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When Do Noisy Votes Reveal the Truth?
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A well-studied approach to the design of voting rules views them as maximum likelihood estimators; given
votes that are seen as noisy estimates of a true ranking of the alternatives, the rule must reconstruct the
most likely true ranking. We argue that this is too stringent a requirement, and instead ask: How many
votes does a voting rule need to reconstruct the true ranking? We define the family of pairwise-majority
consistent rules, and show that for all rules in this family the number of samples required from the Mallows
noise model is logarithmic in the number of alternatives, and that no rule can do asymptotically better (while
some rules like plurality do much worse). Taking a more normative point of view, we consider voting rules
that surely return the true ranking as the number of samples tends to infinity (we call this property accuracy
in the limit); this allows us to move to a higher level of abstraction. We study families of noise models that
are parametrized by distance functions, and find voting rules that are accurate in the limit for all noise
models in such general families. We characterize the distance functions that induce noise models for which
pairwise-majority consistent rules are accurate in the limit, and provide a similar result for another novel
family of position-dominance consistent rules. These characterizations capture three well-known distance
functions.

1. INTRODUCTION
Social choice theory studies the aggregation of individual preferences towards a col-
lective choice. In one of the most common models, both the individual preferences and
the collective decision are represented as rankings of the alternatives. A voting rule1

takes the individual rankings as input and outputs a social ranking.
One can imagine many different voting rules; which are better than others? The

popular axiomatic approach suggests that the best voting rules are the ones that sat-
isfy intuitive social choice axioms. For example, if we replicate the votes, the outcome
should not change; or, if each and every voter prefers one alternative to another, the
social ranking should follow suit. It is well-known though that natural combinations of
axioms are impossible to achieve [Arrow 1951], hence the axiomatic approach cannot
give a crisp answer to the above question.

A different — in a sense competing — approach views voting rules as estimators.
From this viewpoint, some alternatives are objectively better than others, i.e., the
votes are simply noisy estimates of an underlying ground truth. One voting rule is
therefore better than another if it is more likely to output the true underlying rank-
ing; the best voting rule is a maximum likelihood estimator (MLE) of the true ranking.
This approach dates back to Marquis de Condorcet, who also proposed a compellingly
simple noise model: each voter ranks each pair of alternatives correctly with probabil-
ity p > 1/2 and incorrectly with probability 1 − p, and the mistakes are i.i.d.2 Today
this noise model is typically named after Mallows [1957]. Probability theory was still
in its infancy in the 18th Century (in fact Condorcet was one of its pioneers), so the
maximum likelihood estimator in the Mallows model — the Kemeny rule — had to
wait another two centuries to receive due recognition [Young 1988]. More recently, the

1More formally known in this context as a social welfare function.
2Intuitively, if a ranking is not obtained because of cycle formation, the process is restarted.
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MLE approach has received some attention in computer science [Conitzer and Sand-
holm 2005; Conitzer et al. 2009; Elkind et al. 2010b; Procaccia et al. 2012; Mao et al.
2013], in part because its main prerequisite (underlying true ranking) is naturally sat-
isfied by some of the crowdsourcing and human computation domains, where voting is
in fact commonly used [Procaccia et al. 2012; Mao et al. 2013].

As compelling as the MLE approach is, there are many different considerations in
choosing a voting rule, and insisting that the voting rule be an MLE is a tall order
(there is only one MLE per noise model); this is reflected in existing negative re-
sults [Conitzer and Sandholm 2005; Elkind et al. 2010b]. We relax this requirement
by asking: How many votes do prominent voting rules need to recover the true rank-
ing with high probability? In crowdsourcing tasks, for example, the required number of
votes directly translates to the amount of time and money one must spend to obtain ac-
curate results. Taking one step further and adopting a more normative viewpoint, we
ask: Which voting rules are guaranteed to return the correct ranking given an infinite
number of samples from Mallows’ model? Finally, at the highest level of abstraction
we consider general classes of noise models, and seek similar guarantees with respect
to any noise model in one of these classes.

1.1. Our contribution
In Section 3 we focus on the Mallows model. We define the class of pairwise-majority
consistent (PM-c) rules. Intuitively, if there is a ranking σ of the alternatives such that
for every pair of alternatives a majority of voters agree with σ on their comparison
then a PM-c rule must return σ. The Kemeny rule is a PM-c rule, and so are several
other prominent voting rules. Our main result for this section is that to output the
true ranking with probability 1− ε any PM-c rule requires only a logarithmic number
of samples in 1/ε and m, where m is the number of alternatives. We also establish a
matching lower bound that holds for any voting rule. Among other results, we show
that a similar bound does not hold for the plurality rule — the most ubiquitous among
voting rules — and indeed it requires an exponential number of samples.

Section 4 is an interlude of sorts. Instead of quantifying the required number of sam-
ples, we consider a relaxed guarantee that we call accuracy in the limit: a voting rule
should return the correct ranking given an infinite number of samples. We view this
as a normative property, and in this sense we are connecting the axiomatic approach
with the estimation approach. In the Mallows model accuracy in the limit is easy to
satisfy. Clearly, it is satisfied by all PM-c rules in light of the abovementioned result,
but we also show that it is satisfied by all rules that belong to another novel class —
position-dominance consistent (PD-c) rules. Roughly speaking, PD-c rules focus on the
exact positions in which alternatives appear in the individual rankings, rather than
pairwise comparisons, and are disjoint from PM-c rules. We show that all PD-c rules
are also accurate in the limit under the Mallows model. While we view accuracy in the
limit as a normative constraint, asking for a voting rule to be accurate in the limit only
for the Mallows model is perhaps asking too little. In the Mallows model the probabil-
ity of a ranking decreases, but in a specific way (exponentially), as its Kendall-Tau (KT)
distance from the true ranking increases; this distance function measures the number
of disagreements on pairs of alternatives. We want the voting rules to be accurate in
the limit with respect to any noise model that is similarly monotonic with respect to
the KT distance, and show that this is indeed the case with respect to all PM-c and
PD-c rules.

At the highest level of abstraction, we wish to extend our results to noise models
that are derived from a variety of distance functions. We define the family of majority-
concentric (MC) distances and prove the following characterization result: All PM-c
rules are accurate in the limit with respect to any noise model that is monotonic with
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respect to a distance function d if and only if d is MC. Similarly, we define the family of
position-concentric (PC) distances and prove an analogous results for PD-c rules and
PC distances. To verify that these results are indeed very general, we prove that three
popular distance functions are both MC and PC.

1.2. Related work
The theme of quantifying the number of samples that are required to uncover the
truth plays a central role in a recent paper by Chierichetti and Kleinberg [2012]. They
study a setting with a single correct alternative and noisy signals about its identity.
Focusing on a single voting rule — the plurality rule — they give an upper bound on
the number of votes that are required to pinpoint the correct winner. They also prove
a lower bound that applies to any voting rule and suggests that plurality is not far
from optimal. Interestingly, under the Mallows model we show that plurality is far
worse than all PM-c rules, but note that we consider rules that output a ranking while
Chierichetti and Kleinberg [2012] study rules that output a single winner.

Our initial results regarding the Kemeny rule are related to the work of Braverman
and Mossel [2008]. Given samples from the Mallows model, they aim to compute the
Kemeny ranking; this problem is known to be NP-hard. They focus on circumventing
the complexity barrier by giving an efficient algorithm that computes the Kemeny
ranking with arbitrarily high probability. In contrast, we ask: How many samples do
PM-c rules (including Kemeny) need to reconstruct the true ranking?

There is a significant body of literature on MLEs and parameter estimation for
noise models over rankings that generalize Mallows’ model [Fligner and Verducci 1986;
Critchlow et al. 1991; Meilă et al. 2012; Lebanon and Lafferty 2002; Lu and Boutilier
2011]. In particular, the classic paper by Fligner and Verducci [1986] analyzes exten-
sions of the Mallows model with distance functions from two families: those that are
based on discordant pairs (including the KT distance) and those that are based on
cyclic structure. Critchlow et al. [1991] introduce four categories of noise models; they
also define desirable axiomatic properties that noise models should satisfy, and deter-
mine which properties are satisfied by the different categories.

Somewhat further afield, a recent line of work in computational social choice studies
the distance rationalizability of voting rules [Meskanen and Nurmi 2008; Elkind et al.
2009, 2010a,b; Boutilier and Procaccia 2012]. Voting rules are said to be distance ra-
tionalizable if they always select an alternative or a ranking that is “closest” to being a
consensus winner, under some notion of distance and some notion of consensus. Among
these papers, the one by Elkind et al. [2010b] is the most closely related to our work;
they observe that the Kemeny rule is both an MLE and distance rationalizable, and
ask whether at least one of several other common rules has the same property (the
answer is “no”).

2. PRELIMINARIES
We consider a set A of m alternatives. Let L(A) be the set of votes (which we may think
of as rankings or permutations), where each vote is a bijection σ : A → {1, 2, . . . ,m}.
Hence, σ(a) is the position of alternative a in σ. In particular, σ(a) < σ(b) denotes that
a is preferred to b under σ; we alternatively denote this by a �σ b. A vote profile (or
simply profile) π ∈ L(A)n consists of a set of n votes for some n ∈ N.

2.1. Voting rules
A deterministic voting rule is a function r : ∪n≥1L(A)n → L(A) which operates on a
vote profile and outputs a ranking. First, note that we define the voting rule to output
a ranking over alternatives rather than a single alternative; such functions are also
known as social welfare functions in the literature. Second, in contrast to the tradi-
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tional notation, we define a voting rule to operate on any number of votes, which is
required to analyze its asymptotic properties as the number of votes grows. We con-
sider randomized voting rules which are denoted by r : ∪n≥1L(A)n → D(L(A)) where
D(·) denotes the set of all distributions over an outcome space. We use Pr[r(π) = σ]
to denote the probability of rule r returning ranking σ given profile π. The following
voting rules (or families of voting rules) play a key role in the paper.

(Positional) Scoring Rules. A scoring rule is given by a scoring vector α =
(α1, . . . , αm) where αi ≥ αi+1 for all i ∈ {1, . . . ,m} and α1 > αm. Under this rule
for each vote σ and i ∈ {1, . . . ,m}, αi points are awarded to the alternative σ−1(i),
that is, α1 points to the first alternative, α2 points to the second alternative, and so on.
The alternative with the most points overall is selected as the winner. We naturally
extend this to output the ranking where alternatives are sorted in the descending or-
der of their total points. Our results on positional scoring rules hold irrespective of the
tie-breaking rule used. Special scoring rules include plurality with α = (1, 0, 0, . . . , 0),
Borda count with α = (m,m − 1, . . . , 1), the veto rule with α = (1, 1, . . . , 1, 0), and the
harmonic rule [Boutilier et al. 2012] with α = (1, 1/2, . . . , 1/m).

The Kemeny Rule. Given a profile π = (σ1, . . . , σn) ∈ L(A)n, the Kemeny rule selects
a ranking σ ∈ L(A) that minimizes

∑n
i=1 dKT (σ, σi), where dKT is the Kendall tau (KT)

distance defined as

dKT (σ1, σ2) = |{(a, b)| ((a �σ1
b) ∧ (b �σ2

a)) ∨ ((b �σ1
a) ∧ (a �σ2

b))}|.
In words, the KT distance between two rankings is their number of disagreements over
pairs of alternatives, and informally it is equal to the minimum number of adjacent
swaps required to convert one ranking into the other. We give special attention to the
Kemeny rule with uniform tie-breaking — the randomized version of the Kemeny rule
where ties are broken uniformly, i.e., each ranking in arg minσ∈L(A)

∑n
i=1 dKT (σ, σi) is

returned with equal probability.

2.2. Noise models and distances
We assume that there exists a true hidden order σ∗ ∈ L(A) over the alternatives. We
denote the alternative at position i in σ∗ by ai, i.e., σ∗(ai) = i.

Our noise models are parametrized by distance functions over rankings. A function
d : L(A) × L(A) → R≥0 is called a distance function if for every σ, σ′, τ ∈ L(A) it
satisfies: (1) d(σ, σ′) ≥ 0, (2) d(σ, σ′) = 0 if and only if σ = σ′, (3) d(σ, σ′) = d(σ′, σ),
and (4) d(σ, σ′) ≤ d(σ, τ) + d(τ, σ′). We assume that our distance functions are right-
invariant: the distance between any two rankings does not change if the alternatives
are relabeled, which is a standard assumption. A right-invariant distance function is
fully specified by the distances of all rankings from any single base ranking.

We consider three popular distance functions in this paper: the Kendall tau (KT)
distance (which we have defined above), the footrule distance, and the maximum dis-
placement distance. We investigate the KT distance in detail in Section 3. Definitions
of the other distance functions are given in Appendix E.

A noise model defines the probability of observing a ranking given an underlying
true ranking, i.e., Pr[σ|σ∗] for all σ, σ∗ ∈ L(A). In Section 3, we focus on a particular
noise model, known as the Mallows model [Mallows 1957], which is widely used in
machine learning and statistics. In this model, a ranking is generated given the true
ranking σ∗ as follows. When two alternatives a and b with a �σ∗ b are compared,
the outcome is consistent with the true ranking, i.e., a � b, with a fixed probability
1/2 < p < 1. Every two alternatives are compared in this manner, and the process is
restarted if the generated vote has a cycle (e.g., a � b � c � a). It is easy to check that
the probability of drawing a ranking σ, given that the true order is σ∗, is proportional
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to

p(
m
2 )−dKT (σ,σ∗) · (1− p)dKT (σ,σ

∗),

which upon normalization gives

Pr[σ|σ∗] =
ϕdKT (σ,σ

∗)

Zmϕ
,

where ϕ = (1−p)/p < 1 and Zmϕ is the normalization factor which is independent of the
true ranking σ∗ (see, e.g., [Lu and Boutilier 2011]). We denote by pi,j the probability
that the alternative at position i in the true ranking (ai) appears in position j in a
random vote , so

pi,j =
∑

σ∈L(A)|σ(ai)=j

Pr[σ|σ∗].

Let qi,k =
∑k
j=1 pi,j . Votes are sampled independently, so the probability of observing a

profile π = (σ1, . . . , σn) ∈ L(A)n is Pr[π|σ∗] =
∏n
i=1 Pr[σi|σ∗]. We note that this model is

equivalent to the Condorcet noise model.

3. SAMPLE COMPLEXITY IN MALLOWS’ MODEL
We first consider the Mallows model and analyze the number of samples needed by
different voting rules to determine the true ranking with high probability; we use
this sample complexity as a criterion to distinguish between voting rules or families of
voting rules. For any (randomized) voting rule r, integer k ∈ N and ranking σ ∈ L(A),
let Accr(k, σ) =

∑
π∈L(A)k Pr[π|σ] · Pr[r(π) = σ] denote the accuracy of rule r with k

samples and true ranking σ, that is, the probability that rule r returns σ given k
samples from Mallows’ model with true ranking σ. We overload the notation by letting
Accr(k) = minσ∈L(A) Accr(k, σ). In words, given k samples from Mallows’ model, rule
r returns the underlying true ranking with probability at least Accr(k) irrespective of
what the true ranking is. Finally, we denote Nr(ε) = min{k | Accr(k) ≥ 1− ε}, which is
the number of samples required by rule r to return the true ranking with probability
at least 1− ε . Informally, we call Nr(ε) the sample complexity of rule r.

We begin by showing that for any number of alternatives m and any accuracy level
ε, the Kemeny rule (with uniform tie-breaking) requires the minimum number of sam-
ples from Mallows’ model to determine the true ranking with probability at least 1− ε.
It is already known that the Kemeny rule is the maximum likelihood estimator (MLE)
for the true ranking given samples from Mallows’ model. Formally, given a profile
π = (σ1, . . . , σn) from Mallows’ model, the MLE estimator of the true ranking is

arg max
σ∈L(A)

Pr[π|σ] = arg max
σ∈L(A)

n∏
i=1

ϕ−dKT (σi,σ)

Zmϕ
= arg min

σ∈L(A)

n∑
i=1

dKT (σi, σ),

where the expression on the right hand side is a Kemeny ranking. While at first glance
it may seem that this directly implies optimal sample complexity of the Kemeny rule,
we give an example in Appendix A of a noise model where the MLE rule does not have
optimal sample complexity. However, we show that for the Mallows model, the Kemeny
rule is optimal in terms of sample complexity. The proof is given in Appendix A.

THEOREM 3.1. The Kemeny rule with uniform tie-breaking has the optimal sample
complexity in Mallows’ model, that is, for any number of alternatives m and any ε > 0,
NKEM(ε) ≤ Nr(ε) for every (randomized) voting rule r.
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Now that we know that the Kemeny rule has the optimal sample complexity, a natu-
ral question is to determine how many samples it really requires. Instead of analyzing
the sample complexity of the Kemeny rule particularly, we consider a family of voting
rules (which includes the Kemeny rule itself) such that each rule in this family has the
same asymptotic sample complexity as that of the Kemeny rule.

3.1. The family of PM-c rules
Our family of voting rules crucially relies on the standard concept of pairwise-majority
graph (PM graph). Given a profile π ∈ L(A)n, the PM graph of π is the directed graph
G = (V,E), where the alternatives are the vertices (V = A) and there is an edge from
alternative a to alternative a′ if a is preferred to a′ in a (strong) majority of the rankings
of π. Formally, (a, a′) ∈ E if |{σ ∈ π|a �σ a′}| > |{σ ∈ π|a′ �σ a}|. Note that there may
be pairs of alternatives such that there is no edge in the PM graph in either direction
(if they are tied), but there can never be an edge in both directions. A PM graph can
also have directed cycles. When a PM graph is complete (i.e., there is an edge between
every pair of alternatives) and acyclic, there exists a unique σ ∈ L(A) such that there
is an edge from a to a′ if and only if a �σ a′. In this case, we say that the PM graph
reduces to σ.

Definition 3.2 (Pairwise-Majority Consistent Rules). A deterministic voting rule r
is called pairwise-majority consistent (PM-c) if r(π) = σ whenever the PM graph of
π reduces to σ. For randomized voting rules, we require that Pr[r(π) = σ] = 1.

To the best of our knowledge this family of rules is novel. Note though that an acyclic
and complete PM graph is similar to — and in some sense an extension of — having
a Condorcet winner. A Condorcet winner is an alternative that beats every other al-
ternative in a pairwise election. It is easy to check that if such an alternative exists,
then it is unique and it is a source in the PM graph with m− 1 outgoing edges and no
incoming edges. Thus, profiles where the PM graph reduces to a ranking necessarily
have a Condorcet winner. In addition, they have a second alternative with m − 2 out-
going edges and only 1 incoming edge, a third alternative with m − 3 outgoing edges
and 2 incoming edges, and so on.

THEOREM 3.3. The Kemeny rule, the ranked pairs method, Copeland’s method, and
Schulze’s method are PM-c.

The definitions of these rules and the proof of the theorem appear in Appendix C.
Note that all the rules in Theorem 3.3 are Condorcet consistent when they output a
single alternative. If we take any Condorcet consistent method, apply it on a profile,
remove the winner from every vote in the profile, apply the method again on the re-
duced profile, and keep repeating this process, then the extended rule that outputs
the alternatives in the order of removal is always a PM-c rule. In contrast, Copeland’s
method in Theorem 3.3 is extended by outputting a ranking where the alternatives are
sorted by their Copeland scores.

We now proceed to prove that any PM-c rule requires at most a logarithmic number
of samples in m (the number of alternatives) and 1/ε to determine the true ranking
with probability at least 1− ε. First, we introduce a property of distance functions that
will be used throughout the paper. For any σ ∈ L(A) and a, b ∈ A, define σa↔b to be the
ranking obtained by swapping a and b in σ. That is, σa↔b(c) = σ(c) for any c ∈ A\{a, b},
σa↔b(a) = σ(b) and σa↔b(b) = σ(a).

Definition 3.4 (Swap-Increasing Distance Functions). An integer-valued distance
function d is called swap-increasing if for any σ∗, σ ∈ L(A) and alternatives a, b ∈ A
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such that a �σ∗ b and a �σ b, we have d(σa↔b, σ
∗) ≥ d(σ, σ∗)+1, and if σ∗(b) = σ∗(a)+1

(a and b are adjacent in σ∗) then d(σa↔b, σ
∗) = d(σ, σ∗) + 1.

The following lemma is a folklore result; we reconstruct its proof in Appendix E for the
sake of completeness.

LEMMA 3.5. The Kendall tau (KT) distance is swap-increasing.

We are now ready to analyze the sample complexity of PM-c rules.

THEOREM 3.6. For any given ε > 0, any PM-c rule determines the true ranking with
probability at least 1− ε given O(log(m/ε)) samples from Mallows’ model.

PROOF. Let σ∗ denote the true underlying ranking. We show that the PM graph of
a profile of O(log(m/ε)) votes from Mallows’ model reduces to σ∗ with probability at
least 1− ε. It follows that any PM-c rule would output σ∗ with probability at least 1− ε.

Let π ∈ L(A)n denote a profile of n samples from Mallows’ model. For any a, b ∈ A,
let nab denote the number of rankings σ ∈ π such that a �σ b. Hence, nab + nba = n for
every a, b ∈ A. The PM graph of π reduces to σ∗ if and only if for every a, b ∈ A such
that a �σ∗ b, we have nab − nba ≥ 1. Hence, we want an upper bound on n such that

Pr [∀a, b ∈ A, a �σ∗ b⇒ nab − nba ≥ 1] ≥ 1− ε.
For any a, b ∈ A with a �σ∗ b, define δab = E[(nab − nba)/n]. Let pa�b denote the

probability that a �σ b in a random sample σ. Then, by linearity of expectation, we
have δab = pa�b − pb�a. Thus,

Pr [nab − nba ≤ 0] = Pr

[
nab − nba

n
≤ 0

]
≤ Pr

[∣∣∣∣nab − nban
− E

[
nab − nba

n

]∣∣∣∣ ≥ δab]
≤ 2 · e−2·δ

2
ab·n ≤ 2 · e−2·δ

2
min·n,

where the third transition is due to Hoeffding’s inequality and in the last transition
δmin = mina,b∈A:a�σ∗b δab. Applying the union bound, we get

Pr [∃a, b ∈ A, {(a �σ∗ b) ∧ (nab − nba ≤ 0)}] ≤
(
m

2

)
· 2 · e−2·δ

2
min·n ≤ m2 · e−2·δ

2
min·n

It is easy to check that the right-most quantity above is at most ε when n ≥ 1
2·δ2min

·

log
(
m2

ε

)
. To complete the proof we need to show that δmin = Ω(1), that is, it is lower

bounded by a constant independent of m. This is quite intuitive since the process of
generating a sample from Mallows’ model maintains the order between every pair of
alternatives with a constant probability p > 1/2. However, the fact that we restart the
process if a cycle is formed makes the probabilities as well as this analysis a bit more
involved. For any a, b ∈ A such that a �σ∗ b, we have

δab = pa�b − pb�a =
∑

σ∈L(A)|a�σb

Pr[σ|σ∗]−
∑

σ∈L(A)|b�σa

Pr[σ|σ∗]

=
∑

σ∈L(A)|a�σb

(Pr[σ|σ∗]− Pr[σa↔b|σ∗]) =
∑

σ∈L(A)|a�σb

ϕdKT (σ,σ
∗) − ϕdKT (σa↔b,σ∗)

Zmϕ

≥
∑

σ∈L(A)|a�σb

ϕdKT (σ,σ
∗) · (1− ϕ)

Zmϕ
= (1− ϕ) · pa�b = (1− ϕ) ·

(
1 + δab

2

)
, (1)

where the third transition follows since σ ↔ σa↔b is a bijection between all rankings
where a � b and all rankings where b � a, the fifth transition follows using ϕ < 1
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and Lemma 3.5, and the last transition follows by the equalities pa�b − pb�a = δab and
pa�b + pb�a = 1. Solving Equation (1), we get δab ≥ (1− ϕ)/(1 + ϕ) for all a, b ∈ A with
a �σ∗ b. Hence, δmin ≥ (1− ϕ)/(1 + ϕ), as required. (Theorem 3.6)

We have seen that PM-c rules have logarithmic sample complexity; it turns out that
no rule can do better, i.e., we prove a matching lower bound that holds for any random-
ized voting rule.

THEOREM 3.7. For any ε ∈ (0, 1/2], any (randomized) voting rule requires
Ω(log(m/ε)) samples from Mallows’ model to determine the true ranking with proba-
bility at least 1− ε.

PROOF. Consider any voting rule r. Assume Accr(n) ≥ 1−ε for some n ∈ N. We want
to show that n = Ω(log(m/ε)). For any σ ∈ L(A), we have Accr(n, σ) ≥ 1 − ε. Consider
an arbitrary σ ∈ L(A), and let N (σ) = {σ′ ∈ L(A)|dKT (σ′, σ) = 1} denote the set of
all rankings at distance 1 from σ. Then, for any ranking σ′ ∈ N (σ) and any profile
π = (σ1, . . . , σn) ∈ L(A)n, we have

Pr[π|σ] =

n∏
i=1

ϕdKT (σi,σ)

Zmϕ
≥

n∏
i=1

ϕdKT (σi,σ
′)+1

Zmϕ
= ϕn · Pr[π|σ′], (2)

where the second transition holds since for any τ ∈ L(A),

dKT (τ, σ) ≤ dKT (τ, σ′) + dKT (σ, σ′) = dKT (τ, σ′) + 1

due to triangle inequality of distance functions. Now,

Accr(n, σ) =
∑

π∈L(A)n

Pr[π|σ] · Pr[r(π) = σ] =
∑

π∈L(A)n

Pr[π|σ] · (1− Pr[r(π) 6= σ])

= 1−
∑

π∈L(A)n

Pr[π|σ] · Pr[r(π) 6= σ]

≤ 1−
∑

π∈L(A)n

Pr[π|σ] ·

 ∑
σ′∈N (σ)

Pr[r(π) = σ′]


≤ 1−

∑
σ′∈N (σ)

∑
π∈L(A)n

ϕn · Pr[π|σ′] · Pr[r(π) = σ′]

= 1− ϕn ·
∑

σ′∈N (σ)

Accr(n, σ′) ≤ 1− ϕn · (m− 1) · (1− ε),

where the fifth transition follows by changing the order of summation and Equa-
tion (2), and the last transition follows since Accr(n) ≥ 1 − ε and |N (σ)| = m − 1.
Thus, to achieve an accuracy of at least 1− ε, we need ϕn · (m− 1) · (1− ε) ≤ ε, and the
theorem follows by solving for n. (Theorem 3.7)

3.2. Scoring rules may require exponentially many samples
While Theorems 3.6 and 3.7 show that every PM-c rule requires an asymptotically op-
timal (and in particular, logarithmic) number of samples to determine the true ranking
with high probability, some classical voting rules such as plurality fall short. In par-
ticular, we establish that plurality requires at least exponentially many samples to
determine the true ranking with high probability. Since plurality relies on the number
of appearances of various alternatives in the first position, our analysis crucially relies
on the probability of different alternatives coming first in a random vote, i.e., pi,1.
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LEMMA 3.8. pi,1 = ϕi−1/
(∑m

j=1 ϕ
j−1
)

for all i ∈ {1, . . . ,m}.

PROOF. Recall that ai denotes the alternative at position i in the true ranking σ∗.
First we prove that for any i ∈ {1, . . . ,m− 1}, we have pi+1,1 = ϕ · pi,1. To see this,

pi,1 − pi+1,1 =

∑
σ∈L(A)|σ(ai)=1 ϕ

dKT (σ,σ
∗) −

∑
σ∈L(A)|σ(ai+1)=1 ϕ

dKT (σ,σ
∗)

Zmϕ

=

∑
σ∈L(A)|σ(ai)=1

(
ϕdKT (σ,σ

∗) − ϕdKT (σai↔ai+1
,σ∗)
)

Zmϕ

=
∑

σ∈L(A)|σ(ai)=1

ϕdKT (σ,σ
∗) · (1− ϕ)

Zmϕ
= (1− ϕ) · pi,1,

where the second transition follows since σ ↔ σai↔ai+1 is a bijection between the set
of all rankings where ai is first and the set of all rankings where ai+1 is first, and the
third transition follows due to Lemma 3.5. Hence, pi,1 − pi+1,1 = (1 − ϕ) · pi,1, which
implies that pi+1,1 = ϕ ·pi,1. Applying this repeatedly, we have that pi,1 = p1,1 ·ϕi−1, for
every i ∈ {1, . . . ,m}. Summing over 1 ≤ i ≤ m and observing that

∑m
i=1 pi,1 = 1, we get

the desired result. (Lemma 3.8)

Lemma 3.8 directly implies that the probability of sampling votes in which am−1 or
am (the two alternatives that are ranked at the bottom of σ∗) are at the top is exponen-
tially small, hence plurality requires an exponential number of samples to “see” these
alternatives and distinguish between them. However, what makes the proof more dif-
ficult is that in theory the tie-breaking scheme may help plurality return the true
ranking; indeed it is known that the choice of tie breaking scheme can significantly
affect a rule’s performance [Obraztsova et al. 2011]. However, we show that here this
is not the case, i.e., our lower bound works for any natural (randomized) tie-breaking
scheme.

THEOREM 3.9. For any ε ∈ (0, 1/4], plurality (with any possibly randomized tie-
breaking scheme that depends on the top-ranked alternatives of the input votes) requires
Ω((1/ϕ)m) samples from Mallows’ model to output the true ranking with probability at
least 1− ε.

PROOF. We first note that instead of operating on a profile π ∈ L(A)n, plurality
(and its tie-breaking scheme) operates on the vector of its plurality votes v ∈ An (we
call it a top-vote) which consists of the top-ranked alternatives of the different votes of
π. The probability of observing a top-vote v given a true ranking σ∗ is the sum of the
probabilities of observing profiles whose top-vote is v; we denote this by Pr[v|σ∗]. The
accuracy of the plurality rule (denoted PL) with n samples on a true ranking σ can now
equivalently be written as

AccPL(n, σ) =
∑
v∈An

Pr[v|σ] · Pr[PL(v) = σ]. (3)

Fix ε ∈ (0, 1/4] and suppose we have AccPL(n) ≥ 1 − ε, i.e., AccPL(n, σ) ≥ 1 − ε for
all σ ∈ L(A). We want to show that n = Ω((1/ϕ)m). Let the set of alternatives be
A = {a1, . . . , am}. Consider two distinct rankings: σ1 = (a1 � . . . � am−2 � am−1 � am)
and σ2 = (a1 � . . . � am−2 � am � am−1) (where the last two alternatives are swapped
compared to σ1). Let Â = A \ {am−1, am}. We can decompose Equation (3) into two
parts: (i) a summation over v ∈ Ân (when plurality does not “see” alternatives am−1
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and am); denote this by f(σ), and (ii) a summation over v ∈ An \ Ân (when plurality
“sees” at least one of them); denote this by g(σ).

For any v ∈ Ân, we have Pr[v|σ1] = Pr[v|σ2]. To see this, observe that in any profile
π with top-vote v we can swap alternatives am−1 and am in all the votes to obtain
(the unique) profile π′ which importantly also has top-vote v and Pr[π|σ1] = Pr[π′|σ2].
Summing over all profiles with top-vote v, this yields Pr[v|σ1] = Pr[v|σ2]. Therefore, we
have

f(σ1) + f(σ2) =
∑
v∈Ân

Pr[v|σ1] · (Pr[PL(v) = σ1] + Pr[PL(v) = σ2]) ≤
∑
v∈Ân

Pr[v|σ1] ≤ 1.

Further,

g(σ1) =
∑

v∈An\Ân
Pr[v|σ1] · Pr[PL(v) = σ1] ≤

∑
v∈An\Ân

Pr[v|σ1],

where the right hand side is the probability that at least one of the two alternatives
am−1 and am comes first in at least one vote. Let ti,j denote the number of votes in
which alternative ai appears in position j. Then we have

g(σ1) ≤ Pr[(tm−1,1 > 0) ∨ (tm,1 > 0)] ≤ Pr[tm−1,1 > 0] + Pr[tm,1 > 0],

where the last transition is due to the union bound.
The probability that alternative am−1 appears first in a vote is pm−1,1. Therefore, the

probability that it appears first in at least one vote is at most n · pm−1,1 by the union
bound. Similarly, Pr[tm,1 > 0] ≤ n · pm,1. Therefore, g(σ1) ≤ n · (pm−1,1 + pm,1). In the
same way, we can obtain g(σ2) ≤ n · (pm−1,1 + pm,1). Finally, using the bounds obtained
on f and g, we have

AccPL(n, σ1) + AccPL(n, σ2) = (f(σ1) + f(σ2)) + g(σ1) + g(σ2) ≤ 1 + 2 · n · (pm−1,1 + pm,1).

We assumed that AccPL(n, σ) ≥ 1 − ε for every σ ∈ L(A). Therefore, we need 1 + 2 · n ·
(pm−1,1 + pm,1) ≥ 2 · (1− ε), i.e.,

n ≥ 1− 2 · ε
2 · (pm−1,1 + pm,1)

≥ 1

8 · pm−1,1
=

∑m−1
j=0 ϕj

8 · ϕm−2
≥ 1

8 · ϕm−2
,

where the second transition follows since ε ∈ (0, 1/4] and pm,1 < pm−1,1, and the third
transition follows by Lemma 3.8. Thus, plurality requires Ω((1/ϕ)m) samples to output
the true ranking with high probability. (Theorem 3.9)

Plurality has terrible performance because it ranks alternatives by just observing
their number of appearances in the first positions of the input votes. In contrast, con-
sider the veto rule that essentially ranks alternatives in the ascending order of their
number of appearances at the bottom of input votes. By symmetry we have pm,m = p1,1
and pm−1,m = p2,1, both of which are lower bounded by constants due to Lemma 3.8.
Hence, veto requires only constantly many samples to distinguish between am−1 and
am. Nevertheless, it is difficult for both plurality and veto to distinguish between al-
ternatives am/2 and am/2+1 that are far from both ends. Certain scoring rules, such as
Borda count or the harmonic scoring rule, take into consideration the number of ap-
pearances of an alternative at all positions. We show that a positional scoring rule that
gives different weights to all positions and does not give some position exponentially
higher weight than any other position would require only polynomially many samples.
The proof is given in Appendix B.
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THEOREM 3.10. Consider a positional scoring rule r given by scoring vector
(α1, . . . , αm). For i ∈ {1, . . . ,m − 1}, define βi = αi − αi+1. Let βmax = maxi<m βi and
βmin = mini<m βi. Assume βmin > 0 and let β∗ = βmax/βmin. Then for any ε > 0, rule r
requires O((β∗)2 ·m2 · log(m/ε)) samples to output the true ranking with probability at
least 1− ε.

While Theorem 3.10 shows that scoring rules such as Borda count and the harmonic
rule have polynomial sample complexity, it does not apply to scoring rules such as
plurality and veto since they have βmin = 0. Note that in Borda count all βi’s are equal,
hence it is the rule with the lowest possible β∗ = 1.

4. MOVING TOWARDS GENERALIZATIONS
Section 3 focused on Mallows’ model and sample complexity. In Section 5 we will con-
sider a much higher level of abstraction, including much more general noise mod-
els and infinitely many samples. This section serves as a mostly conceptual interlude
where we gradually introduce some new ideas.

4.1. From finite to infinitely many samples and the family of PD-c rules
While the exact or asymptotic sample complexity — as analyzed in Section 3 — can
help us distinguish between various voting rules, here we take a normative point of
view and argue that voting rules need to meet a basic requirement: given infinitely
many samples, the rule should be able to reproduce the true ranking with probability
1. Formally, a voting rule r is accurate in the limit for a noise model G if given votes
from G, limn→∞Accr(n) = 1.

For Mallows’ model, achieving accuracy-in-the-limit is very easy. Theorem 3.6 shows
that given O(log(m/ε)) samples, every PM-c rule outputs the true ranking with proba-
bility at least 1− ε. Thus, every PM-c rule is accurate in the limit for Mallows’ model.
While plurality requires at least exponentially many samples to determine the true
ranking with high probability (Theorem 3.9), a matching upper bound (up to logarith-
mic factors) can trivially be established showing that plurality is accurate in the limit
for Mallows’ model as well. In fact, it can be argued that all scoring rules are accurate
in the limit for Mallows’ model. We prove a more general statement by introducing a
novel family of voting rules that generalizes scoring rules and showing that all rules
in this family are accurate in the limit for Mallows’ model.

Definition 4.1 (Position-Dominance). Given a profile π = (σ1, . . . , σn) ∈ L(A)n, al-
ternative a ∈ A and j ∈ {1, . . . ,m − 1}, define sj(a) = |{i : σi(a) ≤ j}|, i.e., the number
of votes in which alternative a is among first j positions. For a, b ∈ A, we say that a
position-dominates b if sj(a) > sj(b) for all j ∈ {1, . . . ,m − 1}. The position-dominance
graph (PD graph) of π is defined as the directed graph G = (V,E) where alterna-
tives are vertices (V = A) and there is an edge from alternative a to alternative b if a
position-dominates b.

The concept of position-dominance is reminiscent of the notion of first-order stochas-
tic dominance in probability theory: informally, a random variable (first-order) stochas-
tically dominates another random variable over the same domain if for any value in
the domain the former random variable has higher probability of being above the value
than the latter random variable. Also note that position-dominance is a transitive re-
lation; for alternatives a, b, c ∈ A if a position-dominates b and b position-dominates c,
then a position-dominates c. However, it is possible that for some alternatives a, b ∈ A,
neither a position-dominates b nor b position-dominates a. Thus, the PD graph is al-
ways acyclic, but not always complete. When the PD graph is complete, it reduces to a
ranking, similarly to the case of the PM graph.
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Definition 4.2 (Position-Dominance Consistent Rules). A deterministic voting rule
r is called position-dominance consistent (PD-c) if r(π) = σ whenever the PD graph of
profile π reduces to ranking σ. For randomized voting rules, we require that Pr[r(π) =
σ] = 1.

This novel family of rules captures voting rules that give higher preference to alter-
natives that appear at earlier positions. It is quite intuitive that all positional scoring
rules are PD-c because they score alternatives purely based on their positions in the
rankings and give higher weight to alternatives at earlier positions. PD-c rules also
capture another classical voting rule — the Bucklin rule. The definition of the Bucklin
rule and the proof of Theorem 4.3 appear in Appendix D.

THEOREM 4.3. All positional scoring rules and the Bucklin rule are PD-c rules.

It is easy to argue that all PD-c rules are accurate in the limit for Mallows’ model.
Let σ∗ be the true ranking and ai be the alternative at position i in σ∗. If we construct a
profile by sampling n votes from Mallows’ model, then E[sj(ai)] = n ·qi,j . Recall that qi,j
is the probability of alternative ai appearing among the first j positions in a random
vote. Clearly in Mallows’ model, qi,j > ql,j for any i < l. Therefore, as n → ∞, we will
have Pr[sj(ai) > sj(al)] = 1 for all j ∈ {1, . . . ,m− 1} and i < l. Hence, the PD graph of
the profile would reduce to σ∗ (so any PD-c rule will output σ∗) with probability 1 as
n→∞. We conclude that all PD-c rules are accurate in the limit for Mallows’ model.

4.2. PM-c rules are disjoint from PD-c rules
In Theorem 3.3 we saw various classical voting rules that are PM-c, and Theorem 4.3
describes well-known voting rules that are PD-c. At first glance, the definitions of PM-
c and PD-c may seem unrelated. However, it turns out that no voting rule can be
both PM-c and PD-c. To show this we give a carefully constructed profile where both
the PM graph and the PD graph are acyclic and complete, but they reduce to different
rankings. Hence, a rule that is both PM-c and PD-c must output two different rankings
with probability 1, which is impossible. For our example, let A = {a, b, c} be the set of
alternatives. The profile π consisting of 11 votes is given below.

4 votes 2 votes 3 votes 2 votes
a b b c
b a c a
c c a b

It is easy to check that the PM graph of π reduces to a � b � c and the PD graph of
π reduces to b � a � c. Thus, we have the following result.

THEOREM 4.4. No (randomized) voting rule can be both PM-c and PD-c.

The theorem is not entirely surprising, as it is known that there is no positional
scoring rule that is Condorcet consistent [Fishburn 1974]. Note that in addition to PM-
c rules and PD-c rules, we can construct numerous simple rules that are also accurate
in the limit for Mallows’ model, such as the rule that ranks alternatives according
to their most frequent position in the input votes and the rule that outputs the most
frequent ranking.

4.3. Generalizing the noise model
While being accurate in the limit for Mallows’ model can be seen as a necessity for
voting rules, the assumption that the noise observed in practice would perfectly (or
even approximately) fit Mallows’ model is unrealistic. For example, Mao et al. [2013]
show that, in certain real-world scenarios, the noise observed is far from what Mallows
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predicts. While voting rules cannot be expected to have low sample complexity in all
types of noise models that arise in practice, it is reasonable to expect them to be at least
accurate in the limit for such noise models. Indeed, it is not hard to construct voting
rules that are accurate in the limit for Mallows’ model but not for other reasonable
noise models.

Unfortunately, it is not clear what noise models can be expected to arise in prac-
tice and little attention has been given to characterizing reasonable noise models in
the literature. To address this issue we impose a structure, parametrized by distance
functions, on the noise models to make them well-behaved. As noted in Section 1.2, this
approach is related to the work of Flinger and Verducci [1986], but we further gener-
alize the structure of the noise model by removing their assumption of exponentially
decreasing probabilities.

Definition 4.5 (d-Monotonic Noise Models). Let σ∗ denote the true underlying rank-
ing. Let d : L(A) × L(A) → R≥0 be a distance function over rankings. A noise
model is called monotonic with respect to d (or d-monotonic) if for any σ, σ′ ∈ L(A),
d(σ, σ∗) < d(σ′, σ∗) implies Pr[σ|σ∗] > Pr[σ′|σ∗] and d(σ, σ∗) = d(σ′, σ∗) implies
Pr[σ|σ∗] = Pr[σ′|σ∗].

In words, given a distance function d we expect that rankings closer to the true
ranking would have higher probability of being observed. Note that Mallows’ model is
monotonic with respect to the KT distance. Any noise model that arises in practice can
be expected to be monotonic, and we require that a voting rule be accurate in the limit
for any monotonic noise model.

Definition 4.6. A voting rule r is called monotone-robust with respect to distance
function d (or d-monotone-robust) if r is accurate in the limit for all d-monotonic noise
models.

We saw that all PM-c and PD-c rules are accurate in the limit for Mallows’ model.
In fact, it can be shown that they are accurate in the limit for all dKT -monotonic noise
models, i.e., they are dKT -monotone-robust. However, we omit the proof as the theorem
will follow from the even more general results of Section 5.

THEOREM 4.7. All PM-c and PD-c rules are dKT -monotone-robust.

5. GENERAL CHARACTERIZATIONS
For any given distance function d, we proposed d-monotonic noise models in an attempt
to capture noise models that may arise in practice. However, until now we only focused
on one specific distance function — the KT distance. Noise models parametrized by
other distance functions have been studied in the literature starting with Mallows
[1957] himself. In fact, all our previous proofs relied only on the fact that the KT dis-
tance is swap-increasing and Theorem 4.7 can also be shown to hold when the KT
distance is replaced by any swap-increasing distance. Alas, among the three most pop-
ular distance functions that we consider, only the KT distance is swap-increasing.

In this section we ask whether the families of PM-c and PD-c rules are monotone-
robust with respect to distance functions other than swap-increasing distances. We
fully characterize all distance functions with respect to which all PM-c and/or all PD-c
rules are monotone-robust. Given any distance function d, it is easy to construct an
equivalent integer-valued distance function d′ such that properties like d-monotone-
robustness, MC and PC (the latter two are yet to be introduced) are preserved. Thus,
without loss of generality we henceforth restrict our distance functions to be integer-
valued.
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5.1. Distances for which all PM-c rules are monotone-robust
We first characterize the distance functions for which all PM-c rules are monotone-
robust. This leads us to the definition of a rather natural family of distance functions,
which may be of independent interest.

Definition 5.1 (Majority-Concentric (MC) Distances). For any distance function d,
ranking σ ∈ L(A) and integer k ∈ N ∪ {0}, let N k(σ) = {τ ∈ L(A)|d(τ, σ) ≤ k} be
the set of all rankings at distance at most k from σ. Furthermore, for any alternatives
a, b ∈ A, let N k

a�b(σ) = {τ ∈ N k(σ)|a �τ b}. A distance function d is called majority-
concentric (MC) if for any σ ∈ L(A) and a, b ∈ A such that a �σ b, |N k

a�b(σ)| ≥ |N k
b�a(σ)|

for every k ∈ N ∪ {0}.

Consider a ranking σ and imagine concentric circles around σ where the kth circle
from the center represents the neighbourhood N k(σ). Then, the MC criterion requires
that for every pair of alternatives, a (weak) majority of rankings in each neighbour-
hood (which can be viewed as a set of votes) agree with σ, hence the name majority-
concentric.

There is an alternative and perhaps more intuitive characterization of MC distances.
Fix any MC distance d, base ranking σ and alternatives a, b ∈ A such that a �σ b. Let
La�b(A) = {τ ∈ L(A)|a �τ b} denote the set of all rankings where a � b and let
Lb�a(A) = L(A) \ La�b(A). Let us sort all rankings in both sets in increasing order
of their distance from σ, and map the ith ranking (in the sorted order) in La�b(A) to
the ith ranking in Lb�a(A). We can show that this mapping takes every ranking to a
ranking at equal or greater distance from σ. We call such a mapping weakly-distance-
increasing with respect to σ. To see this, suppose for contradiction that (say) the ith
ranking of La�b(A) at distance k from σ is mapped to the ith ranking of Lb�a(A) at
distance k′ < k from σ. Then clearly, |N k′

a�b(σ)| < i and |N k′

b�a(σ)| ≥ i, which is a
contradiction since we assumed the distance to be MC. In the other direction, again fix
any distance d, σ ∈ L(A) and a, b ∈ A such that a �σ b. Suppose there exists a bijection
f : La�b(A) → Lb�a(A) that is weakly-distance-increasing with respect to σ. Then for
any k ∈ N ∪ {0} we have N k

b�a(σ) ⊆ {f(τ)|τ ∈ N k
a�b(σ)}, so |N k

a�b(σ)| ≥ |N k
b�a(σ)|. If

this holds for every σ ∈ L(A) and a, b ∈ A such that a �σ b, then the distance is MC. In
conclusion, we have proved the following lemma.

LEMMA 5.2. A distance function d is MC if and only if for every σ ∈ L(A) and every
a, b ∈ A such that a �σ b, there exists a bijection f : La�b(A) → Lb�a(A) which is
weakly-distance-increasing with respect to σ.

We are now ready to prove our first main result of this section: the distance functions
with respect to which all PM-c rules are monotone-robust are exactly MC distances.

THEOREM 5.3. All PM-c rules are d-monotone-robust for a distance function d if
and only if d is MC.

PROOF. First, we assume that d is MC and show that all PM-c rules are d-monotone-
robust. Specifically, consider any d-monotonic noise model G; we wish to show that all
PM-c rules are accurate in the limit for G. Let σ∗ be an arbitrary true ranking and
a, b ∈ A be two arbitrary alternatives with a �σ∗ b.

Using Lemma 5.2, there exists an injection f : La�b(A)→ Lb�a(A) which is weakly-
distance-increasing with respect to σ∗. Hence, for every σ ∈ La�b(A), d(σ, σ∗) ≤
d(f(σ), σ∗), so Pr[σ|σ∗] ≥ Pr[f(σ)|σ∗] since G is d-monotonic. Crucially, σ∗ ∈ La�b(A)
and d(σ∗, σ∗) = 0 < d(f(σ∗), σ∗), so Pr[σ∗|σ∗] > Pr[f(σ∗)|σ∗]. Recall that f is a bijection,
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hence its range is the whole of Lb�a(A). By summing over all σ ∈ La�b(A), we get

Pr[a � b|σ∗] =
∑

σ∈La�b(A)

Pr[σ|σ∗] >
∑

σ∈La�b(A)

Pr[f(σ)|σ∗]

=
∑

σ∈Lb�a(A)

Pr[σ|σ∗] = Pr[b � a|σ∗].

It follows that given infinitely many samples from G, there would be an edge from a
to b in the PM graph with probability 1. Since this holds for all a, b ∈ A, the PM graph
would reduce to σ∗ with probability 1. Therefore, any PM-c rule would output σ∗ with
probability 1, as required.

In the other direction, consider any distance function d that is not MC. We show that
there exists a PM-c rule that is not accurate in the limit for some d-monotonic noise
model G. Since d is not MC, there exists a σ∗ ∈ L(A), an integer k and alternatives
a, b ∈ A with a �σ∗ b such that |N k

a�b(σ
∗)| < |N k

b�a(σ∗)|. Now we construct the noise
model G as follows. Let M = maxσ∈L(A) d(σ, σ∗) and let T > M (we will set T later).
Define a weight wσ for each ranking σ as follows: if d(σ, σ∗) ≤ k (i.e., σ ∈ N k(σ∗)), then
wσ = T − d(σ, σ∗) else wσ = M − d(σ, σ∗). Now construct G by assigning probabilities
to rankings proportionally to their weights, i.e., Pr[σ|σ∗] = wσ/

∑
τ∈L(A) wτ . First, by

the definition of M and the fact that T > M , it is easy to check that G is indeed a
probability distribution and that G is d-monotone.

Next, we set T such that Pr[a � b|σ∗] < Pr[b � a|σ∗]. Since the probabilities are
proportional to the weights, we want to obtain:

∑
σ∈L(A)|a�σb wσ <

∑
σ∈L(A)|b�σa wσ.

Let |N k
a�b(σ

∗)| = l, hence |N k
b�a(σ∗)| ≥ l + 1. Now, on the one hand,∑

σ∈La�b(A)

wσ ≤
∑

σ∈Nka�b(σ∗)

T +
∑

σ∈La�b(A)\Nka�b(σ∗)

M ≤ l · T +m! ·M.

On the other hand,∑
σ∈Lb�a(A)

wσ ≥
∑

σ∈Nkb�a(σ∗)

(T − k) +
∑

σ∈Lb�a(A)\Nkb�a(σ∗)

0 ≥ (l + 1) · (T − k).

Now we set T such that (l + 1) · (T − k) > l · T + m! ·M , i.e., T > (l + 1) · k + m! ·M .
Noting that l+ 1 ≤ m! and k ≤M , we can achieve this by simply setting T = 2 ·m! ·M .

Since we have obtained Pr[a � b|σ∗] < Pr[b � a|σ∗] under G, given infinitely many
samples there would be an edge from b to a in the PM graph with probability 1. There-
fore, with probability 1 the PM graph would not reduce to σ∗. We can easily construct a
PM-c rule r that outputs a ranking σ whenever the PM graph reduces to σ, and outputs
an arbitrary ranking with b � a when the PM graph does not reduce to any ranking.
With probability 1, such a rule would output a ranking where b � a. Hence, r is not
accurate in the limit for G, as required. (Theorem 5.3)

5.2. Distances for which all PD-c rules are monotone-robust
We next characterize the distance functions for which all PD-c rules are monotone-
robust. This leads us to define another natural family of distance functions.

Definition 5.4 (Position-Concentric (PC) Distances). For any ranking σ ∈ L(A), in-
teger k ∈ N ∪ {0}, integer j ∈ {1, . . . ,m − 1} and alternative a ∈ A, let Skj (σ, a) = {τ ∈
N k(σ)|τ(a) ≤ j} be the set of rankings at distance at most k from σ where alternative
a is ranked in the first j positions. A distance function d is called position-concentric

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.



X:16 Caragiannis et al.

(PC) if for any σ ∈ L(A), j ∈ {1, . . . ,m− 1}, and a, b ∈ A such that a �σ b, we have that
|Skj (σ, a)| ≥ |Skj (σ, b)| for all k ∈ N∪{0}, and strict inequality holds for some k ∈ N∪{0}.

While MC distances are defined by matching aggregate pairwise comparisons of al-
ternatives in every circle that is centered on the base ranking, PC distances focus on
matching pairwise comparisons of aggregate positions of alternatives in every concen-
tric circle. Similarly to Lemma 5.2 for MC distances, PC distances also admit an equiv-
alent characterization. We use this equivalence and show that PC distances are exactly
the distance functions with respect to which all PD-c rules are monotone-robust. The
proofs appear in Appendix F.

Let Sj(a) = {σ ∈ L(A)|σ(a) ≤ j} denote the set of all rankings where alternative
a is ranked among the first j positions. Call a distance function d : X → Y distance-
increasing with respect to a ranking σ if d(f(τ), σ) ≥ d(τ, σ) for every τ ∈ X (i.e., d is
weakly-distance-increasing) and strict inequality holds for at least one τ ∈ X.

LEMMA 5.5. A distance function d is PC if and only if for every σ ∈ L(A), every
a, b ∈ A such that a �σ b and every j ∈ {1, . . . ,m−1}, there exists a bijection f : Sj(a)→
Sj(b) which is distance-increasing with respect to σ.

THEOREM 5.6. All PD-c rules are d-monotone-robust for a distance function d if
and only if d is PC.

We proved that MC and PC are exactly the distance functions with respect to which
all PM-c rules and all PD-c rules, respectively, are monotone-robust. If a distance func-
tion d is both MC and PC, then it follows that all PM-c as well as all PD-c rules are
d-monotone-robust. On the other hand, if d is not MC (resp., not PC), then there exists
a PM-c rule (resp., a PD-c rule) that is not d-monotone-robust. We therefore have the
following corollary.

COROLLARY 5.7. All rules in the union of PM-c rules and PD-c rules are d-
monotone-robust for a distance function d if and only if d is both MC and PC.

Fix any true ranking σ∗ ∈ L(A) and alternatives a, b ∈ A such that a �σ∗ b. Con-
sider any swap-increasing distance function d. By definition, the mapping which maps
every ranking σ with a �σ b to the ranking σa↔b increases the distance by at least 1.
Therefore it is clearly weakly-distance-increasing with respect to σ∗. Such a mapping
is also a bijection from La�b(A) to Lb�a(A). Using Lemma 5.2, it follows that d is MC.
While the mapping is also a bijection from Sj(a) to Sj(b), it may decrease the distance
on σ ∈ Sj(a) where b � a. Using additional arguments, however, it is possible to show
that d is PC as well. The proof of the following lemma is given in Appendix E.

LEMMA 5.8. Any swap-increasing distance function is both MC and PC.

Corollary 5.7 and Lemma 5.8 imply that all PM-c rules and all PD-c rules are d-
monotone-robust for any swap-increasing distance d, which implies Theorem 4.7.

5.3. Did we generalize the distance functions enough?
How strong are the characterization results of this section? We saw that all PM-c and
PD-c rules are d-monotone-robust for any swap-increasing distance d. However, we
remarked at the beginning of this section that we need to widen our family of dis-
tances as two of the three popular distances that we study are not swap-increasing.
We went ahead and characterized all distance functions for which all PM-c rules or all
PD-c rules or both are monotone-robust; respectively, these are all MC distances, all
PC distances, and their intersection. Are these families wide enough or do we need to
search for better voting rules that work for a bigger family of distance functions? For-
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tunately, we show that even the intersection of the families of MC and PC distances is
sufficiently general to include all three popular distance functions.

THEOREM 5.9. The KT distance, the footrule distance, and the maximum displace-
ment distance are both MC and PC.

The proof of Theorem 5.9 appears in Appendix E. Together with Corollary 5.7, it
implies that all PM-c rules and all PD-c rules are monotone-robust with respect to
all three popular distance functions that we study. We have established that our new
families of distance functions are wide enough; this further justifies our focus on PM-
c rules and PD-c rules, as they are monotone-robust with respect to all MC and PC
distances, respectively.

6. DISCUSSION
While we study three popular distance functions over rankings, we exclude some other
distances such as the Cayley distance and the Hamming distance; even the most
prominent voting rules such as plurality are not accurate in the limit for any noise
models that are monotonic with respect to these distances (see Appendix E). On the
one hand, this motivates a study of distance functions over rankings that are more ap-
propriate in the social choice context. On the other hand, one may ask: Which voting
rules are monotone-robust even with respect to such distance functions?

Furthermore, we have seen that all PM-c rules and all PD-c rules are accurate in the
limit for Mallows’ model. We later argued that being accurate in the limit for Mallows’
model is a very mild requirement, and there are numerous other voting rules that
satisfy it. Is it possible to define a much wider class (possibly within the framework
of generalized scoring rules [Xia and Conitzer 2008]) that is accurate in the limit for
Mallows’ model?

On the conceptual level, we analyze the sample complexity of voting rules as the
number of alternatives grows, but our analysis assumes (as is traditionally the case
in the literature) that the input to the voting rule is total orders over alternatives.
As argued in the introduction, the issue of sample complexity of voting rules directly
translates to the problem of estimating the required budget in crowdsourcing tasks.
When the number of alternatives is large, obtaining total orders is unrealistic, and
inputs with partial information such as pairwise comparisons, partial orders or top-k-
lists are employed in practice. Several noise models have been proposed in the litera-
ture for the generation of such partial information (see, e.g., [Xia and Conitzer 2011]).
Going one step further, Procaccia et. al. [2012] proposed a noise model that can in-
corporate multiple input formats simultaneously given a true underlying ranking. It
would be of great practical interest to extend our sample complexity analysis to such
noise models.

Finally, we mentioned several points of view on the comparison of voting rules: so-
cial choice axioms, maximum likelihood estimators, and the distance rationalizability
framework. Elkind et. al. [2010b] point out the weakness of the connection between the
MLE framework and the DR framework by showing that the Kemeny rule is the only
rule that is both MLE and distance rationalizable. We argued that asking for a voting
rule to be the maximum likelihood estimator is too restrictive, and proposed quanti-
fying the sample complexity instead. This begs the question: How does the relaxed
framework of sample complexity relate to the DR framework?
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Online Appendix to:
When Do Noisy Votes Reveal the Truth?
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ARIEL D. PROCACCIA, Carnegie Mellon University
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A. KEMENY IS OPTIMAL FOR MALLOWS’ MODEL
We show that for any number of alternatives m and any accuracy level ε, the Kemeny
rule (with uniform tie-breaking) requires the minimum number of sample from Mal-
lows’ model. Note that the Kemeny rule is the maximum likelihood estimator (MLE)
for the true ranking given samples from Mallows’ model. Formally, given a profile
π = (σ1, . . . , σn) from Mallows’ model, the MLE estimator of the true ranking is

arg max
σ∈L(A)

Pr[π|σ] = arg max
σ∈L(A)

n∏
i=1

ϕ−dKT (σi,σ)

Zmϕ

= arg max
σ∈L(A)

ϕ−
∑n
i=1 dKT (σi,σ)

(Zmϕ )n
= arg min

σ∈L(A)

n∑
i=1

dKT (σi, σ),

where the last expression denotes the Kemeny ranking. While at first glance it may
seem that this directly implies optimality of Kemeny rule in terms of its sample com-
plexity, we demonstrate via an example that the MLE rule for a noise model need not
always be the rule with the optimal sample complexity in general.

Example A.1. Consider a scenario where there are 3 possible underlying ground
truths — σ1, σ2 and σ3. These map to underlying true ranking in the voting context.
Let there be 4 possible outcomes — π1 through π4. The outcomes map to samples from
Mallows’ model in our voting context. In the table below, entry in row i and column
j gives the probability of observing outcome πj given that the ground truth is σi, i.e.,
Pr[πj |σi].

π1 π2 π3 π4
σ1

1/5
1/5

1/5
2/5

σ2
1/6

1/6
1/6

1/2

σ3
1/4

1/4
1/4

1/4

Take ε = 4/5, so the accuracy requirement is 1 − ε = 1/5. Given just one sample from
the noise model, the circled entries in the table show the ground truth returned by the
MLE rule for various outcomes. It is clear that the MLE rule never returns σ1, thus
it does not achieve the minimum (over all ground truths) accuracy of 1/5. In contrast,
consider the rule which is identical to the MLE rule except that it returns σ1 when
observing π3. It is clear that given one sample, this rule returns the ground truth
with probability at least 1/5 no matter what the ground truth is. Hence, the sample
complexity of the new rule is strictly less than that of the MLE rule for ε = 4/5. This
shows that the MLE rule need not always be optimal in terms of its sample complexity.

c© 2013 ACM 0000-0000/2013/06-ARTX $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000
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While Example A.1 shows that the MLE rule need not always have the optimal
sample complexity, we show that the Kemeny rule (which is MLE for Mallows’ model)
indeed has the optimal sample complexity. Let KEM denote the Kemeny rule where
ties are broken uniformly at random. That is, for any profile π = (σ1, . . . , σn) ∈ L(A)n,
let TIE-KEM(π) = arg minσ∈L(A)

∑n
i=1 dKT (σi, σ) denote the set of all rankings that are

tied to be the Kemeny ranking. Then Pr[KEM(π) = σ] = 1/|TIE-KEM(π)| for every
σ ∈ TIE-KEM(π).

PROOF OF THEOREM 3.1. Note that by definition of Nr(ε), it is sufficient to show
that the Kemeny rule has the greatest accuracy among all voting rules for any num-
ber of samples, that is, AccKEM(k) ≥ Accr(k) for all rules r and all k > 0. To show
that KEM has the greatest accuracy, we need two lemmas. Define TotAccr(k) =∑
σ∈L(A) Accr(k, σ).

LEMMA A.2. AccKEM(k, σ) = AccKEM(k, σ′),∀σ, σ′ ∈ L(A),∀k ∈ N.

LEMMA A.3. TotAccKEM(k) ≥ TotAccr(k),∀ rule r, ∀k ∈ N.

First, it is easy to derive the final result using Lemmas A.2 and A.3. Fix any ε > 0 and
let NKEM(ε) = k. Then, there exists σ̂ ∈ L(A) such that AccKEM(k− 1, σ̂) < 1− ε, hence
AccKEM(k − 1, σ) < 1− ε for every σ ∈ L(A) due to Lemma A.2. Hence, TotAccKEM(k −
1) < m! · (1 − ε). Now for any voting rule r, Lemma A.3 implies TotAccr(k − 1) ≤
TotAccKEM(k−1) < m! · (1−ε) and hence by pigeonhole principle, there exists σ ∈ L(A)
such that Accr(k − 1, σ) < 1− ε. Therefore, Nr(ε) ≥ k = NKEM(ε), as required. Now we
prove Lemmas A.2 and A.3.

PROOF OF LEMMA A.2. Take any k ∈ N and σ, σ′ ∈ L(A). Let ω : A → A be the
(unique) bijection that when applied on σ gives σ′. That is, ω(σ(i)) = σ′(i) for all 1 ≤
i ≤ m. We abuse the notation and extend ω to a bijection ω : L(A) → L(A) where for
any τ ∈ L(A), we have (ω(τ))(i) = ω(τ(i)). Essentially, we apply ω on each element of
a ranking. So ω(σ) = σ′. Finally, we further extend ω to operate on profiles where we
apply ω to each ranking in the profile individually. Then,

AccKEM(k, σ′) =
∑

π∈L(A)k

Pr[π|σ′] · Pr[KEM(π) = σ′]

=
∑

ω(π)∈L(A)k

Pr[ω(π)|σ′] · Pr[KEM(ω(π)) = σ′]

=
∑

π∈L(A)k

Pr[π|ω−1(σ′)] · Pr[KEM(π) = ω−1(σ′)]

=
∑

π∈L(A)k

Pr[π|σ] · Pr[KEM(π) = σ] = AccKEM(k, σ).

The second transition follows since ω is a bijection, the third transition follows since
Mallows’ model and Kemeny rule with uniform tie-breaking are anonymous with re-
spect to the alternatives (note that uniform tie-breaking plays an important role), and
the fourth transition follows since ω−1(σ′) = σ. (Lemma A.2)
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PROOF OF LEMMA A.3. For any rule r and any k ∈ N,

TotAccr(k) =
∑

σ∈L(A)

∑
π∈L(A)k

Pr[π|σ] · Pr[r(π) = σ] =
∑

π∈L(A)k

∑
σ∈L(A)

Pr[π|σ] · Pr[r(π) = σ]

≤
∑

π∈L(A)k

∑
σ∈L(A)

Pr[r(π) = σ] ·
(

max
σ′∈L(A)

Pr[π|σ′)
)

=
∑

π∈L(A)k

max
σ′∈L(A)

Pr[π|σ′]

=
∑

π∈L(A)k

max
σ′∈L(A)

Pr[π|σ′] ·
∑

σ∈TIE-KEM(π)

1

|TIE-KEM(π)|

=
∑

π∈L(A)k

∑
σ∈TIE-KEM(π)

Pr[π|σ] · Pr[KEM(π) = σ] = TotAccKEM(k),

where the sixth transition follows since the Kemeny rule is MLE for Mallows’ model,
hence maxσ′∈L(A) Pr[π|σ′] = Pr[π|σ] for every σ ∈ TIE-KEM(π). Also, we have uniform
tie-breaking, so Pr[KEM(π) = σ] = 1/|TIE-KEM(π)| for every σ ∈ TIE-KEM(π). Note
that uniform tie-breaking plays an important role. (Lemma A.3)

Thus, we have established that to output the true underlying ranking with any given
probability, the Kemeny rule with uniform tie-breaking requires the minimum number
of samples from Mallows’ model among all voting rules. (Theorem 3.1)

B. UPPER BOUND FOR A FAMILY OF POSITIONAL SCORING RULES
PROOF OF THEOREM 3.10. Recall that ai denotes the ith alternative in the true

ranking σ∗. Consider a profile π consisting of n samples from Mallows’ model. Let ti,j
denote the number of times ai appears in position j, and let si,k =

∑k
j=1 ti,j . First, we

note that for any i ∈ {1, . . . ,m},

m−1∑
k=1

βk · si,k =

m−1∑
k=1

βk ·

 k∑
j=1

ti,j

 =

m−1∑
j=1

m−1∑
k=j

βk

 · ti,j =

m−1∑
j=1

(αj − αm) · ti,j

=

m−1∑
j=1

αj · ti,j − αm · (n− ti,m) =

m∑
j=1

αj · ti,j − n · αm,

where the second transition follows by switching the order of summation and the
fourth transition follows since

∑m
j=1 ti,j = n as the total number of appearances of

ai equals the number of votes. Since n · αm is independent of the alternative, we can
equivalently consider

∑m−1
k=1 βk · si,k as the score of alternative ai. Hence, for rule r to

output σ∗ with high probability we require Pr[∀i ∈ {1, . . . ,m},
∑m−1
k=1 βk ·(si,k−si+1,k) >

0] ≥ 1− ε. If we had Pr[
∑m−1
k=1 βk · (si,k− si+1,k) ≤ 0] ≤ ε/m for every i ∈ {1, . . . ,m}, then

we would obtain (using the union bound) that r outputs σ∗ with probability at least
1− ε. Observe that

Pr

[
m−1∑
k=1

βk · (si,k − si+1,k) ≤ 0

]
≤ e−

2·n·(∑m−1
k=1

βj ·(qi,k−qi+1,k))
2

4·m2·β2max ≤ e−
n·β2min·(

∑m−1
k=1

(qi,k−qi+1,k))
2

2·m2·β2max ,
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where qi,k =
∑k
j=1 pi,j and the first transition follows due to Hoeffding’s inequality. It

follows that for this probability to be at most ε/m, it is sufficient to have

n ≥ 2 ·m2 · β2
max

β2
min ·

(∑m−1
k=1 (qi,k − qi+1,k)

)2 log(m/ε)

Now we only need to prove that the term
∑m−1
k=1 (qi,k − qi+1,k) in the denominator is

lower bounded by a constant independent ofm and ε. Note that
∑m−1
k=1 qi,k =

∑m
k=1 qi,k−

1 =
∑m
k=1

∑k
j=1 pi,j−1 =

∑m
j=1 j ·pi,j−1 = E[Borda(ai)]−1, where E[Borda(ai)] denotes

the expected Borda score of alternative ai under one random sample from Mallows’
model. Similarly,

∑m−1
k=1 qi+1,k = E[Borda(ai+1)]− 1. Therefore,

m−1∑
k=1

(qi,k − qi+1,k) = E[Borda(ai)]− E[Borda(ai+1)] = E[Borda(ai)−Borda(ai+1)]

=
∑

σ∈L(A)

Pr[σ|σ∗] · ((m+ 1− σ(ai))− (m+ 1− σ(ai+1)))

=
∑

σ∈L(A)|ai�σai+1

Pr[σ|σ∗] · (σ(ai+1)− σ(ai))

+
∑

σ∈L(A)|ai+1�σai

Pr[σ|σ∗] · (σ(ai+1)− σ(ai))

=
∑

σ∈L(A)|ai�σai+1

(Pr[σ|σ∗]− Pr[σai↔ai+1 |σ∗]) · (σ(ai+1)− σ(ai))

≥
∑

σ∈L(A)|ai�σai+1

(1− ϕ) · Pr[σ|σ∗] · 1 = (1− ϕ) · Pr[ai � ai+1|σ∗]

≥ 0.5 · (1− ϕ).

The second transition follows due to linearity of expectation. The fifth transition fol-
lows by noting that under the bijective mapping σ ↔ σai↔ai+1

, we have σai↔ai+1
(ai) =

σ(ai+1) and σai↔ai+1
(ai+1) = σ(ai). For the sixth transition, note that in any σ where

ai �σ ai+1, σ(ai+1) ≥ σ(ai) + 1. Also, Lemma 3.5 implies that dKT (σai↔ai+1
, σ∗) =

dKT (σ, σ∗) + 1, so Pr[σ|σ∗] − Pr[σai↔ai+1
|σ∗] = (ϕdKT (σ,σ

∗) − ϕdKT (σai↔ai+1
,σ∗))/Zmϕ =

(1−ϕ) ·ϕdKT (σ,σ∗)/Zmϕ = (1−ϕ) ·Pr[σ|σ∗]. The last transition holds trivially (see proof of
Theorem 3.6 for a tighter bound). Thus, we have the desired result. (Theorem 3.10)

C. SEVERAL CLASSICAL VOTING RULES ARE PM-C
In this section, we prove that the Kemeny rule, the ranked pairs method, Copeland’s
method and Schulze’s method are PM-c (Theorem 3.3). The definition of the Kemeny
rule is given in Section 2. We define the remaining methods below.

Copeland’s method. We say that alternative a beats alternative a′ in a profile π if
|{σ ∈ π|a �σ a′}| > |{σ ∈ π|a′ �σ a}|, i.e., if there is an edge from a to a′ in the PM
graph of π. The Copeland score of an alternative a is the number of alternatives it
beats in π and Copeland’s method ranks the alternative in the non-increasing order of
their Copeland scores.

The ranked pairs method. Under the ranked pairs method, all ordered pairs of alter-
natives (a, a′) are sorted by the number of rankings in the profile in which alternative
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a is preferred to a′ (in the non-increasing order). Then, starting with the first pair in
the list, the method “locks in” the outcome with the result of the pairwise comparison.
It proceeds with the next pairs and locks in every pairwise result that does not contra-
dict (form a cycle) the partial ordering established so far. Finally, the method outputs
the total order obtained.

Schulze’s method. Given any profile π, define w(a, a′) = |{σ ∈ π|a �σ a′}| for any
a, a′ ∈ A. Consider the (directed) weighted pairwise comparison graph G = (V,E)
where the alternatives are the vertices (V = A) and there is an edge from every a ∈ A
to every other a′ ∈ A with weight w(a, a′). A path of strength t from a ∈ A to a′ ∈ A
is a sequence of vertices v0 = a, v1, . . . , vk−1, vk = a′ where w(vi, vi+1) ≥ t for all i ∈
{0, . . . , k − 1}. Define the strength of alternative a over alternative a′, denoted s[a, a′],
to be strength of the strongest path from a to a′, if one exists, and 0 otherwise. Schulze’s
method ranks a � a′ if s[a, a′] > s[a′, a]. A tie-breaking scheme is used in the case when
s[a, a′] = s[a′, a].

PROOF OF THEOREM 3.3. Take any ranking σ∗ = (a1 � . . . � am) ∈ L(A). We show
that for each of the four rules whenever the PM graph of a profile reduces to σ∗, the
rule outputs σ∗ with probability 1. Consider any profile π with n votes such that its PM
graph reduces to σ∗.

First, note that the Kemeny rule returns the ranking that minimizes the total pair-
wise disagreements with the input votes. If we consider the (directed) weighted pair-
wise comparison graph described in the definition of Schulze’s method above, then the
Kemeny score of a ranking σ, denoted KemSc(σ), measures the total pairwise dis-
agreements of σ with the input votes, i.e., KemSc(σ) =

∑
a,a′∈A|a�σa′ w(a′, a). Note in

this summation, exactly one edge from the two edges between any pair of alternatives
is added. In our profile π, for any a, a′ ∈ A with a �σ a′, w(a, a′) > n/2 > w(a′, a).
Hence, KemSc(σ∗) adds the lesser of the two edges between any pair of alternatives.
Therefore, σ∗ has the minimum Kemeny score. Thus, the Kemeny rule returns σ∗.

When the ranked pairs method is applied to a profile that reduces to σ∗, every or-
dered pair (a, a′) with a �σ∗ a′ will be placed before every ordered pair (b, b′) with
b′ �σ b. This is because the former pair would be consistent with more than half of the
rankings in the profile, while the latter pair would be consistent with less than half
of the rankings in the profile. Hence, the ranked pairs method would lock every pair
(a, a′) where a �σ∗ a′ (and obtain the total order σ∗) before reaching any pair of the
opposite direction. Therefore, the ranked pairs method would also output σ∗.

For Copeland’s method, note that when the PM graph reduces to σ∗, then alternative
ai has Copeland score m − i, for every i ∈ {1, . . . ,m}. Therefore, Copeland’s method
outputs exactly the ranking σ∗.

Finally for Schulze’s method, note that for any a, a′ ∈ A with a �σ∗ a′, s[a, a′] > n/2
(because the edge a to a′ itself has weight more than n/2), which is clearly greater
than s[a′, a]. Hence, Schulze’s method ranks a � a′ for every a, a′ ∈ A with a �σ∗ a′.
Therefore, Schulze’s method also outputs σ∗.

We have thus established that the Kemeny rule, the ranked pairs method,
Copeland’s method and Schulze’s method are all PM-c. (Theorem 3.3)

D. SEVERAL CLASSICAL VOTING RULES ARE PD-C
We first define the Bucklin rule and then prove Theorem 4.3.

The Bucklin rule. The Bucklin score of an alternative a is the minimum k such that a
is among the first k positions in the majority of input votes. The Bucklin rule sorts the
alternatives in the non-decreasing order of their Bucklin score and breaks ties among
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alternatives with the same Bucklin score ` in terms of the number of rankings that
have the alternative in the first ` positions.

PROOF OF THEOREM 4.3. Consider a profile π with n rankings such that its PD
graph reduces to the ranking σ∗, and let ai denote the alternative at position i in σ∗.
We show that any positional scoring rule as well as the Bucklin rule outputs σ∗ on π.

For the Bucklin rule, consider any two alternatives a, a′ ∈ A such that a �σ∗ a′. For
any j ∈ {1, . . . ,m−1}, let sj(c) denote the number of votes where alternative c is among
the first j positions. Let k denote the Bucklin score of a and k′ denote the Bucklin score
of a′. If k > k′, then sk′(a

′) > n/2 and sk′(a) ≤ sk−1(a) < n/2, which is impossible
since the PD graph reduces to σ∗. If k < k′, then the Bucklin rule ranks a � a′, as
required. If k = k′ and k 6= m, then again since the PD graph reduces to σ∗, we have
that sk(a) > sk(a′), so tie is broken in favor of a. Lastly, we note that k = k′ = m is not
possible since then it would imply that the total number of appearances of a and a′ in
the last position is n− sm−1(a) + n− sm−1(a′) > 2 · n− 2 · sm−1(a) ≥ n. Thus, for every
a �σ∗ a′, the Bucklin rule ranks a above a′. Thus, the Bucklin rule outputs σ∗.

For positional scoring rules, we can follow the reasoning of Theorem 3.10 and express
the score of alternative ai as

∑m−1
j=1 (βj · sj(ai)) + nαm. Then, the desired fact that the

score of ai is higher than that of ak when 1 ≤ i < j ≤ m follows since sj(ai) > sj(ak) for
every j ∈ {1, ...,m− 1}. (Theorem 4.3)

E. DISTANCE FUNCTIONS
In this section, we prove various properties of the three popular distance functions
studied in the paper.

E.1. Definitions
We first give the omitted definitions of the footrule distance and the maximum dis-
placement distance.

The Footrule Distance. The footrule distance between two rankings measures the
total displacements of all alternatives between the rankings. Formally, dFR(σ1, σ2) =∑
a∈A |σ1(a)− σ2(a)|.
The Maximum Displacement Distance. The maximum displacement distance be-

tween two rankings measures the maximum displacement of any alternative between
the rankings. Formally, dMD(σ1, σ2) = maxa∈A |σ1(a)− σ2(a)|.

E.2. The KT distance is swap-increasing
We first prove Lemma 3.5, showing that the KT distance is swap-increasing.

PROOF OF LEMMA 3.5. Let σ∗, σ ∈ L(A) and a, b ∈ A with a �σ∗ b and a �σ b. Let
σ(a) = i and σ(b) = j, so i < j. Define Y = {y ∈ A|i < σ(y) < j}. Since σ∗(a) < σ∗(b),
the following properties hold:

(1) For every y ∈ Y , σ∗(y) < σ∗(a) implies that σ∗(y) < σ∗(b). Hence,∑
y∈Y

1[σ∗(y) < σ∗(a)] ≤
∑
y∈Y

1[σ∗(y) < σ∗(b)].

(2) For every y ∈ Y , σ∗(b) < σ∗(y) implies that σ∗(a) < σ∗(y). Hence,∑
y∈Y

1[σ∗(b) < σ∗(y)] ≤
∑
y∈Y

1[σ∗(a) < σ∗(y)].

(3) 1[σ∗(a) < σ∗(b)] = 1.
(4) 1[σ∗(b) < σ∗(a)] = 0.
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Now, we can express dKT (σa↔b, σ
∗)− dKT (σ, σ∗) as

dKT (σa↔b, σ
∗)− dKT (σ, σ∗)

=
∑
y∈Y

1[σ∗(y) < σ∗(b)] +
∑
y∈Y

1[σ∗(a) < σ∗(y)] + 1[σ∗(a) < σ∗(b)]

−
∑
y∈Y

1[σ∗(y) < σ∗(a)]−
∑
y∈Y

1[σ∗(b) < σ∗(y)]− 1[σ∗(b) < σ∗(a)]

≥ 1,

as desired. When a and b are adjacent in σ∗ (i.e., σ∗(b) = σ∗(a) + 1), we show that
equality holds. In this case, observe that the implications in properties (1) and (2) are
actually equivalences and the inequalities can be replaced by equalities. Then, the
sums in the above derivation cancel out, and it can be seen that the distance increases
by exactly 1. (Lemma 3.5)

We remarked in Section 5 that among the three distance functions that we consider,
the KT distance is the only one that is swap-increasing. Below, we give an example
showing that the footrule distance and the maximum displacement distance are not
swap-increasing.

Example E.1. Let the set of alternatives A = {a, b, c}. Let σ∗ = (a � b � c) and
σ = (b � c � a). Note that b �σ c and b �σ∗ c. Now consider the ranking σb↔c =
(c � b � a). It is easy to verify that dFR(σ, σ∗) = dFR(σb↔c, σ

∗) = 4 and dMD(σ, σ∗) =
dMD(σb↔c, σ

∗) = 2. Thus, the distance does not increase by swapping two alternatives
that were in the correct order, which shows that neither the footrule distance nor the
maximum displacement distance is swap-increasing.

E.3. All three of our popular distance functions are both MC and PC
First we give a proof of Lemma 5.8, showing that any swap-increasing distance is both
MC and PD. Lemma 3.5 would then imply that the KT distance is both MC and PC.

PROOF OF LEMMA 5.8. In Section 5.2, we already argued that any swap-increasing
distance is MC. Take any σ∗ ∈ L(A) and a, b ∈ A such that a �σ∗ b. The mapping from
every σ to σa↔b is a bijection from La�b(A) to Lb�a(A) and it increases the distance by
at least 1 (since any ranking in the domain La�b(A) follows a � b). Hence, the mapping
is weakly-distance-increasing with respect to σ∗. It follows from Lemma 5.2 that any
swap-increasing distance is MC.

To show that it is also PC, fix any σ∗ ∈ L(A), a, b ∈ A such that a �σ∗ b and j ∈
{1, . . . ,m − 1}. We wish to show that there exists a bijection f : Sj(a) → Sj(b) which
is distance-increasing. Note that we cannot use the mapping from every σ to σa↔b as
before, since not every ranking in the domain Sj(a) follows a � b and therefore such
a mapping would not be guaranteed to increase distance. Instead, we decompose the
domain and the range into a total of three parts: T = {σ ∈ Sj(a)|σ(b) ≤ j}, D1 =
{σ ∈ Sj(a)|σ(b) > j}, and D2 = {σ ∈ Sj(b)|σ(a) > j}. Therefore, Sj(a) = T ∪ D1 and
Sj(b) = T ∪D2.

Consider the identity bijection I : T → T which maps every ranking to itself. Clearly,
I is weakly-distance-increasing with respect to σ∗ since it does not change the distance
of any ranking from σ∗. Note that for any σ ∈ D1, σ(a) ≤ j and σ(b) > j, so a �σ b.
Further, σa↔b(a) > j and σa↔b(b) ≤ j. Thus, σa↔b ∈ D2 and d(σa↔b, σ

∗) ≥ d(σ, σ∗) + 1
(by definition). Therefore, the mapping E : D1 → D2 where E(σ) = σa↔b is distance-
increasing with respect to σ∗. Combining the two, the joint bijection F : Sj(a) → Sj(b)
naturally given by F (σ) = I(σ) when σ ∈ T and F (σ) = E(σ) when σ ∈ D1 is weakly-
distance-increasing with respect to σ∗. Further, it is easy to verify that D1 6= ∅, and F
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Fig. 1. Exchanges in the footrule and the maximum displacement distances

increases the distance on any ranking from D1. Therefore, F is distance-increasing, as
required. (Lemma 5.8)

Now we are prove Theorem 5.9.

PROOF OF THEOREM 5.9. Lemma 5.8 and Lemma 3.5 already imply that the KT
distance is both MC and PC. Now we show that the same holds for the footrule distance
(dFR) and the maximum displacement distance (dMD) as well.

Fix any σ∗ ∈ L(A) and a, b ∈ A such that a �σ∗ b. First, we show that for both dFR
and dMD, the mapping from every ranking σ with a �σ b to σa↔b is weakly-distance-
increasing with respect to σ∗. Fix any ranking σ with a �σ b. We have σ∗(a) < σ∗(b)
and σ(a) < σ(b). Let σ′ = σa↔b. Recall that σ′(a) = σ(b) and σ′(b) = σ(a). For any c ∈ A,
let f(c) = |σ(c)− σ∗(c)| and f ′(c) = |σ′(c)− σ∗(c)| be the displacements of c in σ and σ′
respectively. Therefore, dFR(σ, σ∗) =

∑
c∈A f(c), dFR(σ′, σ∗) =

∑
c∈A f

′(c), dMD(σ, σ∗) =
maxc∈A f(c), dMD(σ′, σ∗) = maxc∈A f

′(c). We want to show that dFR(σ′, σ∗) ≥ dFR(σ, σ∗)
and dMD(σ′, σ∗) ≥ dMD(σ, σ∗). Note that f(c) = f ′(c) for any c ∈ A\{a, b} since exchang-
ing a and b does not change the positions of the other alternatives. Thus, for the footrule
distance it is sufficient to show that f ′(a) + f ′(b) ≥ f(a) + f(b), and for the maximum
displacement distance it is sufficient to show that max(f ′(a), f ′(b)) ≥ max(f(a), f(b)).
We consider three cases.

Case 1. Let σ(a) ≤ σ∗(a) and σ(a) < σ(b) ≤ σ∗(b) as shown in Figure 1(a). Let
x = σ(b) − σ(a). From the figure, it is easy to verify that by exchanging a and b in σ, b
moves farther from σ∗(b) by exactly x and a may move closer to σ∗(a) but by at most x.
Formally,

f ′(b)− f(b) = (σ∗(b)− σ′(b))− (σ∗(b)− σ(b)) = σ(b)− σ(a) = x, (4)

where the second transition follows since σ′(b) = σ(a). Similarly,

f ′(a)−f(a) = |σ′(a)−σ∗(a)|−|σ∗(a)−σ(a)| ≥ −|σ′(a)−σ(a)| = −(σ(b)−σ(a)) = −x, (5)

where the second transition is due to triangle inequality and the third transition fol-
lows since σ′(a) = σ(b). Adding Equations (4) and (5), we get that f ′(a) + f ′(b) ≥
f(a) + f(b). For the maximum displacement distance, note that the displacement of b
in σ′ is σ∗(b) − σ(a), which is clearly at least as much as the displacements of a and b
in σ. Formally,

max(f ′(a), f ′(b)) = max(|σ(b)− σ∗(a)|, σ∗(b)− σ(a)) = σ∗(b)− σ(a),

where the second transition follows since σ(a) < σ(b) ≤ σ∗(b) and σ(a) ≤ σ∗(a) < σ∗(b).
Also, σ∗(b) > σ∗(a) implies σ∗(b) − σ(a) > σ∗(a) − σ(a) = f(a) and σ(a) < σ(b) implies
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σ∗(b)−σ(a) > σ∗(b)−σ(b) = f(b). Hence, max(f ′(a), f ′(b)) > f(a) and max(f ′(a), f ′(b)) >
f(b), so max(f ′(a), f ′(b)) > max(f(a), f(b)), as required.

Case 2. Let σ(a) ≤ σ∗(a) and σ(b) < σ∗(b) as shown in Figure 1(b). Let x = σ∗(a) −
σ(a), y = σ(b) − σ∗(b) and z = σ∗(b) − σ(b). Then, it is clear that f(a) = x, f(b) = y,
f ′(a) = z + y, and f ′(b) = z + x. It is trivial to check that f ′(a) + f ′(b) ≥ f(a) + f(b) and
max(f ′(a), f ′(b)) ≥ max(f(a), f(b)).

Case 3. Let σ(a) ≥ σ∗(a) and σ(b) > σ(a) as shown in Figure 1(c). This case is very
similar to Case 1. For the footrule distance, alternative a (rather than b) moves away
by exactly x = σ(b) − σ(a) and alternative b (rather than a) may move closer by at
most x. Similarly, for the maximum displacement distance, alternative a (rather than
b) has greater displacement after the exchange compared to the displacements of both
alternatives before the exchange. Hence, we again have f ′(a) + f ′(b) ≥ f(a) + f(b) and
max(f ′(a), f ′(b)) ≥ max(f(a), f(b)).

From the above three cases, it follows that the mapping which exchanges a and b in
a ranking σ with a �σ b is weakly-distance-increasing with respect to σ∗ for both the
footrule distance and the maximum displacement distance. Similarly to the proof of
Theorem 5.9, we can view this mapping to be a weakly-distance-increasing bijection
from La�b(A) to Lb�a(A), which shows that both distances are MC (using the equiva-
lent representation of MC distances given in Lemma 5.2). For proving that both dis-
tances are PC, we use the same technique that we used in the proof of Theorem 5.9. We
want to give a bijection from Sj(a) to Sj(b) which is distance-increasing. We map every
ranking where both a and b are in the first j position to itself, which does not change
the distance of the ranking from σ∗. We map any ranking σ where σ(a) ≤ j and σ(b) > j
to the ranking where alternatives a and b are swapped, which does not decrease the
distance from σ∗ as shown in the three cases above. Therefore, this mapping is at least
weakly-distance-increasing. We need to show that it is distance-increasing. That is, the
distance must increase for some σ ∈ Sj(a). Clearly, the identity map does not change
the distance.

Thus, we need to show that for any σ∗ ∈ L(A), a, b ∈ A such that a �σ∗ b and
j ∈ {1, . . . ,m − 1}, there exists a ranking σ such that σ(a) ≤ j, σ(b) > j and
d(σa↔b, σ

∗) > d(σ, σ∗) for both d = dFR and d = dMD (note that we can in principle
show different rankings for dFR and dMD, but we give a stronger example that works
for both distances). For this, we again take two cases. Let a1 and am denote the first
and the last alternatives in σ∗.

Case 1. If 1 ≤ j < σ∗(b), then consider the ranking σ where σ(a) = σ∗(a1) = 1,
σ(a1) = σ∗(a) and σ(c) = σ∗(c) for every c ∈ A \ {a1, a}. In particular, σ(b) = σ∗(b).
First, note that σ(a) = 1 ≤ j and σ(b) = σ∗(b) > j. Now, it is easy to verify that
f(a) = σ∗(a)− 1, f(b) = 0, f ′(a) = σ∗(b)− σ∗(a), and f ′(b) = σ∗(b)− 1. Therefore,

f ′(a)+f ′(b) = 2·σ∗(b)−σ∗(a)−1 ≥ 2·(σ∗(a)+1)−σ∗(a)−1 = σ∗(a)+1 > σ∗(a)−1 = f(a)+f(b).

Therefore, the footrule distance strictly increases. For the maximum displacement dis-
tance, note that in the original ranking, only alternatives a and a1 are displaced, hence
dMD(σ, σ∗) = f(a). Also, in the final ranking, only alternatives a1, a and b are displaced,
among which alternative b has the highest displacement. Thus, dMD(σ′, σ∗) = f ′(b). Fi-
nally, note that f ′(b) = σ∗(b)−1 > σ∗(a)−1 = f(a). Hence, the maximum displacement
distance also strictly increases.

Case 2. If σ∗(b) ≤ j < m, then consider the ranking σ where σ(b) = σ∗(am) = m,
σ(am) = σ∗(b) and σ(c) = σ∗(c) for every c ∈ A \ {am, b}. In particular, σ(a) = σ∗(a).
Again note that σ(a) = σ∗(a) < σ∗(b) ≤ j and σ(b) = m > j. Now, it is easy to verify
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that f(a) = 0, f(b) = m− σ∗(b), f ′(a) = m− σ∗(a), and f ′(b) = σ∗(b)− σ∗(a). Therefore,

f ′(a) + f ′(b) = m+ σ∗(b)− 2 · σ∗(a) > m+ σ∗(b)− 2 · σ∗(b) = m− σ∗(b) = f(a) + f(b).

Therefore, the footrule distance strictly increases. For the maximum displacement dis-
tance, note that in the original ranking, only alternatives b and am are displaced, hence
dMD(σ, σ∗) = f(b). Also, in the final ranking, only alternatives am, a and b are dis-
placed, among which alternative a has the highest displacement. Thus, dMD(σ′, σ∗) =
f ′(a). Finally, note that f ′(a) = m − σ∗(a) > m − σ∗(b) = f(b). Hence, the maximum
displacement distance also strictly increases.

From both cases, it is clear that for any σ∗ ∈ L(A), a, b ∈ A such that a �σ∗ b and j ∈
{1, . . . ,m − 1}, the bijection we constructed from Sj(a) to Sj(b) is distance-increasing.
Hence, using the equivalent representation of PC distances given in Lemma 5.5, it
follows that both the footrule distance and the maximum displacement distance are
PC, as required. (Theorem 5.9)

E.4. The case of the Cayley distance and the Hamming distance
In the discussion, we mentioned that we exclude distances such as the Cayley distance
and the Hamming distance from our analysis because even the most prominent voting
rules such as plurality are not accurate in the limit for any noise models that are
monotonic with respect to these distances. We show that this is indeed the case. First,
let us define these two distances.

The Cayley Distance. The Cayley distance between two rankings measures the min-
imum number of (possibly non-adjacent) swaps of alternatives required to convert one
ranking into the other. Let us denote it by dCY .

The Hamming Distance. The hamming distance between two rankings is defined as
the number of positions where rankings differ. Formally, dHM (σ1, σ2) =

∑
a∈A 1[σ1(a) 6=

σ2(a)].
Let A = {a, b, c} be the set of alternatives. Let σ∗ = (a � b � c) be the true ranking.

The following table describes the various possible rankings over these three alterna-
tives and their Cayley distances as well as Hamming distances from σ∗.

σ1 σ2 σ3 σ4 σ5 σ6
a a b c b c
b c a b c a
c b c a a b

dHM 0 2 3
dCY 0 1 2

Recall that for any d-monotonic noise model, d(σ, σ∗) = d(τ, σ∗) implies Pr[σ|σ∗] =
Pr[τ |σ∗]. Therefore, any noise model that is monotonic with respect to the Hamming
distance or the Cayley distance would assign equal probabilities to rankings σ3 and
σ4, and to rankings σ5 and σ6, making the probabilities of alternatives b and c coming
first in a random vote equal. It follows that with probability 1/2, alternative c would
be ranked higher than alternative b by plurality. Thus, plurality is not accurate in
the limit with respect to any noise model that is monotonic with respect to either the
Hamming distance or the Cayley distance.

F. PD-C RULES AND PC DISTANCES: THE CHARACTERIZATION
First, we prove the equivalent representation of PC distances (Lemma 5.5).

PROOF OF LEMMA 5.5. For the forward direction, fix any PC distance d, base rank-
ing σ, alternatives a, b ∈ A such that a �σ b and j ∈ {1, . . . ,m − 1}. Let us sort all
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rankings in Sj(a) and Sj(b) in the increasing order of their distance from σ, and map
the ith ranking (in the sorted order) in Sj(a) to the ith ranking in Sj(b). First, we
show that this mapping is weakly-distance-increasing with respect to σ. Suppose for
contradiction that (say) the ith ranking of Sj(a) at distance k from σ is mapped to
the ith ranking of Sj(b) at distance k′ < k from σ. Then clearly, |Sk′j (σ, a)| < i and
|Sk′j (σ, b)| ≥ i, so |Sk′j (σ, b)| > |Sk′j (σ, a)| which is a contradiction since we assumed the
distance to be PC. Now we show that this mapping takes at least one ranking to a
ranking at strictly greater distance from σ. Since d is PC, there exists some k∗ ∈ N
such that |Sk∗j (σ, a)| > |Sk∗j (σ, b)|. Consider the largest i such that ith ranking of Sj(a)
is at distance at most k∗ from σ. If this ranking is mapped to a ranking at equal dis-
tance (hence at most k∗) from σ, then we would have |Sk∗j (σ, b)| ≥ |Sk∗j (σ, a)|, which is a
contradiction. Hence, this ranking is mapped to a ranking at strictly greater distance
from σ.

In the other direction, take any distance function d. Suppose for every σ ∈ L(A),
a, b ∈ A such that a �σ b and j ∈ {1, . . . ,m−1}, there exists a bijection f : Sj(a)→ Sj(b)
that is weakly-distance-increasing with respect to σ and maps at least one ranking to
a ranking at strictly greater distance from σ. Fix any particular σ ∈ L(A), a, b ∈ A such
that a �σ b and j ∈ {1, . . . ,m−1}. First, for any k ∈ N we have Skj (b) ⊆ {f(τ)|τ ∈ Skj (a)},
so |Skj (a)| ≥ |Skj (b)|. Further, take the ranking τ ∈ Sj(a) for which d(f(τ), σ) > d(τ, σ).
Let k∗ = d(τ, σ). Then, f(τ) ∈ {f(γ)|γ ∈ Sk∗j (a)} but f(τ) /∈ Sk∗j (b). Hence, |Sk∗j (b)| <
|{f(γ)|γ ∈ Sk∗j (a)}| = |Sk∗j (a)|, as required. Since this holds for every σ ∈ L(A), a, b ∈ A
such that a �σ b and j ∈ {1, . . . ,m− 1}, the distance is PC. (Lemma 5.5)

We are now ready to prove our characterization result (Theorem 5.6).

PROOF OF THEOREM 5.6. First, we assume that d is PC and show that all PD-c
rules are d-monotone-robust. Consider any d-monotonic noise model G; we wish to
show that all PD-c rules are accurate in the limit forG. Fix any true ranking σ∗ ∈ L(A),
a, b ∈ A such that a �σ∗ b, and j ∈ {1, . . . ,m− 1}.

Since d is PC, Lemma 5.5 implies that there exists a bijection f : Sj(a)→ Sj(b) such
that i) for every σ ∈ Sj(a), d(f(σ), σ∗) ≥ d(σ, σ∗), hence Pr[σ|σ∗] ≥ Pr[f(σ)|σ∗], and ii)
for some σ ∈ Sj(a), d(f(σ), σ∗) > d(σ, σ∗), hence Pr[σ|σ∗] > Pr[f(σ)|σ∗]. Recall that f
is a bijection, hence its range is the whole of Sj(b). Now we sum over all σ ∈ Sj(a)
(similarly to the proof of Theorem 5.3) and get that the probability that a appears in
first j positions is strictly greater than the probability that b appears in the first j
positions in a random vote. It follows that given infinitely many samples from G, a
would appear in first j positions in more votes than b does. Since this holds for all
j ∈ {1, . . . ,m− 1}, there would be an edge from a to b in the PD graph with probability
1. Further, since this holds for all a, b ∈ A, the PD graph would reduce to σ∗ with
probability 1. Hence, any PD-c rule would output σ∗ with probability 1, as required.

In the other direction, consider any distance function d that is not PC. We show
that there exists a PD-c rule that is not accurate in the limit for some d-monotonic
noise model G. Since d is not PC, there exist σ∗ ∈ L(A), a, b ∈ A with a �σ∗ b and
j ∈ {1, . . . ,m − 1} such that either i) there exists k∗ ∈ N with |Skj (σ∗, a)| < |Skj (σ∗, b)|,
or ii) for every k ∈ N, |Skj (σ∗, a)| = |Skj (σ∗, a)|.

In case i), we construct the noise model G exactly as in the proof of Theorem 5.3. We
define M = maxσ∈L(A) d(σ, σ∗) and T = 2 ·m! ·M . Assign weights wσ = T − d(σ, σ∗) if
d(σ, σ∗) ≤ k∗ and wσ = M − d(σ, σ∗) otherwise. The noise model G would consequently
assign Pr[σ|σ∗] = wσ/

∑
τ∈L(A) wτ . It follows that under G, the probability of a coming

in first j positions of a random vote, i.e.,
∑
σ∈Sj(a) Pr[σ|σ∗], would be strictly less than
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the probability of b coming in first j positions in a random vote, i.e.,
∑
σ∈Sj(b) Pr[σ|σ∗].

Thus, given infinitely many samples, b would appear more times in first j positions
than a. This implies that with probability 1, there would be no edge from a to b in
the PD graph. Therefore, with probability 1 the PD graph would not reduce to σ∗. We
can easily construct a PD-c rule similarly to the proof of Theorem 5.3 that outputs a
ranking σ whenever the PD graph reduces to σ, and outputs an arbitrary ranking with
b � a when the PM graph does not reduce to any ranking. With probability 1, such a
rule would output a ranking where b � a. Hence, r is not accurate in the limit for G, as
required.

Consider case ii). Since |Skj (σ∗, a)| = |Skj (σ∗, a)| for every k ∈ N, we also have
|Skj (σ∗, a)| − |Sk−1j (σ∗, a)| = |Skj (σ∗, a)| − |Sk−1j (σ∗, b)| for every k ∈ N, i.e., the num-
ber of rankings at distance exactly k in which a is in first j positions is equal to the
number of rankings at distance exactly k where b is in first j positions. Now consider
any d-monotonic noise model G. Since it assigns equal probabilities to rankings at
equal distances, we see that the probability of a coming in first j positions of a ran-
dom vote, i.e.,

∑
σ∈Sj(a) Pr[σ|σ∗], would be exactly equal to the probability of b coming

in first j positions in a random vote, i.e.,
∑
σ∈Sj(b) Pr[σ|σ∗]. Therefore, with probability

1/2, a would not come in first j positions more times than b, in which case there would
be no edge from a to b in the PD graph and the PD graph would not reduce to σ∗. Now
we can easily construct a PD-c rule r such that r outputs σ whenever the PD graph
reduces to σ and outputs a fixed ranking σ′ 6= σ∗ whenever the PD graph does not
reduce to any ranking. Since the PD graph does not reduce to σ∗ with probability at
least 1/2, r is clearly not accurate in the limit under such a noise model. Hence, r is
not d-monotone-robust, as required. (Theorem 5.6)
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