# Consistent high-dimensional Bayesian variable selection via penalized credible regions 

Howard Bondell

bondell@stat.ncsu.edu

## NC STATE UNIVERSITY

Joint work with Brian Reich

## Outline

- High-Dimensional Variable Selection
- Bayesian Variable Selection
- Selection via Credible Sets
- Joint / Marginal
- Asymptotic Properties
- Examples
- Conclusion


## Variable Selection Setup

- Linear regression model $y_{i}=\mathbf{x}_{i}^{T} \boldsymbol{\beta}+\epsilon_{i}$
- $n$ observations and $p$ predictor variables
- $y_{i}$ : response for observation $i$
- $\mathrm{x}_{i}$ : (column) vector of $p$ predictors for observation $i$
- $\boldsymbol{\beta}$ : (column) vector of $p$ regression parameters
- $\epsilon_{i}$ iid errors - mean zero, constant variance
- Ultra-high dimensional data, $p \gg n$
- Only subset of predictors are relevant
- If $\beta_{j}=0$ then variable $j$ is effectively removed from the model


## Variable Selection Methods

- All Subsets $-2^{p}$ !!!!
- Forward Selection
- Backward Elimination - Not possible for $p>n$
- Stepwise
- Penalization Methods can be effective
- Bayesian Methods
- Exhaustive Search - $2^{p}$ !!!!
- Stochastic Search


## Penalization Methods

- Minimize:

$$
\|\mathbf{y}-X \beta\|^{2}+\lambda J(\beta)
$$

- LASSO: $J(\beta)=\sum_{j=1}^{p}\left|\beta_{j}\right|$
- Elastic Net: $J(\beta)=(1-c) \sum_{j=1}^{p} \beta_{j}^{2}+c \sum_{j=1}^{p}\left|\beta_{j}\right|$
- Adaptive LASSO, SCAD, MCP, OSCAR, ...
- $\lambda$ and $c$ chosen by AIC, BIC, Cross-Val, GCV
- Shrinkage creates bias
- Reduces variance
- Achieves selection by setting exact zeros


## Ultra High-Dimensional Data

- When $p \gg n$, before performing penalization methods, common to screen down first
- Sure Independence Screening
- Rank by marginal correlations
- Reduce typically to $p<n$
- Perform forward selection sequence
- Again reduce to $p<n$
- Then perform penalized regression
- SCAD (Smoothly Clipped Absolute Deviation) typical




## Bayesian Variable Selection

- Each candidate model indexed by $\boldsymbol{\delta}=\left(\delta_{1}, \cdots, \delta_{p}\right)^{T}$

$$
\delta_{j}=\left\{\begin{array}{rr}
1 & \text { if } \mathbf{x}_{j} \text { is included in the model, }, \\
0 & \text { if } \mathbf{x}_{j} \text { is excluded from the model. }
\end{array}\right.
$$

- $p(\boldsymbol{\delta})$ is prior over model space
- Most common $p(\boldsymbol{\delta}) \propto \pi^{p_{\delta}}(1-\pi)^{p-p_{\delta}}$
- $p_{\boldsymbol{\delta}}=\sum_{j=1}^{p} \delta_{j}$ - number of predictors
- $\pi$ is prior inclusion probability for each
- Uniform prior over model space $\Leftrightarrow \pi=1 / 2$
- $\pi$ set to apriori guess of proportion of important predictors
- Put prior on $\pi$ - Beta ( $a, b$ )


## Bayesian Variable Selection

- Given $\boldsymbol{\delta}$, we have $\Pi\left(\boldsymbol{\beta} \mid \boldsymbol{\delta}, \sigma^{2}, \tau\right)$
- Typically, $\sigma^{2}$ gets diffuse prior (Inverse Gamma)
- $\tau$ are other hyperparameters needed
- Most common $\Pi\left(\boldsymbol{\beta} \mid \boldsymbol{\delta}, \sigma^{2}, \tau\right)=N\left(0, \frac{\sigma^{2}}{\tau} V\right)$
- $V=I_{p}$ or $V=\left(X_{\boldsymbol{\delta}}^{T} X_{\boldsymbol{\delta}}\right)^{-1}$
- But $p_{\boldsymbol{\delta}}>n \Rightarrow X_{\boldsymbol{\delta}}^{T} X_{\boldsymbol{\delta}}$ not invertible
- Focus on $V=I$
- $\tau$ either fixed, or given Gamma prior
- Equivalent to Spike-and-Slab, i.e. $\boldsymbol{\beta}$ is mixture of mass at zero and Normal


## Bayesian Variable Selection

- Crank out Bayes' rule and get posterior probability for each configuration of $\boldsymbol{\delta}$
- Instead, use stochastic search (SSVS) to visit models with MCMC chain
- Estimate posterior probabilities by proportion of times visited
- Highest posterior model $\Leftrightarrow$ comparing Bayes Factors
- Alternative: Use marginal posterior for each variable
- Include variable in final model if $P\left(\delta_{j}=1 \mid X, y\right)>t$ for some threshold
- Median probability model (Barbieri and Berger, 2004) use $t=1 / 2$
- Optimal predictive model under certain conditions


## Lindley's Paradox

- Problem with Bayes Factors (posterior probabilities)
- Diffuse prior typical in practice
- Simple case
- Sample of size 1, from $N(\mu, 1)$
- $\mu=0$ vs. $\mu \neq 0$ - More diffuse prior $\Rightarrow$ Prob of $H_{0} \rightarrow 1$

(a) Posterior Probability in favor of Null for various prior standard deviations.

(b) $95 \%$ Posterior Credible Set for various prior standard deviations.


## Other Drawbacks

- Typical methods, such as SSVS, require:
- Proper prior distribution
- Choice of prior on model space (inclusion probabilities)
- Posterior threshold choice
- MCMC chains to estimate posterior probabilities (often need very long runs)
- Results can be sensitive to each choice
- Marginal inclusion probabilities may be poor under high correlation
- Highly correlated predictors may each show up equally often
- But each only a small number of times


## Joint Credible Regions

- Specify prior only on parameters in full model

$$
\begin{gathered}
\Pi\left(\boldsymbol{\beta} \mid \sigma^{2}, \tau\right)=N\left(0, \frac{\sigma^{2}}{\tau} I\right) \\
p\left(\sigma^{2}\right)=I G(0.01,0.01)
\end{gathered}
$$

- $\mathcal{C}_{\alpha}$ is $(1-\alpha) \times 100 \%$ credible region
- For fixed hyperparameter, $\tau$, get elliptical regions

$$
\mathcal{C}_{\alpha}=\left\{\boldsymbol{\beta}:(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{T} \Sigma^{-1}(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}) \leq C_{\alpha}\right\}, \text { for some } C_{\alpha}
$$

- $\hat{\boldsymbol{\beta}}, \Sigma$ - posterior mean, variance
- Closed form if $\tau$ fixed —- $\hat{\boldsymbol{\beta}}=\left(X^{T} X+\tau I\right)^{-1} X^{T} y$
- Otherwise, simple short MCMC run used
- Prior on $\tau \Rightarrow$ elliptical contours still valid credible sets


## Joint Credible Regions

- All points within region may be feasible parameter values
- Among these, we seek a sparse solution
- Search within the region for the 'sparsest' point

$$
\begin{gathered}
\tilde{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}}\|\boldsymbol{\beta}\|_{0} \\
\quad \text { subject to } \\
\boldsymbol{\beta} \in \mathcal{C}_{\alpha}
\end{gathered}
$$

- Chosen model for given $\alpha$ defined by set of indices, $\mathcal{A}_{n}^{\alpha}=\left\{j: \tilde{\beta}_{j} \neq 0\right\}$.


## Joint Credible Regions

- Problems with searching for sparsest solution
- High dimensional region - combinatorial search
- Also Non-unique
- Replace $L_{0}$ by smooth bridge between $L_{0}$ and $L_{1}$ (Lv and Fan, 2009)

$$
\sum_{j=1}^{p} \rho_{a}\left(\left|\beta_{j}\right|\right),
$$

$$
\begin{gathered}
\rho_{a}(t)=\frac{(a+1) t}{a+t}=\left(\frac{t}{a+t}\right) I(t \neq 0)+\left(\frac{a}{a+t}\right) t, \quad t \in[0, \infty), \\
\rho_{0}(t)=\lim _{a \rightarrow 0^{+}} \rho_{a}(t)=I(t \neq 0) \\
\rho_{\infty}(t)=\lim _{a \rightarrow \infty} \rho_{a}(t)=t
\end{gathered}
$$

- Interest on $\rho_{a}(t)$ for $a \approx 0$.


## Computation

- Non-convex penalty function
- Local linear approximation to penalty

$$
\begin{gathered}
\rho_{a}\left(\left|\beta_{j}\right|\right) \approx \rho_{a}\left(\left|\hat{\beta}_{j}\right|\right)+\rho_{a}^{\prime}\left(\left|\hat{\beta}_{j}\right|\right)\left(\left|\beta_{j}\right|-\left|\hat{\beta}_{j}\right|\right) \\
\quad \text { with } \rho_{a}^{\prime}\left(\left|\hat{\beta}_{j}\right|\right)=\frac{a(a+1)}{\left(a+\left|\hat{\beta}_{j}\right|\right)^{2}}
\end{gathered}
$$

- $\hat{\boldsymbol{\beta}}$ is posterior mean
- Using Lagrangian gives

$$
\tilde{\boldsymbol{\beta}}=\arg \min \left\{(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{T} \Sigma^{-1}(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})+\lambda_{\alpha} \sum_{j=1}^{p} \frac{\left|\beta_{j}\right|}{\left(a+\left|\hat{\boldsymbol{\beta}}_{j}\right|\right)^{2}}\right\}
$$

- Constant absorbed into $\lambda_{\alpha}$
- One-to-one correspondence between $\lambda_{\alpha}$ and $\alpha$


## Computation

- Optimization becomes

$$
\tilde{\boldsymbol{\beta}}=\arg \min \left\{(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{T} \Sigma^{-1}(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})+\lambda_{\alpha} \sum_{j=1}^{p} \frac{\left|\beta_{j}\right|}{\left(a+\left|\hat{\boldsymbol{\beta}}_{j}\right|\right)^{2}}\right\}
$$

- For $a \rightarrow 0$,

$$
\tilde{\boldsymbol{\beta}} \approx \arg \min \left\{(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{T} \Sigma^{-1}(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})+\lambda_{\alpha} \sum_{j=1}^{p} \frac{\left|\beta_{j}\right|}{\left|\hat{\beta}_{j}\right|^{2}}\right\}
$$

- Adaptive Lasso form
- LARS algorithm gives full path as vary $\alpha$


## Selection Consistency

- Sequence of credible sets $(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{T} \Sigma^{-1}(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}) \leq C_{n}$
- Sequence of models $\mathcal{A}_{n}^{\alpha_{n}}$
- One-to-one correspondence between $\alpha_{n}$ and $C_{n}$
- True model $\mathcal{A}$

Theorem 1. Under general conditions, if $C_{n} \rightarrow \infty$ and $n^{-1} C_{n} \rightarrow 0$, then the credible set method is consistent in variable selection, i.e. $P\left(\mathcal{A}_{n}^{\alpha_{n}}=\mathcal{A}\right) \rightarrow 1$

- Also holds for $p \rightarrow \infty$, but $p / n \rightarrow 0$


## Selection Consistency

- What about $p \gg n$ ?
- Asymptotics with $p / n \rightarrow 0$ not entirely relevant
- Posterior mean - Ridge Regression form
- $\hat{\boldsymbol{\beta}}=\left(X^{T} X+\tau I\right)^{-1} X^{T} y$
- If $p / n \nrightarrow 0$, can show that $\hat{\boldsymbol{\beta}}$ not mean square consistent

$$
E\left\{\left(\hat{\beta}-\beta^{0}\right)^{T}\left(\hat{\beta}-\beta^{0}\right)\right\} \nrightarrow 0
$$

## Selection Consistency

- Consider rectangular credible regions - not elliptical
- Just use diagonal elements of $\Sigma$ ignoring covariances
- Construct credible sets separately for each parameter
- Simple componentwise thresholding on posterior mean (t-statistics)

THEOREM 2. Let $\tau \rightarrow \infty$ and $\tau=O\left(\left(n^{2} \log p\right)^{1 / 3}\right)$ then the posterior thresholding approach is consistent in selection when the dimension $p$ satisfies $\log p=O\left(n^{c}\right)$ for some $0 \leq c<1$.

- Selection consistency for exponential growing dimension, $\log p=o(n)$
- Also applies to ridge regression with ridge parameter $\tau$


## Simulation Study

- Linear Regression Model with $N(0,1)$ errors
- $n=60$ observations (same as real data example)
- $p \in\{50,500,2000\}$ also $N(0,1)$ with $A R(1), \rho \in\{0.5,0.9\}$
- Results based on 200 datasets for each of the 6 setups


## Simulation Study

- Consider ordering of predictors induced by:
- Joint credible regions
- Marginal posterior thresholding
- Stochastic Search (with various choices of prior)
- LASSO
- To measure reliability of ordering:
- ROC curve - measures sensitivity vs. specificity related to type I error
- PRC (Precision-Recall) curve - related to False Discovery rate


## Simulation Study

- $p=50, n=60 \quad \rho=0.5$ (Top) and $\rho=0.9$ (Bottom)



## Simulation Study

- $p=500, n=60$
- Area under ROC and PRC curves

|  | ROC Area | PRC Area |  | CPU Time (sec) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\rho=0.5$ | $\rho=0.8$ | $\rho=0.5$ | $\rho=0.8$ |  |
| Joint Credible Sets | $0.946(0.004)$ | $0.989(0.001)$ | $0.708(0.011)$ | $0.873(0.007)$ | 20.93 |
| Marginal Credible Sets | $0.932(0.004)$ | $0.979(0.002)$ | $0.687(0.011)$ | $0.862(0.007)$ | 20.93 |
| SSVS (fixed, fixed) | $0.902(0.005)$ | $0.924(0.004)$ | $0.620(0.011)$ | $0.634(0.010)$ | 1222.91 |
| SSVS (random, fixed) | $0.929(0.004)$ | $0.957(0.003)$ | $0.672(0.010)$ | $0.693(0.009)$ | 1222.91 |
| SSVS (fixed, random) | $0.897(0.005)$ | $0.924(0.004)$ | $0.615(0.011)$ | $0.656(0.010)$ | 1222.91 |
| SSVS (random, random) | $0.925(0.005)$ | $0.955(0.003)$ | $0.665(0.010)$ | $0.692(0.009)$ | 1222.91 |

## Simulation Study

- $p=500, n=60 \quad \rho=0.5$ (Top) and $\rho=0.9$ (Bottom)



## Simulation Study

- $p=2000, n=60 \quad \rho=0.5$ (Top) and $\rho=0.9$ (Bottom)



## Ultra High-Dimension

Table 1: Selection performance for $p=10,000$ with 3 important predictors for various choices of $n$ based on 100 datasets. The entries in the table denote Correct Selection Proportion (CS), Coverage Proportion (COV), Average Model Size (MS), and Average Number of Important Predictors out of the 3 Included (IP).

|  | $n=100$ |  |  |  | $n=200$ |  |  |  | $n=500$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CS | COV | MS | IP | CS | COV | MS | IP | CS | COV | MS | IP |
| Marginal Sets | 9.0 | 31.0 | 3.22 | 2.06 | 24.0 | 47.0 | 3.37 | 2.38 | 39.0 | 54.0 | 3.01 | 2.49 |
| SIS + SCAD | 1.0 | 15.0 | 4.08 | 1.82 | 5.0 | 35.0 | 6.06 | 2.28 | 6.0 | 59.0 | 11.62 | 2.56 |
|  | $n=1000$ |  |  |  | $n=2000$ |  |  |  |  |  |  |  |
|  | CS | COV | MS | IP | CS | COV | MS | IP |  |  |  |  |
| Marginal Sets | 45.0 | 61.0 | 2.98 | 2.58 | 62.0 | 74.0 | 2.89 | 2.71 |  |  |  |  |
| SIS + SCAD | 12.0 | 64.0 | 14.62 | 2.62 | 23.0 | 79.0 | 17.96 | 2.78 |  |  |  |  |

## Real Data Analysis

- Mouse Gene Expression (Lan et al., 2006)
- 60 arrays ( 31 female, 29 male mice)
- 22,575 genes + gender ( $p=22,576$ )
- Fit with $n=55$, leave out 5 for testing

Table 1: Mean squared prediction error and model size based on 100 random splits of the real data, with standard errors in parenthesis. The 3 response variables are PEPCK, GPAT, and SCD1.

|  | PEPCK |  | GPAT |  | SCD1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MSPE | Model Size | MSPE | Model Size | MSPE | Model Size |
| Marginal Sets $(p=22,576)$ | $2.14(0.15)$ | $7.1(0.41)$ | $4.70(0.45)$ | $9.3(0.59)$ | $3.54(0.26)$ | $7.6(0.54)$ |
| SIS + SCAD $(p=22,576)$ | $2.82(0.18)$ | $2.3(0.09)$ | $5.88(0.44)$ | $2.6(0.10)$ | $3.44(0.22)$ | $3.2(0.14)$ |
| Joint Sets $(p=2,000)$ | $2.03(0.14)$ | $9.6(0.46)$ | $3.83(0.34)$ | $4.2(0.43)$ | $3.04(0.22)$ | $22.0(0.56)$ |
| Marginal Sets $(p=2,000)$ | $1.84(0.14)$ | $23.3(0.67)$ | $5.33(0.41)$ | $21.8(0.72)$ | $3.27(0.21)$ | $19.1(0.71)$ |
| LASSO $(p=2,000)$ | $3.03(0.19)$ | $7.7(0.96)$ | $5.03(0.42)$ | $3.3(0.79)$ | $3.25(0.31)$ | $19.7(0.77)$ |

## Conclusion

- Variable selection via Bayesian Credible sets
- Sparse solution within set
- Elliptical regions consistent if $p / n \rightarrow 0$
- Rectangular regions consistent if $\log p=o(n)$
- Computationally feasible even in high dimensions
- Excellent finite sample performance
- Extensions to other models

