Annealed Brownian motion in a heavy tailed Poissonian potential

Ryoki Fukushima

Tokyo Institute of Technology
Workshop on Random Polymer Models and Related Problems, National University of Singapore, May 21-25, 2012

1. Setting

- $\left(\left\{B_{t}\right\}_{t \geq 0}, P_{x}\right): \kappa \Delta$-Brownian motion on \mathbb{R}^{d}
- $\left(\omega=\sum_{i} \delta_{\omega_{i}}, \mathbb{P}\right): \begin{aligned} & \text { Poisson point process on } \mathbb{R}^{d} \\ & \text { with unit intensity }\end{aligned}$

1. Setting

- $\left(\left\{B_{t}\right\}_{t \geq 0}, P_{x}\right): \kappa \Delta$-Brownian motion on \mathbb{R}^{d}
- $\left(\omega=\sum_{i} \delta_{\omega_{i}}, \mathbb{P}\right): \begin{aligned} & \text { Poisson point process on } \mathbb{R}^{d} \\ & \text { with unit intensity }\end{aligned}$

Potential
For a non-negative and integrable function v,

$$
V_{\omega}(x):=\sum_{i} v\left(x-\omega_{i}\right)
$$

(Typically $v(x)=1_{B(0,1)}(x)$ or $|x|^{-\alpha} \wedge 1$ with $\alpha>d$.)

Annealed measure

We are interested in the behavior of Brownian motion under the measure

$$
Q_{t}(\cdot)=\frac{\exp \left\{-\int_{0}^{t} V_{\omega}\left(B_{s}\right) \mathrm{d} s\right\} \mathbb{P} \otimes P_{0}(\cdot)}{\mathbb{E} \otimes E_{0}\left[\exp \left\{-\int_{0}^{t} V_{\omega}\left(B_{s}\right) \mathrm{d} s\right\}\right]}
$$

The configuration is not fixed and hence Brownian motion and ω_{i} 's tend to avoid each other.

$\exp \left\{-\int_{0}^{t} V_{\omega}\left(B_{s}\right) \mathrm{d} s\right\}:$ large, $\quad \mathbb{P}:$ large $, \quad P_{0}:$ small

$\exp \left\{-\int_{0}^{t} V_{\omega}\left(B_{s}\right) \mathrm{d} s\right\}$: large, $\quad \mathbb{P}$: small, $\quad P_{0}$: large

2. Light tailed case

Donsker and Varadhan (1975)
When $v(x)=o\left(|x|^{-d-2}\right)$ as $|x| \rightarrow \infty$,

$$
\begin{aligned}
\mathbb{E} & \otimes E_{0}\left[\exp \left\{-\int_{0}^{t} V_{\omega}\left(B_{s}\right) d s\right\}\right] \\
& =\exp \left\{-c(d, \kappa) t^{\frac{d}{d+2}}(1+o(1))\right\} \\
& =P_{0}\left(B_{[0, t]} \subset B\left(x, t^{\frac{1}{d+2}} R_{0}\right)\right) \mathbb{P}\left(\omega\left(B\left(x, t^{\frac{1}{d+2}} R_{0}\right)\right)=0\right)
\end{aligned}
$$

as $t \rightarrow \infty$.
Remark

$$
c(d, \kappa)=\inf _{U}\left\{\kappa \lambda^{D}(U)+|U|\right\} .
$$

One specific strategy gives dominant contribution to the partition function.
\Downarrow
It occurs with high probability under the annealed path measure.

Sznitman (1991, $d=2$) and Povel (1999, $d \geq 3$)
When v has a compact support, there exists

$$
D_{t}(\omega) \in B\left(0, t^{\frac{1}{d+2}}\left(R_{0}+o(1)\right)\right)
$$

such that

$$
Q_{t}\left(B_{[0, t]} \subset B\left(D_{t}(\omega), t^{\frac{1}{d+2}}\left(R_{0}+o(1)\right)\right)\right) \xrightarrow{t \rightarrow \infty} 1 .
$$

Remark
Bolthausen (1994) proved the corresponding result for two-dimensional random walk model.

3. Heavy tailed case

Pastur (1977)
When $v(x) \sim|x|^{-\alpha}(\alpha \in(d, d+2))$ as $|x| \rightarrow \infty$,

$$
\mathbb{E} \otimes E_{0}\left[\exp \left\{-\int_{0}^{t} V_{\omega}\left(B_{s}\right) \mathrm{d} s\right\}\right]=\exp \left\{-a_{1} t^{\frac{d}{\alpha}}(1+o(1))\right\}
$$

where $a_{1}=|B(0,1)| \Gamma\left(\frac{\alpha-d}{\alpha}\right)$.

In fact, Pastur's proof goes as follows:

$$
\begin{aligned}
\mathbb{E} & \otimes E_{0}\left[\exp \left\{-\int_{0}^{t} V_{\omega}\left(B_{s}\right) \mathrm{d} s\right\}\right] \\
& \approx \mathbb{E}\left[\exp \left\{-t V_{\omega}(0)\right\}\right] \\
& \sim \exp \left\{-a_{1} t^{\frac{d}{\alpha}}\right\} .
\end{aligned}
$$

In fact, Pastur's proof goes as follows:

$$
\begin{aligned}
\mathbb{E} & \otimes E_{0}\left[\exp \left\{-\int_{0}^{t} V_{\omega}\left(B_{s}\right) \mathrm{d} s\right\}\right] \\
& \approx \mathbb{E}\left[\exp \left\{-t V_{\omega}(0)\right\}\right] \\
& \sim \exp \left\{-a_{1} t^{\frac{d}{\alpha}}\right\} .
\end{aligned}
$$

The effort of the Brownian motion is hidden in the lower order terms.

F. (2011)

When $v(x)=|x|^{-\alpha} \wedge 1(d<\alpha<d+2)$,

$$
\begin{aligned}
\mathbb{E} & \otimes E_{0}\left[\exp \left\{-\int_{0}^{t} V_{\omega}\left(B_{s}\right) \mathrm{d} s\right\}\right] \\
& =\exp \left\{-a_{1} t^{\frac{d}{\alpha}}-\left(a_{2}+o(1)\right) t^{\frac{\alpha+d-2}{2 \alpha}}\right\},
\end{aligned}
$$

where

$$
a_{2}:=\inf _{\|\phi\|_{2}=1}\left\{\int \kappa|\nabla \phi(x)|^{2}+C(d, \alpha)|x|^{2} \phi(x)^{2} \mathrm{~d} x\right\} .
$$

Remark
The proof is an application of the general machinery developed by Gärtner-König 2000.

Recalling the Donsker-Varadhan LDP

$$
P_{0}\left(\frac{1}{t} \int_{0}^{t} \delta_{B_{s}} \mathrm{~d} s \sim \phi^{2}(x) \mathrm{d} x\right) \approx \exp \left\{-t \int \kappa|\nabla \phi(x)|^{2} \mathrm{~d} x\right\}
$$

we expect the second term explains the behavior of the Brownian motion.

Recalling the Donsker-Varadhan LDP

$$
P_{0}\left(\frac{1}{t} \int_{0}^{t} \delta_{B_{s}} \mathrm{~d} s \sim \phi^{2}(x) \mathrm{d} x\right) \approx \exp \left\{-t \int \kappa|\nabla \phi(x)|^{2} \mathrm{~d} x\right\}
$$

we expect the second term explains the behavior of the Brownian motion.

In particular, since $P_{0}\left(B_{[0, t]} \subset B(x, R)\right) \approx \exp \left\{-t R^{-2}\right\}$, the localization scale should be

$$
t R^{-2}=t^{\frac{\alpha+d-2}{2 \alpha}} \Leftrightarrow R=t^{\frac{\alpha-d+2}{4 \alpha}} .
$$

Recalling the Donsker-Varadhan LDP

$$
P_{0}\left(\frac{1}{t} \int_{0}^{t} \delta_{B_{s}} \mathrm{~d} s \sim \phi^{2}(x) \mathrm{d} x\right) \approx \exp \left\{-t \int \kappa|\nabla \phi(x)|^{2} \mathrm{~d} x\right\}
$$

we expect the second term explains the behavior of the Brownian motion.

In particular, since $P_{0}\left(B_{[0, t]} \subset B(x, R)\right) \approx \exp \left\{-t R^{-2}\right\}$, the localization scale should be

$$
t R^{-2}=t^{\frac{\alpha+d-2}{2 \alpha}} \Leftrightarrow R=t^{\frac{\alpha-d+2}{4 \alpha}}
$$

In addition, the term $\int C(d, \alpha)|x|^{2} \phi(x)^{2} \mathrm{~d} x$ says that V_{ω} (locally) looks like a quadratic function.

Main Theorem (F. 2012)

$$
\begin{gathered}
Q_{t}\left(B_{[0, t]} \subset B\left(0, t^{\frac{\alpha-d+2}{4 \alpha}}(\log t)^{\frac{1}{2}+\epsilon}\right)\right) \xrightarrow{t \rightarrow \infty} 1, \\
Q_{t}\left(V_{\omega}(x)-V_{\omega}\left(m_{t}(\omega)\right) \sim t^{-\frac{\alpha-d+2}{\alpha}} C(d, \alpha)\left|x-m_{t}(\omega)\right|^{2}\right. \\
\text { in } \left.B\left(0, t^{\frac{\alpha-d+2}{4 \alpha}+\epsilon}\right)\right) \xrightarrow{t \rightarrow \infty} 1, \\
\left\{t^{-\frac{\alpha-d+2}{4 \alpha}} B_{t^{\frac{\alpha-d+2}{2 \alpha}} s}\right\}_{s \geq 0} \xrightarrow{\text { in law }} \text { OU-process with } \\
\text { "random center", }
\end{gathered}
$$

where $m_{t}(\omega)$ is the minimizer of V_{ω} in $B\left(0, t^{\frac{\alpha-d+2}{4 \alpha}} \log t\right)$.

Main Theorem (F. 2012)

$$
\begin{gathered}
Q_{t}\left(B_{[0, t]} \subset B\left(0, t^{\frac{\alpha-d+2}{4 \alpha}}(\log t)^{\frac{1}{2}+\epsilon}\right)\right) \xrightarrow{t \rightarrow \infty} 1, \\
Q_{t}\left(V_{\omega}(x)-V_{\omega}\left(m_{t}(\omega)\right) \sim t^{-\frac{\alpha-d+2}{\alpha}} C(d, \alpha)\left|x-m_{t}(\omega)\right|^{2}\right. \\
\text { in } \left.B\left(0, t^{\frac{\alpha-d+2}{4 \alpha}+\epsilon}\right)\right) \xrightarrow{t \rightarrow \infty} 1, \\
\left\{t^{-\frac{\alpha-d+2}{4 \alpha}} B_{t^{\frac{\alpha-d+2}{2 \alpha}} s}\right\}_{s \geq 0} \xrightarrow{\text { in law }} \text { OU-process with } \\
\text { "random center", }
\end{gathered}
$$

where $m_{t}(\omega)$ is the minimizer of V_{ω} in $B\left(0, t^{\frac{\alpha-d+2}{4 \alpha}} \log t\right)$.
Remark: $X_{s}:=t^{-\frac{\alpha-d+2}{4 \alpha}} B_{t^{\frac{\alpha-d+2}{2 \alpha}} s} \Rightarrow B_{t}=t^{\frac{\alpha-d+2}{4 \alpha}} X_{t^{\frac{\alpha+d-2}{2 \alpha}}}$

4. Outline of the proof (of localization)

Observation: The 1st statement implies the 2nd one and vice versa.

4. Outline of the proof (of localization)

Observation: The 1st statement implies the 2nd one and vice versa.
Indeed, it is easy to believe 2 nd $\Rightarrow 1$ st.

4. Outline of the proof (of localization)

Observation: The 1st statement implies the 2nd one and vice versa.
Indeed, it is easy to believe 2 nd $\Rightarrow 1$ st.
To see 1 st $\Rightarrow 2$ nd, let $L_{t}:=\frac{1}{t} \int_{0}^{t} \delta_{B_{s}} \mathrm{~d} s$ and rewrite

$$
Q_{t}(\mathrm{~d} \omega)=\frac{1}{Z_{t}} E_{0}\left[\mathbb{E}\left[e^{-t\left\langle L_{t}, V_{\omega}\right\rangle}\right] \mathbb{P}_{t}^{L_{t}}(\mathrm{~d} \omega)\right]
$$

where Z_{t} is the normalizing constant and

$$
\mathbb{P}_{t}^{L_{t}}(\mathrm{~d} \omega):=\frac{\exp \left\{-t\left\langle L_{t}, V_{\omega}\right\rangle\right\} \mathbb{P}(\mathrm{d} \omega)}{\mathbb{E}\left[\exp \left\{-t\left\langle L_{t}, V_{\omega}\right\rangle\right\}\right]}
$$

Assuming the 1st statement, we may replace L_{t} by $\delta_{m_{L_{t}}}$ with $m_{L_{t}}=\int x L_{t}(\mathrm{~d} x)$ in the following:

$$
\mathbb{P}_{t}^{L_{t}}\left(V_{\omega}(x)-V_{\omega}\left(m_{t}(\omega)\right) \sim C(d, \alpha) t^{-\frac{\alpha-d+2}{\alpha}}|x|^{2}\right) \rightarrow 1 ?
$$

Assuming the 1st statement, we may replace L_{t} by $\delta_{m_{L_{t}}}$ with $m_{L_{t}}=\int x L_{t}(\mathrm{~d} x)$ in the following: Let $m_{L_{t}}=0$ for simplicity.

$$
\mathbb{P}_{t}^{\delta_{0}}\left(V_{\omega}(x)-V_{\omega}(0) \sim C(d, \alpha) t^{-\frac{\alpha-d+2}{\alpha}}|x|^{2}\right) \rightarrow 1 ?
$$

This can be easily proved since $\left(\omega, \mathbb{P}_{t}^{\delta_{0}}\right)$ is nothing but the Poisson point process with intensity $e^{-t\left(|x|^{-\alpha} \wedge 1\right)} \mathrm{d} x$.

Assuming the 1st statement, we may replace L_{t} by $\delta_{m_{L_{t}}}$ with $m_{L_{t}}=\int x L_{t}(\mathrm{~d} x)$ in the following: Let $m_{L_{t}}=0$ for simplicity.

$$
\mathbb{P}_{t}^{\delta_{0}}\left(V_{\omega}(x)-V_{\omega}(0) \sim C(d, \alpha) t^{-\frac{\alpha-d+2}{\alpha}}|x|^{2}\right) \rightarrow 1 ?
$$

This can be easily proved since $\left(\omega, \mathbb{P}_{t}^{\delta_{0}}\right)$ is nothing but the Poisson point process with intensity $e^{-t\left(|x|^{-\alpha} \wedge 1\right)} \mathrm{d} x$.

Remark
In fact, a slightly weaker localization bound is enough to do the above replacement.

This observation is useless (circular argument) as it is. But due to the last remark, there is a chance to go as follows:
crude control on the potential,
\Rightarrow crude control on the trajectory,
\Rightarrow fine control on the potential,
\Rightarrow fine control on the trajectory.

This observation is useless (circular argument) as it is. But due to the last remark, there is a chance to go as follows:
crude control on the potential, \Rightarrow crude control on the trajectory,
\Rightarrow fine control on the potential, \Rightarrow fine control on the trajectory.

Assume V_{ω} attains its local minimum at 0 for simplicity.

4.1 Crude control on the potential

Lemma 1

$$
Q_{t}\left(V_{\omega}(0) \in \frac{d}{\alpha} a_{1} t^{-\frac{\alpha-d}{\alpha}}+t^{-\frac{3 \alpha-3 d+2}{4 \alpha}}\left(-M_{1}, M_{1}\right)\right) \rightarrow 1
$$

4.1 Crude control on the potential

Lemma 1

$$
Q_{t}\left(V_{\omega}(0) \in \frac{d}{\alpha} a_{1} t^{-\frac{\alpha-d}{\alpha}}+t^{-\frac{3 \alpha-3 d+2}{4 \alpha}}\left(-M_{1}, M_{1}\right)\right) \rightarrow 1
$$

Idea

$$
Z_{t} \leq \mathbb{E}\left[\exp \left\{-t V_{\omega}(0)\right\}\right]\left\{\begin{array}{l}
=\exp \left\{-a_{1} t^{\frac{d}{\alpha}}\right\} \\
\approx \sup _{h>0}\left[e^{-t h} \mathbb{P}\left(V_{\omega}(0) \approx h\right)\right]
\end{array}\right.
$$

4.1 Crude control on the potential

Lemma 1

$$
Q_{t}\left(V_{\omega}(0) \in \frac{d}{\alpha} a_{1} t^{-\frac{\alpha-d}{\alpha}}+t^{-\frac{3 \alpha-3 d+2}{4 \alpha}}\left(-M_{1}, M_{1}\right)\right) \rightarrow 1
$$

Idea

$$
Z_{t} \leq \mathbb{E}\left[\exp \left\{-t V_{\omega}(0)\right\}\right]\left\{\begin{array}{l}
=\exp \left\{-a_{1} t^{\frac{d}{\alpha}}\right\} \\
\approx \sup _{h>0}\left[e^{-t h} \mathbb{P}\left(V_{\omega}(0) \approx h\right)\right]
\end{array}\right.
$$

$\frac{d}{\alpha} a_{1} t^{-\frac{\alpha-d}{\alpha}}=h(t)$ is the maximizer.

$$
\begin{aligned}
\Rightarrow \mathbb{E} & \otimes E_{0}\left[\exp \left\{-\int_{0}^{t} V_{\omega}\left(B_{s}\right) \mathrm{d} s\right\}: V_{\omega}(0) \text { is far from } h(t)\right] \\
& \leq \mathbb{E}\left[\exp \left\{-t V_{\omega}(0)\right\}: V_{\omega}(0) \text { is far from } h(t)\right]=o\left(Z_{t}\right)
\end{aligned}
$$

Lemma 2

$$
\begin{aligned}
& Q_{t}\left(V_{\omega}(0)+V_{\omega}(x) \geq 2 h(t)+c_{1} t^{-\frac{\alpha-d+2}{\alpha}}|x|^{2}\right. \\
& \left.\qquad \text { for } t^{\frac{\alpha-d+6}{8 \alpha}}<|x|<M_{2} t^{\frac{\alpha-d+6}{8 \alpha}}\right) \rightarrow 1
\end{aligned}
$$

Lemma 2

$$
\begin{aligned}
& Q_{t}\left(V_{\omega}(0)+V_{\omega}(x) \geq 2 h(t)+c_{1} t^{-\frac{\alpha-d+2}{\alpha}}|x|^{2}\right. \\
& \left.\qquad \text { for } t^{\frac{\alpha-d+6}{8 \alpha}}<|x|<M_{2} t^{\frac{\alpha-d+6}{8 \alpha}}\right) \rightarrow 1
\end{aligned}
$$

Idea
By Lemma 1,

$$
\exp \left\{-\int_{0}^{t} V_{\omega}\left(B_{s}\right) \mathrm{d} s\right\} \lesssim \exp \{-\operatorname{th}(t)\}=\exp \left\{-\frac{d}{\alpha} a_{1} t^{\frac{d}{\alpha}}\right\}
$$

Lemma 2

$$
\begin{aligned}
& Q_{t}\left(V_{\omega}(0)+V_{\omega}(x) \geq 2 h(t)+c_{1} t^{-\frac{\alpha-d+2}{\alpha}}|x|^{2}\right. \\
& \left.\qquad \text { for } t^{\frac{\alpha-d+6}{8 \alpha}}<|x|<M_{2} t^{\frac{\alpha-d+6}{8 \alpha}}\right) \rightarrow 1 .
\end{aligned}
$$

Idea
By Lemma 1,

$$
\exp \left\{-\int_{0}^{t} V_{\omega}\left(B_{s}\right) \mathrm{d} s\right\} \lesssim \exp \{-\operatorname{th}(t)\}=\exp \left\{-\frac{d}{\alpha} a_{1} t^{\frac{d}{\alpha}}\right\}
$$

Then, use

$$
\mathbb{E}\left[\exp \left\{-\frac{t}{2}\left(V_{\omega}(0)+V_{\omega}(x)\right)\right\}\right] \approx \exp \left\{-a_{1} t^{\frac{d}{\alpha}}-c_{2} t^{\frac{d-2}{\alpha}}|x|^{2}\right\}
$$

and Chebyshev's inequality.
4.2 Crude control on the trajectory

$$
V_{\omega}(x)-V_{\omega}(0)
$$

4.2 Crude control on the trajectory

$$
V_{\omega}(x)-V_{\omega}(0)
$$

By "penalizing a crossing",

$$
Q_{t}\left(B_{[0, t]} \subset B\left(0, M_{2} t^{\frac{\alpha-d+6}{8 \alpha}}\right)\right) \rightarrow 1
$$

4.3 Fine control on the potential

The "crude control on the trajectory" is good enough to yield

$$
\begin{aligned}
Q_{t}\left(V_{\omega}(x)-V_{\omega}(0) \sim\right. & C(d, \alpha) t^{-\frac{\alpha-d+2}{\alpha}}|x|^{2} \\
& \text { in } \left.B\left(0, t^{\frac{\alpha-d+2}{4 \alpha}+\epsilon}\right)\right) \rightarrow 1 .
\end{aligned}
$$

4.4 Fine control on the trajectory

4.4 Fine control on the trajectory

$$
V_{\omega}(x)-V_{\omega}(0)
$$

By "penalizing a crossing",

$$
Q_{t}\left(B_{[0, t]} \subset B\left(0, t^{\frac{\alpha-d+2}{4 \alpha}}(\log t)^{\frac{1}{2}+\epsilon}\right)\right) \rightarrow 1
$$

Thank you!

