g \in \mathbb{R}: S^{\mathrm{que}}(\beta, h ; g)<0\right\}, \quad \text { where } \\
S^{\text {que }}(\beta, h ; g) & =\sup _{Q \in \mathcal{C}^{\mathrm{fin}} \cap \mathcal{R}}\left[\Phi_{\beta, h}(Q)-g m_{Q}-l^{\text {ann }}(Q)\right] .
\end{aligned}
$$

2. Alternatively, for $g=0$

$$
S^{\text {que }}(\beta, h ; 0)=S_{*}^{\text {que }}(\beta, h):=\sup _{Q \in \mathcal{C}^{\text {fin }}}\left[\Phi_{\beta, h}(Q)-I^{\text {que }}(Q)\right]
$$

3. For every $\beta, h>0, S^{\text {que }}(\beta, h ; g)<\infty$, for $g>0$.

Quenched variational formulas

Corollary

For $\beta>0$ and $h \leq h_{c}^{\text {que }}(\beta), g^{\text {que }}(\beta, h)$ is the unique g-value that solves the equation

$$
S^{\text {que }}(\beta, h ; g)=0
$$

Quenched variational formulas

Corollary

For every $\beta>0$ and $g=0$,

$$
S^{\text {que }}(\beta, h ; 0) \begin{cases}=\infty & \text { for } h<h_{c}^{\mathrm{ann}}(\beta / \alpha) \\ >0 & \text { for } h=h_{c}^{\text {ann }}(\beta / \alpha) \\ <\infty & \text { for } h>h_{c}^{\text {ann }}(\beta / \alpha)\end{cases}
$$

$h_{c}^{\text {que }}(\beta)$ is the unique h-value that solves the equation $S^{\text {que }}(\beta, h ; 0)=0$.

Annealed variational formulas

Similarly, $g^{\text {ann }}(\beta, h)$ is the unique value of g where

$$
S^{\mathrm{ann}}(\beta, h ; g)=\limsup _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E}\left(F_{N}^{\beta, h, \omega}(g)\right)
$$

changes sign.

Theorem

For $\beta, h \geq 0$,

$$
\begin{aligned}
g^{\mathrm{ann}}(\beta, h) & =\inf \left\{g \geq 0: S^{\mathrm{ann}}(\beta, h ; g)<0\right\}, \quad \text { where } \\
S^{\mathrm{ann}}(\beta, h ; g) & =\sup _{Q \in \mathcal{C}^{\mathrm{fin}}}\left[\Phi_{\beta, h}(Q)-g m_{Q}-l^{\mathrm{ann}}(Q)\right] \\
& =\log \left[\frac{1}{2} \mathcal{N}(g)+\frac{1}{2} \mathcal{N}(g-[M(2 \beta)-2 \beta h])\right] .
\end{aligned}
$$

Annealed variational formulas

Corollary

For every $\beta \geq 0$ and $h=h_{c}^{\mathrm{ann}}(\beta), g^{\mathrm{ann}}(\beta, h)$ is the unique g-value that solves the equation

$$
S^{\mathrm{ann}}(\beta, h ; g)=0
$$

Annealed variational formulas

Corollary

For every $\beta>0, h_{c}^{\text {ann }}(\beta)$ is the unique h-value that solves the equation

$$
S^{\mathrm{ann}}(\beta, h ; 0)=0
$$

Consequences of variational formulas

Corollary

1. For any $\beta>0$ and $\alpha \in(1, \infty)$,

$$
h_{c}^{\mathrm{ann}}\left(\frac{\beta}{\alpha}\right)<h_{c}^{\mathrm{que}}(\beta)<h_{c}^{\mathrm{ann}}(\beta) .
$$

2.

$$
\liminf _{\beta \downarrow 0} \frac{h_{c}^{\text {que }}(\beta)}{\beta} \geq \begin{cases}\frac{1}{\alpha} B(\alpha), & \text { for } 1<\alpha<2 \\ \frac{1+\alpha}{2 \alpha}, & \text { for } \alpha \geq 2\end{cases}
$$

for some $1<B(\alpha)<\infty$.
3. For any $(\beta, h) \in \mathcal{L}^{\text {ann }}$ and $\alpha \in[1, \infty)$,

$$
g^{\mathrm{que}}(\beta, h)<g^{\mathrm{ann}}(\beta, h)
$$

Other applications

The variational approach has been successfully applied to

- Study the phase diagram of copolymer with pinning model [den Hollander, A.O.]
■ Settle a conjecture about existence of an intermediate phase in pinning of random walk by random walk [den Hollander, A.O.]
■ Random pinning model [D. Cheliotis, F. den Hollander]

Open problems

1. The order of the phase transition.
2. The weak interaction limit

$$
\lim _{\beta \downarrow 0} \frac{h_{c}^{\mathrm{que}}(\beta)}{\beta}, \quad \alpha \in(1, \infty)
$$

3. Analyticity of

$$
\begin{gathered}
\beta \mapsto h_{c}^{\text {que }}(\beta) \quad \text { on } \quad(0, \infty) \\
(\beta, h) \mapsto g^{\text {que }}(\beta, h) \quad \text { on } \quad \mathcal{L}^{\text {que }} .
\end{gathered}
$$

THANK YOU

