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Three random polymer models

Discrete polymer with log-gamma weights.

Seppäläinen (2009), Georgiou-Seppäläinen (2011),
Corwin-O’C-Seppäläinen-Zygouras (2011).

Semi-discrete polymer.

O’C-Yor (2002), O’C-Moriarty (2007), Seppäläinen-Valko (2010), O’C (2009),
Borodin-Corwin (2011), Borodin-Corwin-Ferrari (2012).

Continuum random polymer.

Amir, Corwin, Quastel (2010), Sasamoto, Spohn (2010), Calabrese, Le
Doussal, Rosso (2010), Dotsenko (2010).
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Discrete polymer

Weights wij , iid distributed as − log Γ(θ). Partition function

Zm,n =
∑

φ∈Πm,n

e
P

(i,j)∈φ wij .

A lattice path in Π1
8,6:

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
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Semi-discrete polymer

A path φ ≡ {0 < t1 < . . . < tN−1 < t}:

-

6

ttN−1tN−2t3t2t1
1

2

3

N − 1

N

B1,B2, . . . independent Brownian motions.

E(φ) = B1(t1) + B2(t2)− B2(t1) + · · ·+ BN(t)− BN(tN−1).

Z N
t (β) =

Z
eβE(φ)dφ.
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A Brownian bridge
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Continuum random polymer

Z (t , x , y) = Ex

[
: exp :

(∫ t

0
ξ(s, βs)ds

)]
where β is a Brownian bridge from x to y in time t and ξ is space-time
white noise. This is defined by the chaos expansion

Z (t , x , y) =

1 +
∞∑

k=1

∫
∆k (t)

∫
Rk

Rk ((t1, x1), (t2, x2), . . . , (tk , xk ))

× ξ(t1, x1)ξ(t2, x2) · · · ξ(tk , xk )dt1dx1 · · · dtk dxk ,

where ∆k (t) = {0 < t1 < · · · < tk < t} and Rk are the k -point
functions for the Brownian bridge.
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Related SPDEs

Let p(t , x , y) = (2πt)−1/2e(x−y)2/2t . The function u = pZ satisfies the
stochastic heat equation

∂tu =
1
2
∂2

y u + ξ(t , y)u

with u(0, x , y) = δ(x − y), and h = log u is the Cole-Hopf solution of
the KPZ equation

∂th =
1
2
∂2

y h − 1
2

(∂y h)2 + ξ(t , y),

with ‘narrow wedge’ initial condition.
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Interpretations of continuum model

The continuum random polymer is a scaling limit of discrete directed
polymer models, in the ‘intermediate disorder’ regime
(Alberts-Khanin-Quastel 2010/12).

Moreover, h = log u arises as the scaling limit of the height profile of
the weakly asymmetric simple exclusion process (Bertini-Giacomin
1997). With this ‘surface growth’ interpretation, h is understood to be
the physically relevant solution to the KPZ equation.
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The law of Z

Recent development: exact distribution of Z (t , x , y). Generating
function given as a Fredholm determinant.

Two approaches.

1. Uses ASEP approximation together with recent work by Tracy and
Widom on exact formulas for ASEP. Amir-Corwin-Quastel (2010),
Sasamoto-Spohn (2010).

2. Replicas: moments of the partition function are related to the
attractive δ-Bose gas. Calabrese, Le Doussal, Rosso (2010),
Dotsenko (2010).

Corollary: As t →∞, distribution of log Z (t , x , y) rescales to the
Tracy-Widom F2 distribution.
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Discrete polymer

Partition function

Zm,n(β) =
∑

φ∈Πm,n

eβ
P

(i,j)∈φ wij .

A lattice path in Π1
8,6:

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
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Last passage percolation and random matrices

Zero-temperature limit:

lim
β→∞

1
β

log Zm,n(β) = max
φ∈Πm,n

∑
(i,j)∈φ

wij =: Gm,n

Theorem (Johansson 2000)

If weights are iid standard exponential random variables then Gm,n
has the same law as the largest eigenvalue of A†A, where A is a
m × n matrix with standard complex Gaussian entries.

Proof is based on the RSK (Robinson-Schensted-Knuth)
correspondence and extends to other eigenvalues.
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Non-intersecting lattice paths

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
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6
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A pair of non-intersecting lattice paths in Π2
8,6
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RSK and random matrices

Let wij be independent standard exponential random variables.
Define L1 ≥ L2 ≥ · · · ≥ Ln by

L1 + · · ·+ Lk = max
Γ∈Πk

m,n

∑
(i,j)∈Γ

wij .

Theorem (Various results combined)

L has the same distribution as the eigenvalues of A†A.

This distribution is called the Laguerre ensemble. The density is
proportional to ∏

i<j≤n

(xi − xj )
2
∏
i≤n

xm−n
i e−xi dx .
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‘Tropical RSK correspondence’

A.N. Kirillov (2000) introduced a ‘tropical’ analogue of the RSK
correspondence, defined by replacing (max,+) by (+,×).

In this setting we define

Y1 · · ·Yk =
∑

Γ∈Πk
m,n

∏
(i,j)∈Γ

dij .

Note that setting dij = ewij gives Y1 = Zm,n.
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Tropical RSK with random input

Theorem (Corwin-Sepäläinen-O’C-Zygouras 2011)

Let dij be independent inverse gamma random variables with
respective parameters θ̂i + θj . Then the distribution µn,m

θ,θ̂
of

Y = (Y1, . . . ,Yn) is given in terms of GL(n,R)-Whittaker functions.
For example,

µn,n
θ,θ̂

(dy) =
∏
i,j

Γ(θi + θ̂j )
−1e−y−1

n Ψθ(y)Ψθ̂(y)
∏

i

dyi

yi
.
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The law of the partition function Y1 = Zm,n

Corollary

For s > 0,

Ee−sZm,n =

∫
s

P
(θi−λi )

∏
i,j

Γ(λi − θj )
∏
i,j

Γ(λi + θ̂j )

Γ(θi + θ̂j )
sN(λ)dλ,

where
sN(λ) =

1
(2πι)NN!

∏
j 6=k

Γ(λj − λk )−1

and the integral is along vertical lines with <λi > θj for all i , j .
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Semi-discrete model

A path φ ≡ {0 < t1 < . . . < tN−1 < t}:

-

6

ttN−1tN−2t3t2t1
1

2

3

N − 1

N

B1,B2, . . . independent Brownian motions.

E(φ) = B1(t1) + B2(t2)− B2(t1) + · · ·+ BN(t)− BN(tN−1).

Z N
t (β) =

Z
eβE(φ)dφ.
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Semi-discrete model

Set X N
1 (t) = log Z N

t and, for k = 2, . . . ,N,

X N
1 (t) + · · ·+ X N

k (t) = log
∫

eE(φ1)+···+E(φk )dφ1 . . . dφk ,

where the integral is over non-intersecting paths φ1, . . . , φk from
(0,1), . . . , (0, k) to (t ,N − k + 1), . . . , (t ,N).
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Theorem (O’C 2009)

The process X N is a diffusion process in RN with generator

1
2

∆ +∇ logψ0 · ∇

where ψ0(x) is the ground state eigenfunction of the quantum Toda
lattice Hamiltonian

H = ∆− 2
N−1∑
i=1

exi+1−xi .

The function ψ0(x) = Ψ0(ex ) is a GL(N,R)-Whittaker function. This
diffusion is the analogue of Dyson’s Brownian motion in this setting;
the distribution of X N

t is the analogue of the GUE.
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The law of the partition function

Corollary

For s > 0,

Ee−sZ N
t =

∫
s

P
λi
∏

i

Γ(−λi )
Ne

1
2

P
i λ

2
i tsN(λ)dλ,

where
sN(λ) =

1
(2πι)NN!

∏
j 6=k

Γ(λj − λk )−1

and the integral is along vertical lines with <λi < 0 for all i .
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Connection with random matrices

The probability measure on ιRN with density proportional to

e
P

i λ
2
i t/2sN(λ) ≡ 1

(2πι)NN!
e

P
i λ

2
i t/2

∏
i>j

(λi − λj )
∏
i<j

sinπ(λi − λj )

π

is (up to a factor of ιπ) the law, at time 1/t , of the radial part of a
Brownian motion in the symmetric space of positive definite Hermitian
matrices. In particular, it is a determinantal point process, so Ee−sZ N

t

can be written as a Fredholm determinant.

Using a different Fredholm determinant representation, Borodin and
Corwin (2011) and Borodin, Corwin and Ferrari (2012) have recently
shown that log Z N

N (rescaled) converges in distribution to the
Tracy-Widom F2 distribution.
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A watermelon
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A (Brownian) watermelon
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Watermelons and white noise

O’C-Warren (2011): For n = 1,2, . . ., t ≥ 0 and x , y ∈ R, define

Zn(t , x , y) =

1 +
∞∑

k=1

∫
∆k (t)

∫
Rk

R(n)
k ((t1, x1), (t2, x2), . . . , (tk , xk ))

× ξ(t1, x1)ξ(t2, x2) · · · ξ(tk , xk )dt1dx1 · · · dtk dxk ,

where ∆k (t) = {0 < t1 < · · · < tk < t} and R(n)
k is the k -point

correlation function of a ‘watermelon’: that is, a collection of n
non-intersecting Brownian bridges which all start at x at time 0 and all
end at y at time t .
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Watermelons and white noise

Theorem (O’C-Warren 2011)

The series defining Zn(t , x , y) is convergent in L2(ξ).

This is proved by showing that EeL <∞, where L is the total
intersection local time between two ‘watermelons’.
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Wronskian representation

Replace ξ by smooth potential.

Theorem (O’C-Warren 2011)

Zn = cn,tp−nτn where

τn = det
[
∂ i

x∂
j
y u(t , x , y)

]n−1

i,j=0
cn,t = tn(n−1)/2

n−1∏
j=1

j!

The proof is via a generalisation of the Karlin-McGregor formula.
This formula also holds (in a weak sense) in white noise setting.
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Coupled heat equations

Let un = pZn/Zn−1, where Z0 = 1.

Theorem (O’C-Warren 2011)

The un’s satisfy

∂tun =
1
2
∂2

y un + [ξ(t , y) + ∂2
y log Zn−1]un

with initial conditions un(0, x , y) = δ(x − y).
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Coupled transport equations

Let an = τn+1τn−1/τ
2
n , where τ0 = 1.

Theorem (O’C-Warren 2011)

The an’s satisfy

∂tan =
1
2
∂2

y an + ∂y [an∂y log un].

These equations appear to also make sense in the white noise
setting (cf. Hairer 2011).
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Markovian evolutions

Let qn = log τn − log τn−1. The above evolution equations strongly
suggest that, for each n, and fixed x ,

q1(t , x , ·), . . . ,qn(t , x , ·)

is a Markov process. We prove it for n = 2.
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Markovian evolutions

Approximation by the discrete models indicates that, for fixed t , x ,

q1(t , x , y),q2(t , x , y), . . . y ∈ R

is a diffusion process in RN (∼ ‘semi-infinite’ quantum Toda chain)

Some recent progress towards understanding this process has been
made by Moreno Flores and Quastel (in prep), Corwin and Hammond
(in prep), Borodin and Corwin (2011).

For large t it should rescale to the multi-layer Airy process.

Neil O’Connell, University of Warwick Random polymers



2D Toda equations

Theorem (O’C-Warren 2011)

The qn’s satisfy the 2D Toda equations

∂xy qn = eqn+1−qn − eqn−qn−1 .
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Thank you!
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