
1

Singapore, September 16, 2013

Gapped Ground State Phases

of Quantum Lattice Systems1

Bruno Nachtergaele
(UC Davis)

based on joint work with

Sven Bachmann, Eman Hamza,
Spirydon Michalakis, Robert Sims, and Amanda Young.

1Work supported by the National Science Foundation (DMS-1009502).



2

Outline
I What is a gapped ground state phase?

I Automorphic equivalence

I Examples: PVBS models; the AKLT model

I Symmetry protected phases

I Spin chains with Matrix Product Ground States (MPS)

I The excess spin operators and a new invariant

I Concluding remarks



3

What is a quantum ground state phase?
By ground state phase we mean a set of models with
qualitatively similar behavior in the ground state(s).

Concretely, this is taken to mean that a g.s. ψ0 of one model
could evolve in finite time to a g.s. ψ1 of another model in the
same phase by some physically acceptable dynamics (one
generated by a short-range time-dependent Hamiltonian).

Such dynamics cannot induce or destroy long range order in
finite time, and the large-scale entanglement structure remains
unchanged.

In the physics literature the standard definition is that there is
a curve of Hamiltonians with finite-range interactions,
H(λ), λ ∈ [0, 1], such that one (or set of) ground state(s)
belongs to H(0) and the other to H(1), and such that there is
a uniform positive lower bound for the spectral gap above the
g.s. for all λ ∈ [0, 1] (absence of a quantum phase transition).
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(Quasi-local) Automorphic Equivalence
For systems in a finite volume Λ, a physically acceptable
dynamics is described by a quasi-local unitary VΛ, solution of
the Schrödinger equation:

d

ds
VΛ(s) = iDΛ(s)VΛ(s), s ∈ [0, 1], VΛ(0) = 1l,

where DΛ(s) is a “Hamiltonian” with short-range interactions:

DΛ(s) =
∑
X⊂Λ

Ωs(X ).

When we take the thermodynamic limit

lim
Λ↑Γ

VΛ(s)∗AVΛ(s) = αs(A), A ∈ AΛ0 ,

this dynamics converges to quasi-local automorphisms of the
algebra of observables.
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Ground states of quantum spin models
By quantum spin system we mean quantum systems of the
following type:

I (finite) collection of quantum systems labeled by x ∈ Λ,
each with a finite-dimensional Hilbert space of states Hx .
E.g., a spin of magnitude S = 1/2, 1, 3/2, . . . would have
Hx = C2,C3,C4, . . . .

I The Hilbert space describing the total system is the
tensor product

HΛ =
⊗
x∈Λ

Hx .

with a tensor product basis |{αx}〉 =
⊗

x∈Λ |αx〉
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I The algebra of observables of the composite system is

AΛ =
⊗
x∈Λ

B(Hx) = B(HΛ).

If X ⊂ Λ, we have AX ⊂ AΛ, by identifying A ∈ AX with
A⊗ 1lΛ\X ∈ AΛ. Then

A =
⋃

Λ

AΛ

‖·‖

A common choice for Λ’s are finite subsets of a graph Γ (often
called the ‘lattice’). E.g., if Γ = Zν , we may consider Λ of the
form [1, L]ν or [−N ,N]ν .
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Interactions, Dynamics, Ground States
The Hamiltonian HΛ = H∗Λ ∈ AΛ is defined in terms of an
interaction Φ: for any finite set X , Φ(X ) = Φ(X )∗ ∈ AX , and

HΛ =
∑
X⊂Λ

Φ(X )

For finite-range interactions, Φ(X ) = 0 if diamX ≥ R .
Heisenberg Dynamics: A(t) = τΛ

t (A) is defined by

τΛ
t (A) = e itHΛAe−itHΛ

For finite systems, ground states are simply eigenvectors of HΛ

belonging to its smallest eigenvalue (sometimes several ‘small
eigenvalues’).
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Suppose Φ0 and Φ1 are two interactions for two models on
lattices Γ.

Each has its set Si , i = 0, 1, of ground states in the
thermodynamic limit. I.e., for ω ∈ Si , there exists

ψΛn g.s. of HΛn =
∑
X⊂Λn

Φi(X ),

for a sequence of Λn ∈ Γ such that

ω(A) = lim
n→∞
〈ψΛn ,AψΛn〉.
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If the two models are in the same phase, we have a suitably
local automorphism α such that

S1 = S0 ◦ α

This means that for any state ω1 ∈ S1, there exists a state
ω0 ∈ S0, such that the expectation value of any observable A
in ω1 can be obtained by computing the expectation of α(A)
in ω0:

ω1(A) = ω0(α(A)).

The quasi-local character of α guarantees that the support of
α(A) need not be much larger than the support of A in order
to have this identity with small error.
Where do such quasi-local automorphisms α come form?
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Fix some lattice of interest, Γ and a sequence Λn ↑ Γ. Let
Φs , 0,≤ s ≤ 1, be a differentiable family of short-range
interactions for a quantum spin system on Γ.
Assume that for some a,M > 0, the interactions Φs satisfy

sup
x ,y∈Γ

ead(x ,y)
∑
X⊂Γ
x,y∈X

‖Φs(X )‖+ |X |‖∂sΦs(X )‖ ≤ M .

E.g,

Φs = Φ0 + sΨ

with both Φ0 and Ψ finite-range and uniformly bounded.
Let Λn ⊂ Γ, Λn → Γ, be a sequence of finite volumes,
satisfying suitable regularity conditions and suppose that the
spectral gap above the ground state (or a low-energy interval)
of

HΛn(s) =
∑
X⊂Λn

Φs(X )

is uniformly bounded below by γ > 0.
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Theorem (Bachmann, Michalakis, N, Sims (2012))
Under the assumptions of above, there exist a co-cycle of
automorphisms αs,t of the algebra of observables such that
S(s) = S(0) ◦ αs,0, for s ∈ [0, 1].
The automorphisms αs,t can be constructed as the
thermodynamic limit of the s-dependent “time” evolution for
an interaction Ω(X , s), which decays almost exponentially.

Concretely, the action of the quasi-local transformations
αs = αs,0 on observables is given by

αs(A) = lim
n→∞

V ∗n (s)AVn(s)

where Vn(s) solves a Schrödinger equation:

d

ds
Vn(s) = iDn(s)Vn(s), Vn(0) = 1l,

with Dn(s) =
∑

X⊂Λn
Ω(X , s).
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The αt,s satisfy a Lieb-Robinson bound of the form

‖[αt,s(A),B]‖ ≤ ‖A‖‖B‖min(|X |, |Y |)eC |t−s|F (d(X ,Y )),

where A ∈ AX ,B ∈ AY , d(X ,Y ) is the distance between X
and Y . F (d) can be chosen of the form

F (d) = Ce
−b d

(log d)2 .

with b ∼ γ/v , where γ and v are bounds for the gap and the
Lieb-Robinson velocity of the interactions Φs , i.e., b ∼ aγM−1.
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Product Vacua with Boundary States (PVBS)
(with Sven Bachmann, PRB 2012, CMP to appear)
We consider a quantum spin chain with n + 1 states at each
site that we interpret as n distinguishable particles labeled
i = 1, . . . , n, and an empty state denoted by 0.
The Hamiltonian for a chain of L spins is given by

H[1,L] =
L−1∑
x=1

hx ,x+1, (1)

where each hx ,x+1 is a sum of ‘hopping’ terms (each
normalized to be an orthogonal projection) and projections
that penalize particles of the same type to be nearest
neighbors.
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h =
n∑

i=1

|φ̂i〉〈φ̂i |+
n∑

1≤i≤j≤n

|φ̂ij〉〈φ̂ij |,

The φij ∈ Cn+1 ⊗ Cn+1 are given by

φi = |i , 0〉−e−iθi0λ−1
i |0, i〉 , φij = |i , j〉−e−iθijλ−1

i λj |j , i〉 , φii = |i , i〉

for i = 1, . . . , n and i 6= j = 1, . . . , n.
The parameters satisfy: θij ∈ R, θij = −θji , and λi > 0, for
0 ≤ i , j ≤ n, and λ0 = 1.



15

There exist n + 1 2n × 2n matrices v0, v1, . . . , vn, satisfying the
following commutation relations:

vivj = e−iθijλiλ
−1
j vjvi , i 6= j (2)

v 2
i = 0, i 6= 0 (3)

Then, for B an arbitrary 2n × 2n matrix,

ψ(B) =
n∑

i1,...,iL=0

Tr(BviL · · · vi1)|i1, . . . , iL〉 (4)

is a ground state of the model (MPS vector). In fact, they are
all the ground states. E.g., one can pick B such that

ψ(B) =
L∑

x=1

(
e iθi0λi

)x |0, . . . , 0, i , 0, . . . , 0〉
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If we add the assumption that λi 6= 1, for i = 1, . . . , n, we will
have nL particles having λi < 1 that bind to the left edge, and
nR = n − nL particles with λi > 1, which, when present, bind
to the right edge. The bulk ground state is the vacuum state

Ω = |0, . . . , 0〉 .
All other ground states differ from Ω only near the edges.
We can show that the energy of the first excited state is
bounded below by a positive constant, independently of the
length of the chain. As at most one particle of each type can
bind to the edge, any second particle of that type must be in a
scattering state. The dispersion relation is

εi(k) = 1− 2λi
1 + λ2

i

cos(k + θi0) .

We conjecture that the exact gap of the infinite chain is

γ = min

{
(1− λi)2

1 + λ2
i

∣∣∣∣ i = 1, . . . , n

}
.
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Automorphic equivalence classes of PVBS
models

Two PVBS models with λi ∈ (0, 1) ∪ (1,+∞), i = 1, . . . n,
belong to the same equivalence class if and only if they have
the same nL and nR . l0 = l1 = 2nL , r0 = r1 = 2nR .

Recall that nL is the number of i such that λi ∈ (0, 1) and nR

is the number of i such that λi ∈ (1,+∞). ls and rs are the
dimensions of the ground state spaces of the left and right
half-infinite chains.

(i) Since equivalent phases are related by an automorphism, a
unique bulk ground state can only be mapped to another
unique bulk state. Similarly, the ground state space
dimensions of the half-infinite chains, 2nL and 2nR , are also
preserved by an automorphism. Hence, if two PVBS models
belong to the same phase, they must have equal nL and nR .
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(ii) Conversely, if two PVBS models have the same values of
nL and nR but each with their own sets of parameters
{λi(s) | 1 ≤ i ≤ nL + nR} and {θij(s) | 1 ≤ i , j ≤ nL + nR},
for s = 0, 1, first, perform a change of basis in spin space such
that both sets of PVBS states are expressed in the same spin
basis and such that λi(s) < 1 for 1 ≤ i ≤ nL and λi(s) > 1 for
nL + 1 ≤ i ≤ nL + nR , for s = 0 and s = 1.
Let u be the unitary for this change of basis. Then, take a
smooth curve of unitaries u(s), 0 ≤ s ≤ 1, with u(0) = 1l and
u(1) = u, and let U[a,b](s) be the (b − a + 1)-fold tensor
product of u(s). Then,

H[a,b](s) = U[a,b](s)∗H[a,b](0)U[a,b](s)

defines a smooth path of Hamiltonians with a constant gap.
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Next, deform the parameters by simple linear interpolation:

λi(s) = (1− s)λi(0) + sλi(1) (5)

θij(s) = (1− s)θij(0) + sθij(1) (6)

This yields a smooth family of vectors φij(s) and thereby a
smooth family of nearest neighbor interactions h(s). The gap
remains open because λi(s) 6= 1 for all i = 1, . . . , n and
s ∈ [0, 1]. By our general result this implies the quasi-local
automorphic equivalence of the two models.
If one uses the same type of interpolation to connect models
with different values of nL and nR , the gap necessarily closes
along the path and there is a quantum phase transition.
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The AKLT model
(Affleck-Kennedy-Lieb-Tasaki, 1987)
Antiferromagnetic spin-1 chain: [1, L] ⊂ Z, Hx = C3,

H[1,L] =
L∑

x=1

(
1

3
1l +

1

2
Sx · Sx+1 +

1

6
(Sx · Sx+1)2

)
=

L∑
x=1

P
(2)
x ,x+1

The ground state space of H[1,L] is 4-dimensional for all L ≥ 2.
In the limit of the infinite chain, the ground state is unique,
has a finite correlation length, and there is a non-vanishing
gap in the spectrum above the ground state (Haldane phase).

Theorem (Bachmann-N, CMP 2013, to appear)
There exists a curve of uniformly gapped Hamiltonians with
nearest neighbor interaction s 7→ Φs such that Φ0 is the AKLT
interaction and Φ1 defines a PVBS model with nL = nR = 1
and a unique ground state of the infinite chain that is a
product state.
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J2

J1ferro Haldane

dimer

AKLT

Sutherland SU(3)

Potts SU(3)

Bethe Ansatz

H =
∑

x J1Sx · Sx+1 + J2(Sx · Sx+1)2
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Symmetry protected phases in 1 dimension
For a given system with s-dependent G -symmetric
interactions, we would like to find criteria to recognize that
the system at s0 is in a different gapped phase than at s1,
meaning that the gap above the ground state necessarily
closes for at least one intermediate value of s.

This is the same problem as before but restricted to a class of
models with a given symmetry group (and representation) G .

Our goal is to find invariants, i.e., computable and, in
principle, observable quantities that can be different at s0 and
s1, only if the model is in a different ground state phase.
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Half-chains
Consider Γ = [1,+∞) ⊂ Z, and translation-invariant models
defined by a nearest-neighbor interaction h(s), s ∈ [0, 1].
Suppose

I s 7→ h(s) is differentiable;

I h(s) commutes with a local symmetry G , i.e.
[h(s), π(g)⊗ π(g)] = 0, g ∈ G , π a representation of G ;

I there is a uniform lower bound γ > 0 for the spectral gap
above the ground state of

∑L−1
x=1 hx ,x+1(s), for all L ≥ 2.

Let τg (A) =
⊗

x∈Γ ad(π(g))A, for all g ∈ G , the action of the
symmetry on observables of the half-chain, and let σs

g denote
the corresponding representation on the space spanned by the
ground states: σs

g (ω) = ω ◦ τg , ω ∈ Ss .
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Then, there exist quasi local automorphisms αs such that

I αs ◦ τg = τg ◦ αs ;

I Ss = S0 ◦ αs ;

I σs
g
∼= σ0

g , for all s ∈ [0, 1].

In other words:

Up to equivalence, the representation of G acting on the
ground states of the half-chain is constant within a gapped
ground state phase.

We have shown (Bachmann-N, arXiv:1307.0716, JSP, to
appear) that for two interesting classes of models this
invariant, the representation of G given by σg , can be
observed from the ground state in the bulk, i.e. in the model
defined on Z.
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The case G = SU(2) and the Excess Spin
Models to keep in mind: antiferromagnetic chains in the
Haldane phase and generalizations. Unique ground state with
a spectral gap and an unbroken continuous symmetry.

Let S i
x , i = 1, 2, 3, x ∈ Z, denote the ith component of the

spin at site x . Claim: one can define

+∞∑
x=1

S i
x ,

as s.a. operators on the GNS space of the ground state and
they generate a representation of SU(2) that is characteristic
of the gapped ground state phase.
We can prove the existence of these excess spin operators for
two classes of models:
1) models with a random loop representation;
2) models with a matrix product ground state (MPS).
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Frustration-free chains with SU(2) invariant
MPS ground states

H =
∑
x

hx ,x+1

Ground state is defined in terms of an isometry V , which
intertwines two representations of SU(2):

Vug = (Ug ⊗ ug )V , g ∈ SU(2).

E.g., in the AKLT chain Ug is the spin-1 representation and ug

is the spin-1/2 representation of SU(2), corresponding to the
well-known spin 1/2 degrees of freedom at the edges.
Let k = dim(ug ). The transfer operator is defined by

E(B) = V ∗(1l⊗ B)V ,B ∈ Mk .

If ω is a G -invariant, pure, translation-invariant finitely
correlated state generated by the intertwiner V , one can
assume that 1 is the unique eigenvalue of maximal modulus of
E, and that it is simple (Fannes-N-Werner, JFA 1994).
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Let S = (S1, S2, S3) be the vector of generators of Ug , and
write Ug = exp(ig · S). Define

S+(L) =
L2∑
x=1

fL(x − 1)Sx ,

where fL : Z+ → R is given by

fL(mL+n) = 1−m/L, if m, n ∈ [0, L−1], and fL(x) = 0, if x ≥ L2.

Then, U+
g (L) = exp(igS+(L)) is an observable and use the

same notation for its representative on the GNS Hilbert space,
Hω, of ω.

Theorem
Let ω be as above. Then, the strong limit

U+
g = lim

L→∞
e ig ·S+(L)

exists and defines a strongly continuous unitary representation
of G on Hω.
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The representation of U+
g is an invariant

Summary of the argument: U+
g |πω(A(−∞,0])Ωω

∼= (⊕ug )∞.
(i) First consider the model on the half-infinite chain. The
space of ground states transforms as ug under the action of
SU(2). We call this the edge spin representation. We proved
that, in general, along a curve of models with a non-vanishing
gap, the edge representation is constant.
(ii) On the infinite chain, we showed that the excess spin
representation is well-defined.
(iii) One can verify that on the subspace of the GNS Hilbert
space of the infinite-chain ground state consisting of the
ground state of the Hamiltonian of the half-infinite chain, acts
as (an infinite number of copies of) ug .

This is also shows that ug is experimentally observable.
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Concluding Remarks
I There are infinitely many inequivalent SU(2) and

translation invariant gapped ground state phases of
integer spin chains.

I The frequently encountered statement that
symmetry-protected gapped phases in one dimension are
completely classified by the 2nd cohomology of the
symmetry group G is somewhat misleading.

I We are close to a comprehensive picture of the gapped
ground state phases in one dimension, but in two (and
more) dimensions many questions remain open (work in
progress on d-dimensional PVBS models with Bachmann,
Hamza, and Young.)


