# Friction and geometry in Lindbladian dynamics

Gian Michele Graf ETH Zurich

Mathematical Horizons for Quantum Physics 2 National University of Singapore October 7, 2013

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

# Friction and geometry in Lindbladian dynamics

Gian Michele Graf ETH Zurich

Mathematical Horizons for Quantum Physics 2 National University of Singapore October 7, 2013

joint work with Y. Avron, M. Fraas, P. Grech, O. Kenneth

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>



Known facts, just to set the stage

Lindbladians

The linear response of Lindbladian fluxes

The linear response of Hamiltonian fluxes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

### Outline

Known facts, just to set the stage

Lindbladians

The linear response of Lindbladian fluxes

The linear response of Hamiltonian fluxes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Linear response: Operators  $A = A^*$ ,  $B = B^*$ 

A quantum system  $H_0$  driven by A (interaction  $H_l(t) = -\phi(t)A$ ) responds through B

$$\langle B 
angle = \langle B 
angle_0 + f_{BA} \phi(0)$$

(f<sub>BA</sub>: static response) with

$$f_{BA} = i \int_0^\infty tr(e^{iH_0t}Be^{-iH_0t}[A,\rho_0])dt$$

(Kubo). Relates response to correlations in an equilibrium state  $\rho_0$ .

▲□▶▲□▶▲□▶▲□▶ □ のQで

Linear response: Operators  $A = A^*$ ,  $B = B^*$ 

A quantum system  $H_0$  driven by A (interaction  $H_l(t) = -\phi(t)A$ ) responds through B

$$\langle B 
angle = \langle B 
angle_0 + f_{BA} \phi(0)$$

(f<sub>BA</sub>: static response) with

$$f_{BA} = i \int_0^\infty tr(e^{iH_0t}Be^{-iH_0t}[A,\rho_0])dt$$

(Kubo). Relates response to correlations in an equilibrium state  $\rho_0$ .

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Next: Two contrasting examples

### First example: Integer quantum Hall effect (IQHE)

Driver  $E_{\nu}$  (field), response  $j_{\mu}$  (current)

$$\langle j_{\mu} \rangle = \sigma_{\mu\nu} E_{\nu}$$

( $\sigma_{\mu\nu}$ : conductivity) with Kubo formula (Thouless et al.)

$$\sigma_{\mu\nu} = \mathrm{i} \operatorname{tr}(\boldsymbol{P}_{\perp}[\partial_{\mu}\boldsymbol{P},\partial_{\nu}\boldsymbol{P}])$$

where *P* is the (1-particle density matrix of the) ground state of  $H_0$  and  $\partial_{\mu}P \equiv i[P, x_{\mu}]$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Phenomenological equation:

$$\langle \vec{j} \rangle = \langle \vec{j} \rangle_{\text{drift}} + \langle \vec{j} \rangle_{\text{diffusion}} \equiv \rho \vec{\mathbf{v}} - \gamma \vec{\nabla} \rho$$

 $(\rho = \rho(\mathbf{x})$  density,  $\gamma$  diffusion constant).



Phenomenological equation:

$$\langle ec{j} 
angle = \langle ec{j} 
angle_{
m drift} + \langle ec{j} 
angle_{
m diffusion} \equiv 
ho ec{m{
u}} - \gamma ec{
abla} 
ho$$

 $(\rho = \rho(x) \text{ density}, \gamma \text{ diffusion constant}).$  Viewed as an application of linear response for homogeneous  $\rho$ : driver  $\vec{F}$  (force), response  $\vec{j}$  (current)

$$\langle \vec{j} \rangle_{\rm drift} = \rho \mu \vec{F}$$

( $\mu$ : mobility) with Kubo formula (Einstein)

$$\mu=\beta\gamma$$

(日) (日) (日) (日) (日) (日) (日)

Phenomenological equation:

$$\langle ec{j} 
angle = \langle ec{j} 
angle_{
m drift} + \langle ec{j} 
angle_{
m diffusion} \equiv 
ho ec{m{
u}} - \gamma ec{
abla} 
ho$$

 $(\rho = \rho(x) \text{ density}, \gamma \text{ diffusion constant}).$  Viewed as an application of linear response for homogeneous  $\rho$ : driver  $\vec{F}$  (force), response  $\vec{j}$  (current)

$$\langle \vec{j} \rangle_{\rm drift} = \rho \mu \vec{F}$$

(µ: mobility) with Kubo formula (Einstein)

$$\mu = \beta \gamma$$

In the inhomogeneous case, but in equilibrium:  $\rho(\mathbf{x}) \propto e^{-\beta V(\mathbf{x})}$ ,  $\vec{F} = -\vec{\nabla} V$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Phenomenological equation:

$$\langle ec{j} 
angle = \langle ec{j} 
angle_{
m drift} + \langle ec{j} 
angle_{
m diffusion} \equiv 
ho ec{m{
u}} - \gamma ec{
abla} 
ho$$

 $(\rho = \rho(x) \text{ density}, \gamma \text{ diffusion constant}).$  Viewed as an application of linear response for homogeneous  $\rho$ : driver  $\vec{F}$  (force), response  $\vec{j}$  (current)

$$\langle \vec{j} \rangle_{\rm drift} = \rho \mu \vec{F}$$

( $\mu$ : mobility) with Kubo formula (Einstein)

$$\mu = \beta \gamma$$

In the inhomogeneous case, but in equilibrium:  $\rho(x) \propto e^{-\beta V(x)}$ ,  $\vec{F} = -\vec{\nabla} V$ . Then  $\vec{\nabla} \rho = \rho \beta \vec{F}$  and  $\langle \vec{j} \rangle = (\mu - \beta \gamma) \rho \vec{F} = 0$ .

$$f_{BA} = i \int_0^\infty tr(e^{iH_0t}Be^{-iH_0t}[A,\rho_0])dt$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

$$f_{BA} = \mathrm{i} \int_0^\infty \mathrm{tr}(\mathrm{e}^{\mathrm{i}H_0t}B\mathrm{e}^{-\mathrm{i}H_0t}[A,
ho_0])dt$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

#### • General

$$f_{BA} = i \int_0^\infty tr(e^{iH_0t}Be^{-iH_0t}[A,\rho_0])dt$$

• General • Requires full Hamiltonian  $H_0$  (or propagator or Green's function)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$f_{BA} = i \int_0^\infty tr(e^{iH_0t}Be^{-iH_0t}[A,\rho_0])dt$$

• General • Requires full Hamiltonian  $H_0$  (or propagator or Green's function)

$$\sigma_{\mu\nu} = -i \operatorname{tr}(\boldsymbol{P}[\partial_{\mu}\boldsymbol{P},\partial_{\nu}\boldsymbol{P}])$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

►

$$f_{BA} = i \int_0^\infty tr(e^{iH_0t}Be^{-iH_0t}[A,\rho_0])dt$$

• General • Requires full Hamiltonian  $H_0$  (or propagator or Green's function)

$$\sigma_{\mu\nu} = -i \operatorname{tr}(\boldsymbol{P}[\partial_{\mu}\boldsymbol{P}, \partial_{\nu}\boldsymbol{P}])$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• Geometric (Chern number)

►

$$f_{BA} = i \int_0^\infty tr(e^{iH_0t}Be^{-iH_0t}[A,\rho_0])dt$$

• General • Requires full Hamiltonian  $H_0$  (or propagator or Green's function)

$$\sigma_{\mu\nu} = -i \operatorname{tr}(\boldsymbol{P}[\partial_{\mu}\boldsymbol{P}, \partial_{\nu}\boldsymbol{P}])$$

• Geometric (Chern number) • Requires only ground state *P* 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

$$f_{BA} = i \int_0^\infty tr(e^{iH_0t}Be^{-iH_0t}[A,\rho_0])dt$$

• General • Requires full Hamiltonian  $H_0$  (or propagator or Green's function)

$$\sigma_{\mu\nu} = -i \operatorname{tr}(\boldsymbol{P}[\partial_{\mu}\boldsymbol{P}, \partial_{\nu}\boldsymbol{P}])$$

• Geometric (Chern number) • Requires only ground state P • No dissipation ( $\sigma_{\mu\nu} = -\sigma_{\nu\mu}$ )

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

►

$$f_{BA} = i \int_0^\infty tr(e^{iH_0t}Be^{-iH_0t}[A,\rho_0])dt$$

• General • Requires full Hamiltonian  $H_0$  (or propagator or Green's function)

$$\sigma_{\mu\nu} = -i \operatorname{tr}(\boldsymbol{P}[\partial_{\mu}\boldsymbol{P}, \partial_{\nu}\boldsymbol{P}])$$

• Geometric (Chern number) • Requires only ground state P • No dissipation ( $\sigma_{\mu\nu} = -\sigma_{\nu\mu}$ ) • Zero temperature

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

►

$$f_{BA} = i \int_0^\infty tr(e^{iH_0t}Be^{-iH_0t}[A,\rho_0])dt$$

• General • Requires full Hamiltonian  $H_0$  (or propagator or Green's function)

$$\sigma_{\mu\nu} = -\mathrm{i}\,\mathrm{tr}(\boldsymbol{P}[\partial_{\mu}\boldsymbol{P},\partial_{\nu}\boldsymbol{P}])$$

• Geometric (Chern number) • Requires only ground state P • No dissipation ( $\sigma_{\mu\nu} = -\sigma_{\nu\mu}$ ) • Zero temperature

$$\mu=\beta\gamma$$

(日)

$$f_{BA} = i \int_0^\infty tr(e^{iH_0t}Be^{-iH_0t}[A,\rho_0])dt$$

• General • Requires full Hamiltonian  $H_0$  (or propagator or Green's function)

$$\sigma_{\mu\nu} = -\mathrm{i}\,\mathrm{tr}(\boldsymbol{P}[\partial_{\mu}\boldsymbol{P},\partial_{\nu}\boldsymbol{P}])$$

• Geometric (Chern number) • Requires only ground state P • No dissipation ( $\sigma_{\mu\nu} = -\sigma_{\nu\mu}$ ) • Zero temperature

$$\mu = \beta \gamma$$

(日)

Not geometric

►

►

$$f_{BA} = i \int_0^\infty tr(e^{iH_0t}Be^{-iH_0t}[A,\rho_0])dt$$

• General • Requires full Hamiltonian  $H_0$  (or propagator or Green's function)

$$\sigma_{\mu\nu} = -\mathrm{i}\,\mathrm{tr}(\boldsymbol{P}[\partial_{\mu}\boldsymbol{P},\partial_{\nu}\boldsymbol{P}])$$

• Geometric (Chern number) • Requires only ground state P • No dissipation ( $\sigma_{\mu\nu} = -\sigma_{\nu\mu}$ ) • Zero temperature

$$\mu=\beta\gamma$$

• Not geometric • Dissipation, friction, (decoherence)

►

$$f_{BA} = i \int_0^\infty tr(e^{iH_0t}Be^{-iH_0t}[A,\rho_0])dt$$

• General • Requires full Hamiltonian  $H_0$  (or propagator or Green's function)

$$\sigma_{\mu\nu} = -\mathrm{i}\,\mathrm{tr}(\boldsymbol{P}[\partial_{\mu}\boldsymbol{P},\partial_{\nu}\boldsymbol{P}])$$

• Geometric (Chern number) • Requires only ground state P • No dissipation ( $\sigma_{\mu\nu} = -\sigma_{\nu\mu}$ ) • Zero temperature

$$\mu=\beta\gamma$$

• Not geometric • Dissipation, friction, (decoherence) • Positive temperature

►

$$f_{BA} = i \int_0^\infty tr(e^{iH_0t}Be^{-iH_0t}[A,\rho_0])dt$$

• General • Requires full Hamiltonian  $H_0$  (or propagator or Green's function)

$$\sigma_{\mu\nu} = -\mathrm{i}\,\mathrm{tr}(\boldsymbol{P}[\partial_{\mu}\boldsymbol{P},\partial_{\nu}\boldsymbol{P}])$$

• Geometric (Chern number) • Requires only ground state P • No dissipation ( $\sigma_{\mu\nu} = -\sigma_{\nu\mu}$ ) • Zero temperature

$$\mu=\beta\gamma$$

• Not geometric • Dissipation, friction, (decoherence) • Positive temperature

・ロト・日本・モート ヨー うへの

Are the IQHE and Brownian motion compatible?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Are the IQHE and Brownian motion compatible? We'll see: yes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

What is a good frame for discussing the question?

- Are the IQHE and Brownian motion compatible? We'll see: yes
- What is a good frame for discussing the question? Lindbladians. Dissipation is present in the very equations of motion

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Can a dissipative dynamics (like Lindblad's) have geometric response?

- Are the IQHE and Brownian motion compatible? We'll see: yes
- What is a good frame for discussing the question? Lindbladians. Dissipation is present in the very equations of motion

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Can a dissipative dynamics (like Lindblad's) have geometric response? Yes

### Outline

Known facts, just to set the stage

#### Lindbladians

The linear response of Lindbladian fluxes

The linear response of Hamiltonian fluxes

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Some observables  $\dot{X}$  (e.g. currents) are the rate of change of others, X. In Hamiltonian dynamics

 $\dot{X} = i[H, X]$ 

Some observables  $\dot{X}$  (e.g. currents) are the rate of change of others, X. In Hamiltonian dynamics

 $\dot{X} = i[H, X]$ 

Unclear meaning for open systems. Suppose a system S is part of a larger one.

$$X \mapsto X_S$$

retains "the part of X which pertains to S". E.g.  $H \mapsto H_S \neq H$ .

Some observables  $\dot{X}$  (e.g. currents) are the rate of change of others, X. In Hamiltonian dynamics

 $\dot{X} = i[H, X]$ 

Unclear meaning for open systems. Suppose a system S is part of a larger one.

$$X \mapsto X_S$$

retains "the part of X which pertains to S". E.g.  $H \mapsto H_S \neq H$ . Requirement:  $X_S \otimes \mathbb{1} \mapsto X_S$ . Then typically

$$\dot{X} = i[H, X] \mapsto (\dot{X})_S \neq \dot{X}_S = i[H_S, X_S]$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Some observables  $\dot{X}$  (e.g. currents) are the rate of change of others, X. In Hamiltonian dynamics

 $\dot{X} = i[H, X]$ 

Unclear meaning for open systems. Suppose a system S is part of a larger one.

$$X \mapsto X_S$$

retains "the part of X which pertains to S". E.g.  $H \mapsto H_S \neq H$ . Requirement:  $X_S \otimes \mathbb{1} \mapsto X_S$ . Then typically

$$\dot{X} = i[H, X] \mapsto (\dot{X})_{S} \neq \dot{X}_{S} = i[H_{S}, X_{S}]$$

(日) (日) (日) (日) (日) (日) (日)

(since  $[H, X_S \otimes 1] \neq [H_S, X_S] \otimes 1$ )

Some observables  $\dot{X}$  (e.g. currents) are the rate of change of others, X. In Hamiltonian dynamics

 $\dot{X} = i[H, X]$ 

Unclear meaning for open systems. Suppose a system S is part of a larger one.

$$X \mapsto X_S$$

retains "the part of X which pertains to S". E.g.  $H \mapsto H_S \neq H$ . Requirement:  $X_S \otimes 1 \mapsto X_S$ . Then typically

$$\dot{X} = i[H, X] \mapsto (\dot{X})_{S} \neq \dot{X}_{S} = i[H_{S}, X_{S}]$$

(since  $[H, X_S \otimes 1] \neq [H_S, X_S] \otimes 1$ )

We'll see: Both answers  $((\dot{X})_S, \dot{X}_S)$  are right, but come with different meanings.

# Lindblad evolution

Quantum System coupled to Bath. What is the evolution of the system?

Evolution of a mixed state  $\rho = \rho_{S}$ 

$$\rho \mapsto \phi_t(\rho) = \operatorname{tr}_{\boldsymbol{B}} (U_t(\rho \otimes \rho_{\boldsymbol{B}}) U_t^*)$$

with joint unitary (Hamiltonian) evolution  $U_t$  ( $U_{t+s} = U_t U_s$ ) on  $\mathcal{H} \otimes \mathcal{H}_B$ Properties:

- tr  $\phi_t(\rho)$  = tr  $\rho$
- $\phi_t$  completely positive
- $\blacktriangleright \phi_{t+s} = \phi_t \circ \phi_s$ 
  - approximately, if time scales of Bath ≪ time scales of System (Davies, Spohn; Jaksic, Pillet)
  - exactly, if bath is white noise (and some other cases)
## Lindblad generator

- tr  $\phi_t(\rho)$  = tr  $\rho$
- $\phi_t$  completely positive
- $\blacktriangleright \phi_{t+s} = \phi_t \circ \phi_s$

Generator:

$$\mathcal{L} := \frac{d\phi_t}{dt}\big|_{t=0}$$

Theorem (Lindblad, Sudarshan-Kossakowski-Gorini 1976) The general form of the generator is

$$\mathcal{L}(\rho) = -\mathrm{i}[H, \rho] + \mathcal{D}(\rho)$$

with dissipative term

$$\mathcal{D}(\rho) = \sum_{\alpha} 2 \Gamma_{\alpha} \rho \Gamma_{\alpha}^* - \Gamma_{\alpha}^* \Gamma_{\alpha} \rho - \rho \Gamma_{\alpha}^* \Gamma_{\alpha}$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

and arbitrary bounded *H* and  $\Gamma_{\alpha}$ .

#### Gauge transformations

The Lindbladian  $\mathcal{L}$  does not determine H and  $\Gamma_{\alpha}$  uniquely. In fact,  $\mathcal{L}$  is invariant under the transformation

$$H\mapsto H+ ext{el}-i\sum_lpha(g^*_lpha\Gamma_lpha-g_lpha\Gamma^*_lpha),\qquad \Gamma_lpha\mapsto\Gamma_lpha+g_lpha$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

( $e \in \mathbb{R}, g_{\alpha} \in \mathbb{C}$ ).

#### Gauge transformations

The Lindbladian  $\mathcal{L}$  does not determine H and  $\Gamma_{\alpha}$  uniquely. In fact,  $\mathcal{L}$  is invariant under the transformation

$$H\mapsto H+ ext{el}-i\sum_lpha(g^*_lpha\Gamma_lpha-g_lpha\Gamma^*_lpha),\qquad \Gamma_lpha\mapsto\Gamma_lpha+g_lpha$$

( $e \in \mathbb{R}, g_{\alpha} \in \mathbb{C}$ ). Remarks:

The tangent map is

$$(\delta H, \, \delta \Gamma_{\alpha}) \mapsto (\delta H - i \sum_{\alpha} (g_{\alpha}^* \delta \Gamma_{\alpha} - g_{\alpha} \delta \Gamma_{\alpha}^*), \, \delta \Gamma_{\alpha})$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

#### Gauge transformations

The Lindbladian  $\mathcal{L}$  does not determine H and  $\Gamma_{\alpha}$  uniquely. In fact,  $\mathcal{L}$  is invariant under the transformation

$$H\mapsto H+ ext{el}-i\sum_lpha(g^*_lpha\Gamma_lpha-g_lpha\Gamma^*_lpha),\qquad \Gamma_lpha\mapsto\Gamma_lpha+g_lpha$$

( $e \in \mathbb{R}, g_{lpha} \in \mathbb{C}$ ). Remarks:

The tangent map is

$$(\delta H, \, \delta \Gamma_{\alpha}) \mapsto (\delta H - i \sum_{\alpha} (g_{\alpha}^* \delta \Gamma_{\alpha} - g_{\alpha} \delta \Gamma_{\alpha}^*), \, \delta \Gamma_{\alpha})$$

In examples, one choice of H as the "energy of the system" will be singled out naturally.

## Families of Lindbladians

Lindbladians  $\mathcal{L}_{\phi}$  may depend on some control parameters  $\phi = (\phi^{\mu}) \in M$ .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

## Families of Lindbladians

Lindbladians  $\mathcal{L}_{\phi}$  may depend on some control parameters  $\phi = (\phi^{\mu}) \in M$ . Can be used for

- virtual changes (next)
- to drive the system and probe its response (later)

Special case: Iso-spectral families

$$H(\phi) = U(\phi)HU^*(\phi), \qquad \Gamma_{\alpha}(\phi) = U(\phi)\Gamma_{\alpha}U^*(\phi)$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

for a unitary  $U(\phi)={
m e}^{-{
m i}G_\mu\phi^\mu}$  with generators  $G_\mu=G_\mu^*$ 

## The principle of virtual work in the Hamiltonian context

is a proven mean of associating observables  $X_{\mu}$  (generalized forces) to parameter changes  $\delta \phi^{\mu}$  by means of the induced  $\delta H$ :

$$X_{\mu}\delta\phi^{\mu}:=\delta H$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Examples:

- displacement  $\rightarrow$  force (or strain  $\rightarrow$  stress)
- ► angle → torque
- e.m. gauge transformation  $\rightarrow$  current

## The principle of virtual work in the Hamiltonian context

is a proven mean of associating observables  $X_{\mu}$  (generalized forces) to parameter changes  $\delta \phi^{\mu}$  by means of the induced  $\delta H$ :

$$X_{\mu}\delta\phi^{\mu}:=\delta H$$

Examples:

- ► displacement → force (flux of momentum)
- angle  $\rightarrow$  torque (flux of angular momentum)
- e.m. gauge transformation  $\rightarrow$  current (flux of charge).

The principle of virtual work in the Lindbladian context

$$X_{\mu}\delta\phi^{\mu} := \delta H + \mathrm{i}\sum_{\alpha} (\Gamma_{\alpha}^{*}\delta\Gamma_{\alpha} - \delta\Gamma_{\alpha}^{*}\Gamma_{\alpha})$$



The principle of virtual work in the Lindbladian context

$$X_{\mu}\delta\phi^{\mu} := \delta H + \mathrm{i}\sum_{lpha} (\Gamma^{*}_{lpha}\delta\Gamma_{lpha} - \delta\Gamma^{*}_{lpha}\Gamma_{lpha})$$

- is formally self-adjoint
- is gauge invariant
- For iso-spectral families (δH = i[H, G<sub>μ</sub>]δφ<sup>μ</sup>, δΓ<sub>α</sub> ditto) the observable is a flux:

$$X_{\mu} = \mathcal{L}^*(G_{\mu}) = \mathrm{i}[H,G_{\mu}] + \mathcal{D}^*(G_{\mu})$$

•  $\mathcal{L}^*(G_\mu)$  = Hamiltonian flux + dissipative flux (Bellissard)

If the generalized force X<sub>μ</sub> = 0 determined by U(φ) vanishes, then its generator G<sub>μ</sub> is a constant of motion (Noether).

# Example: Brownian motion; charge

Lindbladian given by

$$H = rac{p^2}{2}, \qquad \Gamma = \sqrt{\gamma}p$$

Heisenberg equation of motion

$$\dot{x} = \mathcal{L}^*(x) = p, \qquad \dot{p} = \mathcal{L}^*(p) = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

# Example: Brownian motion; charge

Lindbladian given by

$$H = rac{
ho^2}{2}, \qquad \Gamma = \sqrt{\gamma} 
ho$$

Heisenberg equation of motion

$$\dot{\boldsymbol{x}} = \mathcal{L}^*(\boldsymbol{x}) = \boldsymbol{p}, \qquad \dot{\boldsymbol{p}} = \mathcal{L}^*(\boldsymbol{p}) = \boldsymbol{0}$$

Iso-spectral family  $H(\phi)$  obtained by e.m. gauge trsf  $G = \chi(x)$ :

$$X = \mathcal{L}^*(\chi) = \frac{1}{2} \{ \boldsymbol{p}, \nabla \chi \} + \gamma \Delta \chi$$

read in terms of

$$\chi = \int \rho(\mathbf{x})\chi(\mathbf{x})d\mathbf{x}, \qquad \mathbf{X} = \int j(\mathbf{x}) \cdot \nabla \chi(\mathbf{x}) d\mathbf{x}$$
$$\rho(\mathbf{x}_0) = \delta(\mathbf{x} - \mathbf{x}_0), \qquad j(\mathbf{x}_0) = \frac{1}{2}\{\mathbf{p}, \rho(\mathbf{x}_0)\} - \gamma(\nabla \rho)(\mathbf{x}_0)$$

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

# Example: Brownian motion; charge

Lindbladian given by

$$H = rac{p^2}{2}, \qquad \Gamma = \sqrt{\gamma} p$$

Heisenberg equation of motion

$$\dot{\boldsymbol{x}} = \mathcal{L}^*(\boldsymbol{x}) = \boldsymbol{p}, \qquad \dot{\boldsymbol{p}} = \mathcal{L}^*(\boldsymbol{p}) = \boldsymbol{0}$$

Iso-spectral family  $H(\phi)$  obtained by e.m. gauge trsf  $G = \chi(x)$ :

$$X = \mathcal{L}^*(\chi) = \frac{1}{2} \{ p, \nabla \chi \} + \gamma \Delta \chi$$

read in terms of

$$\chi = \int \rho(\mathbf{x})\chi(\mathbf{x})d\mathbf{x}, \qquad \mathbf{X} = \int j(\mathbf{x}) \cdot \nabla \chi(\mathbf{x}) d\mathbf{x}$$
$$\rho(\mathbf{x}_0) = \delta(\mathbf{x} - \mathbf{x}_0), \qquad j(\mathbf{x}_0) = \frac{1}{2}\{\mathbf{p}, \rho(\mathbf{x}_0)\} - \gamma(\nabla \rho)(\mathbf{x}_0)$$

Note:

*j* = *j*<sub>drift</sub> + *j*<sub>diffusion</sub> as operators
 *X* = *\(\chi\)* is just *\(\chi\)* = −∇ · *j*: local charge conservation, is a solution.

# Example: Fermions on a lattice; charge Lindbladian given by

$$H = \sum_{j \in \mathbb{Z}} (a_{j+1}^* a_j + a_j^* a_{j+1} - \mu a_j^* a_j), \qquad \Gamma_j^- = \sqrt{\gamma_-} a_j, \qquad \Gamma_j^+ = \sqrt{\gamma_+} a_j^*$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

 $\Gamma_i^{\pm}$  fills holes/removes particle at site *j* 

Example: Fermions on a lattice; charge Lindbladian given by

$$H = \sum_{j \in \mathbb{Z}} (a_{j+1}^* a_j + a_j^* a_{j+1} - \mu a_j^* a_j), \qquad \Gamma_j^- = \sqrt{\gamma_-} a_j, \qquad \Gamma_j^+ = \sqrt{\gamma_+} a_j^*$$

 $\Gamma_j^{\pm}$  fills holes/removes particle at site *j* Charge in the left half-lattice:  $Q = \sum_{j \le 0} a_j^* a_j$ 



Current

$$\dot{\mathbf{Q}} = \mathcal{L}^*(\mathbf{Q}) = \mathbf{i}[H, \mathbf{Q}] + \mathcal{D}^*(\mathbf{Q})$$
$$\mathbf{i}[H, \mathbf{Q}] = \mathbf{i}(\mathbf{a}_1^* \mathbf{a}_0 - \mathbf{a}_0^* \mathbf{a}_1), \quad \mathcal{D}^*(\mathbf{Q}) = 2\sum_{j \le 0} (\gamma_+ \mathbf{a}_j \mathbf{a}_j^* - \gamma_- \mathbf{a}_j^* \mathbf{a}_j)$$

Only Hamiltonian current is local; dissipative is not.

Example: damped harmonic oscillator; momentum

Lindbladian given by

 $H = a^*a, \qquad \Gamma_- = \sqrt{\gamma}_-a, \qquad \Gamma_+ = \sqrt{\gamma}_+a^*, \qquad (\gamma_- > \gamma_+ > 0)$ 

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

 $\Gamma_{\pm}$ : exciting and damping.

Example: damped harmonic oscillator; momentum

Lindbladian given by

 $H = a^*a, \qquad \Gamma_- = \sqrt{\gamma}_-a, \qquad \Gamma_+ = \sqrt{\gamma}_+a^*, \qquad (\gamma_- > \gamma_+ > 0)$ 

 $\Gamma_{\pm}$ : exciting and damping. Iso-spectral family  $H(\phi)$  obtained by translations G = p

$$\dot{\boldsymbol{
ho}} = \mathcal{L}^*(\boldsymbol{
ho}) = \mathrm{i}[\boldsymbol{H}, \boldsymbol{
ho}] + \mathcal{D}^*(\boldsymbol{
ho}) \equiv -\boldsymbol{x} - (\gamma_- - \gamma_+)\boldsymbol{
ho}$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

spring force and friction.

Lindbladians  $\ensuremath{\mathcal{L}}$  generate contractions. Thus

- ► The spectrum σ(L) is contained in the complex left half-plane
- $\ker \mathcal{L} \cap \operatorname{ran} \mathcal{L} = \{0\}$



Lindbladians  $\ensuremath{\mathcal{L}}$  generate contractions. Thus

- ► The spectrum σ(L) is contained in the complex left half-plane
- ker  $\mathcal{L} \cap \operatorname{ran} \mathcal{L} = \{0\}$



▲□▶▲□▶▲□▶▲□▶ □ のQで

Assumption (gap condition). 0 is a discrete point in the spectrum.

Lindbladians  $\ensuremath{\mathcal{L}}$  generate contractions. Thus

- ► The spectrum σ(L) is contained in the complex left half-plane
- $\ker \mathcal{L} \cap \operatorname{ran} \mathcal{L} = \{0\}$



Assumption (gap condition). 0 is a discrete point in the spectrum.

 $\mathcal{P},\,\mathcal{Q}:$  complementary (super) projections associated to  $\ker\mathcal{L}\oplus ran\,\mathcal{L}$ 

$$\mathcal{P} = (2\pi \mathrm{i})^{-1} \oint (z - \mathcal{L})^{-1} dz$$

Lindbladians  $\ensuremath{\mathcal{L}}$  generate contractions. Thus

- ► The spectrum σ(L) is contained in the complex left half-plane
- $\ker \mathcal{L} \cap \operatorname{ran} \mathcal{L} = \{0\}$



Assumption (gap condition). 0 is a discrete point in the spectrum.

 $\mathcal{P}, \mathcal{Q}:$  complementary (super) projections associated to  $\ker \mathcal{L} \oplus \operatorname{ran} \mathcal{L}$ 

$$\mathcal{P} = (2\pi i)^{-1} \oint (z - \mathcal{L})^{-1} dz$$

Stationary states:  $\sigma = \mathcal{P}\sigma$ . In fact  $\dot{\sigma} = \mathcal{L}\sigma = 0$ .

#### Lindbladians with unique stationary states

Let  $\sigma$  be the stationary state ( $\sigma \ge 0$ , tr  $\sigma = 1$ ). Then

$$\mathcal{P}(\rho) = \sigma \operatorname{tr} \rho, \qquad \mathcal{P}^*(X) = \mathbb{1} \cdot \operatorname{tr}(X\sigma)$$

• Indeed: 
$$\mathcal{P}(\sigma) = \sigma$$
,  $\mathcal{P}^*(\mathbb{1}) = \mathbb{1}$ 

- $\mathcal{P}$  depends on  $\sigma$ , not on  $\mathcal{L}$
- Example: damped harmonic oscillator:  $\sigma$  is thermal with  $\beta = \log(\gamma_{-}/\gamma_{+})$

## **Dephasing Lindbladians**

Recall the dissipative term:

$$\mathcal{D}(\rho) = \sum_{\alpha} 2\Gamma_{\alpha}\rho\Gamma_{\alpha}^* - \Gamma_{\alpha}^*\Gamma_{\alpha}\rho - \rho\Gamma_{\alpha}^*\Gamma_{\alpha}$$

The Lindbladian is dephasing if  $\Gamma_{\alpha} = \Gamma_{\alpha}(H)$ . Then

$$\mathcal{L}(P) = -i[H, P] + \mathcal{D}(P) = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

for any spectral projection P of H.

## **Dephasing Lindbladians**

Recall the dissipative term:

$$\mathcal{D}(\rho) = \sum_{\alpha} 2\Gamma_{\alpha}\rho\Gamma_{\alpha}^* - \Gamma_{\alpha}^*\Gamma_{\alpha}\rho - \rho\Gamma_{\alpha}^*\Gamma_{\alpha}$$

The Lindbladian is dephasing if  $\Gamma_{\alpha} = \Gamma_{\alpha}(H)$ . Then

$$\mathcal{L}(\boldsymbol{P}) = -\mathrm{i}[\boldsymbol{H},\boldsymbol{P}] + \mathcal{D}(\boldsymbol{P}) = 0$$

for any spectral projection *P* of *H*. Let  $H = \sum_{j} e_{j}P_{j}$  (spectral decomposition). Then

$$\mathcal{P}(\rho) = \sum_{j} \mathcal{P}_{j} \rho \mathcal{P}_{j}, \qquad \mathcal{P}^{*}(X) = \sum_{j} \mathcal{P}_{j} X \mathcal{P}_{j}$$

- Stationary states σ = P(σ) are the states obtained after a projective measurement ("non-demolition") of H
- If dim  $P_j = 1$ , the stationary states form a simplex.

#### Adiabatic response

Adiabatically changing controls  $\phi = \phi(s)$  where  $s = \varepsilon t$  is the slow time. Evolution equation for the state  $\rho$  is

$$\varepsilon \frac{\mathrm{d}\rho}{\mathrm{d}\mathrm{s}} = \mathcal{L}_{\phi}\rho.$$

with initial state that is an instantaneous equilibrium state  $\sigma(0)$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

## Adiabatic response

Adiabatically changing controls  $\phi = \phi(s)$  where  $s = \varepsilon t$  is the slow time. Evolution equation for the state  $\rho$  is

$$arepsilon rac{\mathrm{d}
ho}{\mathrm{d}\mathrm{s}} = \mathcal{L}_{\phi}
ho.$$

with initial state that is an instantaneous equilibrium state  $\sigma(0)$ .

Theorem Under the gap assumption the solution with initial condition the stationary state  $\sigma(0)$  is

$$(\mathcal{P}\rho)(\mathbf{s}) = \sigma(\mathbf{s}) + \begin{cases} 0 & \text{if dim } \mathcal{P} = 1 \\ O(\varepsilon) & \text{if dim } \mathcal{P} \ge 2; \\ (\mathcal{Q}\rho)(\mathbf{s}) = \varepsilon \mathcal{L}^{-1} \dot{\sigma}(\mathbf{s}) + O(\varepsilon^2), \end{cases}$$

where  $\sigma(s)$  is the corresponding integral of parallel transport  $\mathcal{P}\dot{\sigma} = 0$ , i.e.  $\dot{\sigma} = \mathcal{Q}\dot{\sigma}$ .

 $\mathcal{L}^{-1}(\dot{\sigma})$  is well defined since  $\dot{\sigma} \in \operatorname{ran} \mathcal{L}$  by parallel transport.

## The theorem as a picture

Distinct evolutions on ker  $\mathcal{L}$  and ran  $\mathcal{L}$ :



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Blue: Parallel transport. Red: including  $O(\varepsilon)$  corrections

## The picture in the Dephasing Lindbladian case

The instantaneous stationary states form a simplex (triangle). Extreme points represent the spectral projections  $P_i(s), i = 1, 2, 3.$ 



The motion in ker  $\mathcal{L}$ :

To order ε<sup>0</sup>: Parallel transport rotates the triangle as a rigid body

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ののの

• To order  $\varepsilon^1$ : Irreversible motion away from the vertex



Known facts, just to set the stage

Lindbladians

The linear response of Lindbladian fluxes

The linear response of Hamiltonian fluxes

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

#### The linear response of Lindbladian fluxes Expectation of flux $\mathcal{L}^*(G_\mu)$

$$\operatorname{tr}(\mathcal{L}^*(G_{\mu})\rho)(\mathfrak{s}) = f_{\mu\nu}(\phi)\,\varepsilon\dot{\phi}^{\nu} + O(\varepsilon^2)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

with response matrix  $f_{\mu\nu}$ .

The linear response of Lindbladian fluxes Expectation of flux  $\mathcal{L}^*(G_\mu)$ 

$$\operatorname{tr}(\mathcal{L}^*(G_{\mu})\rho)(s) = f_{\mu\nu}(\phi) \varepsilon \dot{\phi}^{\nu} + O(\varepsilon^2)$$

with response matrix  $f_{\mu\nu}$ .

Theorem Suppose  $\sigma(\phi) = U(\phi)\sigma U^*(\phi)$  is an integral of parallel transport. Then the response matrix is antisymmetric and given by

$$f_{\mu
u} = -i \operatorname{tr}([\mathbf{G}_{\mu}, \mathbf{G}_{
u}]\sigma)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The linear response of Lindbladian fluxes Expectation of flux  $\mathcal{L}^*(G_\mu)$ 

$$\operatorname{tr}(\mathcal{L}^*(G_{\mu})\rho)(s) = f_{\mu\nu}(\phi) \varepsilon \dot{\phi}^{\nu} + O(\varepsilon^2)$$

with response matrix  $f_{\mu\nu}$ .

Theorem Suppose  $\sigma(\phi) = U(\phi)\sigma U^*(\phi)$  is an integral of parallel transport. Then the response matrix is antisymmetric and given by

$$f_{\mu\nu} = -i \operatorname{tr}([\mathbf{G}_{\mu}, \mathbf{G}_{\nu}]\sigma)$$

Remarks:

- Hypothesis for free if Lindbladian dephasing, or with unique stationary state.
- Formula expresses geometric magnetism (Berry& Robbins)
- If  $\sigma$  is a projection *P*, then

$$f_{\mu\nu} = -i \operatorname{tr}(P[\partial_{\mu}P, \partial_{\nu}P])$$

(adiabatic curvature)

## Proof

$$\operatorname{tr}(\mathcal{L}^*(\mathbf{G}_{\mu})\rho) = \operatorname{tr}(\mathcal{Q}^*\mathcal{L}^*(\mathbf{G}_{\mu})\rho) = \operatorname{tr}(\mathcal{L}^*(\mathbf{G}_{\mu})\mathcal{Q}\rho)$$
$$\cong \varepsilon \operatorname{tr}(\mathcal{L}^*(\mathbf{G}_{\mu})\mathcal{L}^{-1}\dot{\sigma}) = \varepsilon \operatorname{tr}(\mathbf{G}_{\mu}\dot{\sigma})$$

#### Use

$$\dot{\sigma} = (\partial_{\nu}\sigma)\dot{\phi}^{\nu}, \qquad \partial_{\nu}\sigma = -i[\mathbf{G}_{\nu},\sigma]$$

Result:

$$f_{\mu\nu} = -i \operatorname{tr}([G_{\mu}, G_{\nu}]\sigma)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Towards an example: Landau Hamiltonian

Model of a (single) quantum particle in the plane under the influence of a uniform magnetic field.

$$H = D^*D$$
,  $(D = -i\partial_1 + \partial_2 + Bx_2 \equiv v_1 + iv_2)$ 

Ground state (1st Landau level) infinitely degenerate by translation invariance

## Towards an example: Landau Hamiltonian

Model of a (single) quantum particle in the plane under the influence of a uniform magnetic field.

 $H = D^*D$ ,  $(D = -i\partial_1 + \partial_2 + Bx_2 \equiv v_1 + iv_2)$ 

Ground state (1st Landau level) infinitely degenerate by translation invariance

Particle in the ground state.

## Towards an example: Landau Hamiltonian

Model of a (single) quantum particle in the plane under the influence of a uniform magnetic field.

$$H = D^*D$$
,  $(D = -i\partial_1 + \partial_2 + Bx_2 \equiv v_1 + iv_2)$ 

Ground state (1st Landau level) infinitely degenerate by translation invariance

► Particle in the ground state. Driver  $\vec{E}$  (electric field), response  $\vec{v}$  (velocity)

$$\langle \mathbf{v}_{\mu} \rangle = \mathbf{f}_{\mu\nu} \mathbf{E}_{\nu}$$

with Hall mobility

$$f_{\mu\nu} = B^{-1}\varepsilon_{\mu\nu}$$

(日) (日) (日) (日) (日) (日) (日)
# Towards an example: Landau Hamiltonian

Model of a (single) quantum particle in the plane under the influence of a uniform magnetic field.

$$H = D^*D$$
,  $(D = -i\partial_1 + \partial_2 + Bx_2 \equiv v_1 + iv_2)$ 

Ground state (1st Landau level) infinitely degenerate by translation invariance

• Particle in the ground state. Driver  $\vec{E}$  (electric field), response  $\vec{v}$  (velocity)

$$\langle \mathbf{v}_{\mu} \rangle = \mathbf{f}_{\mu\nu} \mathbf{E}_{\nu}$$

with Hall mobility

$$f_{\mu\nu} = B^{-1}\varepsilon_{\mu\nu}$$

(日) (日) (日) (日) (日) (日) (日)

## Towards an example: Landau Hamiltonian

Model of a (single) quantum particle in the plane under the influence of a uniform magnetic field.

$$H = D^*D$$
,  $(D = -i\partial_1 + \partial_2 + Bx_2 \equiv v_1 + iv_2)$ 

Ground state (1st Landau level) infinitely degenerate by translation invariance

• Particle in the ground state. Driver  $\vec{E}$  (electric field), response  $\vec{v}$  (velocity)

$$\langle \mathbf{v}_{\mu} \rangle = \mathbf{f}_{\mu\nu} \mathbf{E}_{\nu}$$

with Hall mobility

$$f_{\mu
u} = B^{-1} \varepsilon_{\mu
u}$$

• Gas of independent particles in the ground state at density  $\rho$ . Conductivity  $\sigma_{\mu\nu} = \rho f_{\mu\nu}$ 

## Towards an example: Landau Hamiltonian

Model of a (single) quantum particle in the plane under the influence of a uniform magnetic field.

$$H = D^*D$$
,  $(D = -i\partial_1 + \partial_2 + Bx_2 \equiv v_1 + iv_2)$ 

Ground state (1st Landau level) infinitely degenerate by translation invariance

• Particle in the ground state. Driver  $\vec{E}$  (electric field), response  $\vec{v}$  (velocity)

$$\langle \mathbf{v}_{\mu} \rangle = \mathbf{f}_{\mu\nu} \mathbf{E}_{\nu}$$

with Hall mobility

$$f_{\mu
u} = B^{-1} \varepsilon_{\mu
u}$$

- Gas of independent particles in the ground state at density  $\rho$ . Conductivity  $\sigma_{\mu\nu} = \rho f_{\mu\nu}$
- Gas filling the ground state:  $\rho = B/2\pi$ .

$$\sigma_{\mu\nu} = (2\pi)^{-1} \varepsilon_{\mu\nu}$$

Hall conductivity is quantized.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めへで

Landau Lindbladian in the plane  $(x_1, x_2)$  given by

$$\begin{split} H &= D^*D, \qquad (D = -\mathrm{i}\partial_1 + \partial_2 + Bx_2 \equiv v_1 + \mathrm{i}v_2) \\ \Gamma_- &= \sqrt{\gamma_-}D, \qquad \Gamma_+ = \sqrt{\gamma_+}D^*, \qquad (\gamma_- > \gamma_+ \ge 0) \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Landau Lindbladian in the plane  $(x_1, x_2)$  given by

$$\begin{array}{ll} H=D^*D, & (D=-\mathrm{i}\partial_1+\partial_2+Bx_2\equiv v_1+\mathrm{i}v_2)\\ \Gamma_-=\sqrt{\gamma_-}D, & \Gamma_+=\sqrt{\gamma_+}D^*, & (\gamma_->\gamma_+\geq 0) \end{array}$$

►  $j = j_{\text{drift}} + j_{\text{diffusion}}$  (cf. B-motion); local charge conservation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Landau Lindbladian in the plane  $(x_1, x_2)$  given by

$$\begin{split} H &= D^* D, \qquad (D = -\mathrm{i}\partial_1 + \partial_2 + B x_2 \equiv v_1 + \mathrm{i}v_2) \\ \Gamma_- &= \sqrt{\gamma_-} D, \qquad \Gamma_+ = \sqrt{\gamma_+} D^*, \qquad (\gamma_- > \gamma_+ \ge 0) \end{split}$$

*j* = *j*<sub>drift</sub> + *j*<sub>diffusion</sub> (cf. B-motion); local charge conservation
 guiding center *x*<sub>μ</sub> + *G*<sub>μ</sub> conserved, with *G*<sub>μ</sub> = *B*<sup>-1</sup>ε<sub>μν</sub>*v*<sub>ν</sub>.

Landau Lindbladian in the plane  $(x_1, x_2)$  given by

$$egin{aligned} H &= D^*D, & (D &= -\mathrm{i}\partial_1 + \partial_2 + Bx_2 \equiv v_1 + \mathrm{i}v_2) \ \Gamma_- &= \sqrt{\gamma_-}D, & \Gamma_+ &= \sqrt{\gamma_+}D^*, & (\gamma_- > \gamma_+ \geq 0) \end{aligned}$$

►  $j = j_{\text{drift}} + j_{\text{diffusion}}$  (cf. B-motion); local charge conservation

- guiding center  $x_{\mu} + G_{\mu}$  conserved, with  $G_{\mu} = B^{-1} \varepsilon_{\mu\nu} v_{\nu}$ .
- ► [*v*<sub>1</sub>, *v*<sub>2</sub>] = i*B*
- ▶ family  $U_{\phi}$  ( $\phi = (\phi_1, \phi_2)$ ) generated by  $G_{\mu}$ . Has

$$\mathcal{L}^*(oldsymbol{G}_\mu) = -\mathcal{L}^*(oldsymbol{x}_\mu), \qquad oldsymbol{U}_\phi oldsymbol{v}_\mu oldsymbol{U}_\phi^* = oldsymbol{v}_\mu - \phi_\mu$$

(日) (日) (日) (日) (日) (日) (日)

Response is (minus) velocity; driving  $-\dot{\phi}$  is electric field. Hence  $f_{\mu\nu}$  is mobility.

Landau Lindbladian in the plane  $(x_1, x_2)$  given by

$$egin{aligned} H &= D^*D, & (D &= -\mathrm{i}\partial_1 + \partial_2 + Bx_2 \equiv v_1 + \mathrm{i}v_2) \ \Gamma_- &= \sqrt{\gamma_-}D, & \Gamma_+ &= \sqrt{\gamma_+}D^*, & (\gamma_- > \gamma_+ \geq 0) \end{aligned}$$

►  $j = j_{\text{drift}} + j_{\text{diffusion}}$  (cf. B-motion); local charge conservation

- guiding center  $x_{\mu} + G_{\mu}$  conserved, with  $G_{\mu} = B^{-1} \varepsilon_{\mu\nu} v_{\nu}$ .
- ▶ [*v*<sub>1</sub>, *v*<sub>2</sub>] = i*B*
- ▶ family  $U_{\phi}$  ( $\phi = (\phi_1, \phi_2)$ ) generated by  $G_{\mu}$ . Has

$$\mathcal{L}^*(oldsymbol{G}_\mu) = -\mathcal{L}^*(oldsymbol{x}_\mu), \qquad oldsymbol{U}_\phi oldsymbol{v}_\mu oldsymbol{U}_\phi^* = oldsymbol{v}_\mu - \phi_\mu$$

Response is (minus) velocity; driving  $-\dot{\phi}$  is electric field. Hence  $f_{\mu\nu}$  is mobility.

• "Unique" stationary state  $\sigma$  (thermal,  $4\pi\beta = \log \gamma_{-}/\gamma_{+}$ ).

Landau Lindbladian in the plane  $(x_1, x_2)$  given by

$$egin{aligned} H &= D^*D, & (D &= -\mathrm{i}\partial_1 + \partial_2 + Bx_2 \equiv v_1 + \mathrm{i}v_2) \ \Gamma_- &= \sqrt{\gamma_-}D, & \Gamma_+ &= \sqrt{\gamma_+}D^*, & (\gamma_- > \gamma_+ \geq 0) \end{aligned}$$

►  $j = j_{\text{drift}} + j_{\text{diffusion}}$  (cf. B-motion); local charge conservation

- guiding center  $x_{\mu} + G_{\mu}$  conserved, with  $G_{\mu} = B^{-1} \varepsilon_{\mu\nu} v_{\nu}$ .
- ► [*v*<sub>1</sub>, *v*<sub>2</sub>] = i*B*
- ▶ family  $U_{\phi}$  ( $\phi = (\phi_1, \phi_2)$ ) generated by  $G_{\mu}$ . Has

$$\mathcal{L}^*(old G_\mu) = -\mathcal{L}^*(old x_\mu), \qquad oldsymbol{U}_\phi old v_\mu old U_\phi^* = old v_\mu - \phi_\mu$$

Response is (minus) velocity; driving  $-\dot{\phi}$  is electric field. Hence  $f_{\mu\nu}$  is mobility.

• "Unique" stationary state  $\sigma$  (thermal,  $4\pi\beta = \log \gamma_{-}/\gamma_{+}$ ). Theorem states:

$$f_{\mu\nu} = -i \operatorname{tr}([G_{\mu}, G_{\nu}]\sigma) = B^{-1} \varepsilon_{\mu\nu}$$

Hall mobility is quantized!

## Outline

Known facts, just to set the stage

Lindbladians

The linear response of Lindbladian fluxes

The linear response of Hamiltonian fluxes

・ロト・西・・田・・田・・日・ ひゃぐ

# Groundstate geometry

Family of Hamiltonians  $H(\phi)$  with control parameters  $\phi = (\phi^1, \dots, \phi^n) \in M$ . E.g. *M* is plane, sphere, torus,...

Gap above ground state (possibly degenerate)

Geometric data associated to ground state projection  $P(\phi)$ 

• curvature 2-form  $\omega$ 

$$\omega_{\mu\nu} = -i \operatorname{tr}(\boldsymbol{P}[\partial_{\mu}\boldsymbol{P},\partial_{\nu}\boldsymbol{P}])$$

(satisfies  $d\omega = 0$ , hence a symplectic form if non-degenerate)

Fubini-Study metric g

$$g_{\mu\nu} = \operatorname{tr}(\partial_{\mu} P)(\partial_{\nu} P)$$

with  $\partial_{\mu} = \partial \cdot / \partial \phi^{\mu}$ 

# Response coefficients $f_{\mu\nu}$

Observables: Hamiltonian fluxes  $F_{\mu} = \partial_{\mu}H = i[H, G_{\mu}]$ , conjugate to  $\phi^{\mu}$ .

States

- $\langle \cdot \rangle_0$ : Expectation in the ground state  $P(\phi)$
- For time-dependent controls  $\phi(t)$

 $\langle \cdot \rangle$ : Expectation in the state evolved by means of  $H(\phi(t))$ .

For slowly varying controls

$$\delta \left< \mathbf{F}_{\mu} \right> \equiv \left< \mathbf{F}_{\mu} \right> - \left< \mathbf{F}_{\mu} \right>_{\mathbf{0}} = \mathbf{f}_{\mu\nu} \dot{\phi}^{\nu}$$

Result:

$$f_{\mu\nu} = \omega_{\mu\nu}$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

## Linear response: The dephasing Lindbladian case

Hamiltonian  $H(\phi) = U_{\phi}HU_{\phi}^*$  as before, plus:

## Linear response: The dephasing Lindbladian case

Hamiltonian  $H(\phi) = U_{\phi}HU_{\phi}^*$  as before, plus:

► Lindbladian L, dephasing w.r.t. H. Let |j⟩ be the eigenvectors of H (with |0⟩ ground state). Then

$$\mathcal{L}|j
angle\langle i|=\lambda_{jj}|j
angle\langle i|$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

- $\text{Im } \lambda_{j0}$ : excitation energy of  $|j\rangle$  (over  $|0\rangle$ )
- ► Re  $\lambda_{j0}$ : dephasing rate (loss of phase coherence) between  $|j\rangle$  and  $|0\rangle$ .

# Linear response: The dephasing Lindbladian case

Hamiltonian  $H(\phi) = U_{\phi}HU_{\phi}^*$  as before, plus:

► Lindbladian  $\mathcal{L}$ , dephasing w.r.t. *H*. Let  $|j\rangle$  be the eigenvectors of *H* (with  $|0\rangle$  ground state). Then

$$\mathcal{L}|j
angle\langle i|=\lambda_{jj}|j
angle\langle i|$$

•  $- \text{Im } \lambda_{j0}$ : excitation energy of  $|j\rangle$  (over  $|0\rangle$ )

- Re λ<sub>j0</sub>: dephasing rate (loss of phase coherence) between |j⟩ and |0⟩.
- There is proportionality:

$$\operatorname{Re} \lambda_{j0} = \gamma \operatorname{Im} \lambda_{j0}, \qquad (\gamma > 0)$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

- System Hamiltonian A on H<sub>S</sub>
- ▶ Bath:  $x \in \mathbb{R}$  pointer position. Hilbert space:  $\mathcal{H}_B = L^2(\mathbb{R}_x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- System Hamiltonian A on H<sub>S</sub>
- ▶ Bath:  $x \in \mathbb{R}$  pointer position. Hilbert space:  $\mathcal{H}_B = L^2(\mathbb{R}_x)$
- Joint dynamics: Bath steers System

$$H = A \otimes B$$
 on  $\mathcal{H}_S \otimes \mathcal{H}_B$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

with B = x + 1.

- System Hamiltonian A on H<sub>S</sub>
- ▶ Bath:  $x \in \mathbb{R}$  pointer position. Hilbert space:  $\mathcal{H}_B = L^2(\mathbb{R}_x)$
- Joint dynamics: Bath steers System

$$H = A \otimes B$$
 on  $\mathcal{H}_S \otimes \mathcal{H}_B$ 

with B = x + 1. Initial state  $\rho \otimes |\psi\rangle\langle\psi|$  where

$$\psi(\boldsymbol{x}) = \sqrt{\frac{\gamma}{\pi}} \frac{1}{\boldsymbol{x} + \mathrm{i}\gamma}$$

- System Hamiltonian A on H<sub>S</sub>
- ▶ Bath:  $x \in \mathbb{R}$  pointer position. Hilbert space:  $\mathcal{H}_B = L^2(\mathbb{R}_x)$
- Joint dynamics: Bath steers System

$$H = A \otimes B$$
 on  $\mathcal{H}_S \otimes \mathcal{H}_B$ 

with B = x + 1. Initial state  $\rho \otimes |\psi\rangle\langle\psi|$  where

$$\psi(\mathbf{x}) = \sqrt{\frac{\gamma}{\pi}} \frac{1}{\mathbf{x} + \mathrm{i}\gamma}$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Then  $\phi_{t+s} = \phi_t \circ \phi_s$  and  $\mathcal{L}$  is of dephasing form w.r.t. A.

- System Hamiltonian A on H<sub>S</sub>
- ▶ Bath:  $x \in \mathbb{R}$  pointer position. Hilbert space:  $\mathcal{H}_B = L^2(\mathbb{R}_x)$
- Joint dynamics: Bath steers System

$$H = A \otimes B$$
 on  $\mathcal{H}_S \otimes \mathcal{H}_B$ 

with B = x + 1. Initial state  $\rho \otimes |\psi\rangle\langle\psi|$  where

$$\psi(\boldsymbol{x}) = \sqrt{\frac{\gamma}{\pi}} \frac{1}{\boldsymbol{x} + \mathrm{i}\gamma}$$

Then  $\phi_{t+s} = \phi_t \circ \phi_s$  and  $\mathcal{L}$  is of dephasing form w.r.t. *A*. Moreover, the rate at which different eigenstates of *A* loose phase coherence is proportional to their energy difference.

#### Generalized conductances

$$\begin{split} \delta \left\langle F_{\mu} \right\rangle &\equiv \left\langle F_{\mu} \right\rangle - \left\langle F_{\mu} \right\rangle_{0} = f_{\mu\nu} \dot{\phi}^{\nu} \\ \frac{d}{dt} \left\langle H \right\rangle &= f_{\mu\nu} \dot{\phi}^{\mu} \dot{\phi}^{\nu} \end{split}$$

Result:

$$f = (1 + \gamma^2)^{-1}(\gamma g + \omega)$$

Decomposition into dissipative (symmetric) and reactive (antisymmetric) parts

$$f_{\mu
u}=f_{(\mu,
u)}+f_{[\mu,
u]}$$

Hence

$$f_{(\mu,\nu)} = \frac{\gamma}{1+\gamma^2} g_{\mu\nu} \qquad f_{[\mu,\nu]} = \frac{1}{1+\gamma^2} \omega_{\mu\nu}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

both affected by dephasing  $\gamma$ .

#### Kähler structure

A manifold *M* with metric *g* and symplectic form  $\omega$  is almost Kähler if  $J := g^{-1}\omega$  (mapping vectors to vectors) is an almost complex structure:

$$J^2 = -1$$

Equivalently,

$$\omega^{-1}g = -g^{-1}\omega \tag{(*)}$$

*M* is Kähler if, in addition, *M* is a complex manifold w.r.t. *J*.

Examples: 1)  $\mathbb{C}P^{N-1}$  (the rays of an *N*-dimensional Hilbert space) is Kähler.

2) Manifold  $M \ni \phi$  of controls, P of rank 1:  $g, \omega$  are pull-backs by way of  $P : M \to \mathbb{C}P^{N-1}$ . Iff (\*) holds, then  $P(M) \subset \mathbb{C}P^{N-1}$  is a complex submanifold. Hence P(M) and M are Kähler

Criterion: Let  $P = |\psi\rangle\langle\psi|/\langle\psi|\psi\rangle$ . If

 $\partial_{ar{z}_i} |\psi\rangle = 0$  (Cauchy-Riemann)

w.r.t. complex coordinates  $z_j$ , then *M* is Kähler

### Generalized resistances

$$\dot{\phi}^{\nu} = (f^{-1})^{\mu\nu} \delta \langle F_{\nu} \rangle$$

If M is Kähler, then

$$f^{-1} = \gamma g^{-1} + \omega^{-1}$$

and the reactive resistance is immune to dephasing  $\gamma$ .

Indeed

$$f = (\gamma^2 + 1)^{-1}(\gamma g + \omega)$$

and

$$(\gamma g^{-1} + \omega^{-1})(\gamma g + \omega) = \gamma^2 + 1 + \gamma (g^{-1}\omega + \omega^{-1}g) = \gamma^2 + 1$$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のQ@

### Examples

The Hamiltonians are obtained by unitary families.

1) Harmonic oscillator

$$H(\zeta,\mu)=\frac{\omega}{2}((p-\mu)^2+(x-\zeta)^2-1)$$

with ground states  $P(\zeta, \mu)$  (coherent states):  $M = \mathbb{C} \ni \zeta + i\mu =: z$ 

$$\psi(\mathbf{z}; \mathbf{x}) = e^{\mu^2} e^{i\mu \mathbf{x}} e^{-(\mathbf{x}-\zeta)^2/2} = e^{-(\mathbf{x}-\mathbf{z})^2/2}$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Analytic in z.

# Examples (cont.)

2) Spin 1/2 
$$H(\hat{e}) = \hat{e} \cdot \vec{\sigma} \quad (\hat{e} \in S^2)$$

with ground state  $P(\hat{e})$  (spin down  $|-\hat{e}\rangle$ ):  $M = S^2 \ni \hat{e}$  (Riemann sphere, *z* stereographic coordinate)

$$\psi(z) = \begin{pmatrix} -1 \\ z \end{pmatrix}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Analytic in z.

# Examples (cont.)



3) Let  $\tau = \tau_1 + i\tau_2 \in \mathbb{C}$  define the torus  $\mathbb{T} = \mathbb{R}^2/(\mathbb{Z} + \tau\mathbb{Z})$ ,  $\vec{r} = x1 + y\tau$ . Landau Hamiltonian  $H(\phi_1, \phi_2)$  on  $\mathbb{T}$  with boundary conditions  $\phi_1, \phi_2$  and flux  $2\pi$ . Then  $M = \mathbb{R}^2 \ni (\phi_1, \phi_2)$  with complex structure  $\tau$  (coordinate  $\phi = \phi_1 - \phi_2/\tau$ )

$$\psi(\phi; \vec{r}) = \sum_{n=-\infty}^{\infty} \mathrm{e}^{2\mathrm{i}\pi n x} \mathrm{e}^{\mathrm{i}\pi (y+n+\phi)^2}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ののの

Analytic in  $\phi$ . Reactive resistance is Hall resistance.

# Summary

- Lindbladians describe the dynamics of open systems
- Interesting observables: Fluxes, related to virtual work
- Linbladian fluxes  $\neq$  Hamiltonian fluxes
- Adiabatic theory for Lindbladians, and linear response.
- Linear response theory can be geometric (adiabatic curvature/Fubini-Study metric)
- Linear response coefficients can be quantized in presence of dissipation

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

# Summary

- Lindbladians describe the dynamics of open systems
- Interesting observables: Fluxes, related to virtual work
- ► Linbladian fluxes ≠ Hamiltonian fluxes
- Adiabatic theory for Lindbladians, and linear response.
- Linear response theory can be geometric (adiabatic curvature/Fubini-Study metric)
- Linear response coefficients can be quantized in presence of dissipation

Or for short: There is geometry in dissipation (decoherence, dephasing ..)