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1 Physical motivation
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1.1) Copolymer.
2 types of monomers : type A (hydrophobic), type B
(hydrophilic).

1.2) Emulsion.
Droplets of type A (oil) in a medium of type B (water).

1.3) Interactions.
The A−A matches get a reward (energy −α) and the B −B
matches get a reward (energy −β). The A−B and B −A
matches do not get penalties.
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2 The Model
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2.1) Copolymer.

For n ∈ N the set of allowed configurations for the copolymer of
length n is

Wn =
{
n− step directed self-avoiding paths starting at the

origin and taking steps in {↑,→, ↓}
}
.
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Microscopic disorder :

Let (ωi)i∈N be an i.i.d. sequence of Ber(1/2). The variable ωi
gives the type of the i-th monomer :

ωi = A : the i-th monomer is of type A
ωi = B : the i-th monomer is of type B.

:  monomer  type  A

:  monomer  type  B
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2.2) Emulsion.

Partition R2 into large squared blocks

R2 = ∪x∈Z2ΛLn(x) with ΛLn(x) = xLn + (0, Ln]2.

Mesoscopic Disorder : Fix p ∈ (0, 1) and let
{

Ω(x), x ∈ Z2
}
be

an i.i.d. field satisfying

P(Ω(0) = A) = p and P(Ω(0) = B) = 1− p.

-�
Ln

A B A A

B A B B

B A A A

B B A B

Ω(x) = A : block x is of type A

Ω(x) = B : block x is of type B
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Figure: Example of π ∈ Wn
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2.3) Parameters.

p ∈ (0, 1) is fixed and (Ln)n≥1 satisfies Ln →∞ and
Ln/n→ 0.
|β| ≤ α ∈ R+ (without loss of generality).

2.4) Hamiltonian.
Given ω,Ω and n, with each path π ∈ Wn we associate an
energy given by the Hamiltonian

Hω,Ω
n,Ln

(π) = −
n∑
i=1

(
α1{ωi = ΩLn

πi = A}+ β1{ωi = ΩLn
πi = B}

)
.
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2.5) Polymer measure.
For every π ∈ Wn ;

Pω,Ωn,Ln
(π) =

exp
(
−Hω,Ω

n,Ln
(π)
)

Zω,Ωn,Ln

2.6) Free energy per monomer.
For (α, β) ∈ R2 and p ∈ (0, 1),

lim
n→∞

1

n
logZω,Ωn,Ln

= f(α, β; p)

exists ω,Ω-a.s., is finite and non-random.
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3 Results with additional path restrictions
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In [dHW06], [dHP09a], [dHP09b], a version of this model was
studied with additional path restrictions, i.e.,

Wn,Ln = {π ∈ Wn : π enter blocks at a corner, exit blocks at one
of the two corners diagonally opposite the one where it entered,
and in between stay confined to the two blocks that are seen
upon entering}.

L n

L n
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Figure: Example of π ∈ Wn,Ln
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The polymer can cross 4 types of pairs of blocks

AA AB BB BA

Figure: Typical π ∈ Wn,Ln

R(p) is the set of 2× 2 matrices (ρkl)k,l∈{A,B} giving the possible
frequencies at which each type of pair of blocks is visited.

A is the set of 2× 2 matrices (akl)k,l∈{A,B} such that akl ≥ 2
∀(k, l) ∈ {A,B}.
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3.4) Variational Formula.

Theorem 1 (F. den Hollander and S. Whittington).
For all (α, β) ∈ R2 and p ∈ (0, 1),

f(α, β; p) = sup
(akl)∈A

sup
(ρkl)∈R(p)

∑
k,l ρkl akl ψkl(akl, α, β)∑

k,l ρkl akl
.
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Supercritical regime : p ≥ pc (F.dH., N.P.)
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Subcritical regime : p < pc (F. dH., N.P.)
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4 Removal of additional path restrictions
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4.1) Type of block column.

Δ π=4

b 0 L n

L nb 1

L
n

L n

For M ∈ N,

VM = {A,B}Z × {−M, . . . ,M} × [0, 1]2
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4.2) Free energy per column of blocks

For Θ = (χ,∆Π, b0, b1) ∈ VM , u ≥ tΘ and L ∈ N set

WΘ,u,L = {uL steps trajectories from (0, b0L)

to (L,∆Π + b1)}.

There exists a ψ(Θ, u) ∈ R such that

ψ(Θ, u) = lim
L→∞

1

uL
log

∑
π∈WΘ,u,L

e−H
ω,χ
uL,L(π) Pω − a.s.
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4.3) Percolation frequencies

Pick (∆Πi)i∈N ∈ {−M, . . . ,M}N and (bi)i∈N ∈ [0, 1]N

Θj =
(
Ω(j,Πj + ·),∆Πj , bj , bj+1

)
, j ∈ N0.

Define the empirical distribution

ρN (Ω,Π, b)(Θ) =
1

N

N−1∑
j=0

1{Θj=Θ}, N ∈ N, Θ ∈ VM , (1)

such that
ρN (Ω,Π, b) ∈M1(VM ).



Phys motiv The model Path restrictions Remove

Δ π  = 2

b0

b1

Δ π  = -31 Δ π  = 12

b 2

0
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Set

RΩ
M =

{
ρ ∈M1(VM ) : ρNk(Ω,Π, b)→ ρ as k ↑ ∞

with Π: |∆Πj | ≤M ∀ j ∈ N0

b ∈ [0, 1]N0 and Nk ↑ ∞
}
.

By Kolmogorov 0− 1 Law

RΩ
M = Rp,M PΩ − a.s.
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4.4) Variational formula for the free energy

Theorem
For every (α, β) ∈ R2, M ∈ N and p ∈ (0, 1) the free energy
exists for P -a.e. (ω,Ω) and in L1(P ), and is given by

f(M ; α, β) = sup
ρ∈Rp,M

sup
(uΘ)Θ∈VM ∈BVM

V (ρ, u)

with

V (ρ, u) =

∫
VM

uΘ ψ(Θ, uΘ;α, β) ρ(dΘ)∫
VM

uΘ ρ(dΘ)
.
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4.4) Another version of the variational formula

f(M ; α, β) = sup
ρ∈R̃p,M

sup
(u)l∈[0,∞) ∈ B̃VM

V (ρ, u)

with

V (ρ, u) =
1

G(u, l)

[ ∫ ∞
0

uA(l)κ(uA(l), l) ρA(dl)

+

∫ ∞
0

uB(l)
[
κ(uB(l), l) + β−α

2

]
ρB(dl)

+ ρI uI φ(uI)

]
.

and

G(ρ, u) =

∫ ∞
0

uA(l)ρA(dl) +

∫ ∞
0

uB(l) ρB(dl) + ρI uI


	Physical motivation
	The Model
	Results with additional path restrictions 
	Removal of additional path restrictions

