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Linear response: Operators A = A∗, B = B∗

A quantum system H0 driven by A (interaction HI(t) = −φ(t)A)
responds through B

〈B〉 = 〈B〉0 + fBAφ(0)

(fBA: static response) with

fBA = i
∫ ∞

0
tr(eiH0tBe−iH0t [A, ρ0])dt

(Kubo). Relates response to correlations in an equilibrium state
ρ0.
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Next: Two contrasting examples



First example: Integer quantum Hall effect (IQHE)

Driver Eν (field), response jµ (current)

〈jµ〉 = σµνEν

(σµν : conductivity) with Kubo formula (Thouless et al.)

σµν = i tr(P⊥[∂µP, ∂νP])

where P is the (1-particle density matrix of the) ground state of
H0 and ∂µP ≡ i[P, xµ].



Second example: Brownian motion

Phenomenological equation:

〈~j〉 = 〈~j〉drift + 〈~j〉diffusion ≡ ρ~v − γ~∇ρ

(ρ = ρ(x) density, γ diffusion constant).
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Second example: Brownian motion

Phenomenological equation:

〈~j〉 = 〈~j〉drift + 〈~j〉diffusion ≡ ρ~v − γ~∇ρ

(ρ = ρ(x) density, γ diffusion constant). Viewed as an
application of linear response for homogeneous ρ: driver ~F
(force), response~j (current)

〈~j〉drift = ρµ~F

(µ: mobility) with Kubo formula (Einstein)

µ = βγ

In the inhomogeneous case, but in equilibrium: ρ(x) ∝ e−βV (x),
~F = −~∇V . Then ~∇ρ = ρβ~F and 〈~j〉 = (µ− βγ)ρ~F = 0.
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A remark: Fluxes (or rates), but which ones?

Some observables Ẋ (e.g. currents) are the rate of change of
others, X . In Hamiltonian dynamics

Ẋ = i[H,X ]

Unclear meaning for open systems. Suppose a system S is
part of a larger one.

X 7→ XS

retains “the part of X which pertains to S”. E.g. H 7→ HS 6= H.
Requirement: XS ⊗ 1 7→ XS. Then typically

Ẋ = i[H,X ] 7→ (Ẋ )S 6= ẊS = i[HS,XS]

(since [H,XS ⊗ 1] 6= [HS,XS]⊗ 1)

We’ll see: Both answers ((Ẋ )S, ẊS) are right, but come with
different meanings.



Lindblad evolution

Quantum System coupled to Bath. What is the evolution of the
system?

Evolution of a mixed state ρ = ρS

ρ 7→ φt(ρ) = trB
(

Ut(ρ⊗ ρB)U
∗
t

)

with joint unitary (Hamiltonian) evolution Ut (Ut+s = UtUs) on
H⊗HB

Properties:
◮ trφt(ρ) = tr ρ
◮ φt completely positive
◮ φt+s = φt ◦ φs

◮ approximately, if time scales of Bath ≪ time scales of
System (Davies, Spohn; Jaksic, Pillet)

◮ exactly, if bath is white noise (and some other cases)



Lindblad generator

◮ trφt(ρ) = tr ρ
◮ φt completely positive
◮ φt+s = φt ◦ φs

Generator:

L :=
dφt

dt

∣

∣

t=0

Theorem (Lindblad, Sudarshan-Kossakowski-Gorini 1976)
The general form of the generator is

L(ρ) = −i[H, ρ] +D(ρ)

with dissipative term

D(ρ) =
∑

α

2ΓαρΓ∗α − Γ∗αΓαρ− ρΓ∗αΓα

and arbitrary bounded H and Γα.



Gauge transformations

The Lindbladian L does not determine H and Γα uniquely. In
fact, L is invariant under the transformation

H 7→ H + e1 − i
∑

α

(g∗
αΓα − gαΓ

∗
α), Γα 7→ Γα + gα

(e ∈ R, gα ∈ C).
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Gauge transformations

The Lindbladian L does not determine H and Γα uniquely. In
fact, L is invariant under the transformation

H 7→ H + e1 − i
∑

α

(g∗
αΓα − gαΓ

∗
α), Γα 7→ Γα + gα

(e ∈ R, gα ∈ C).
Remarks:

◮ The tangent map is

(δH, δΓα) 7→ (δH − i
∑

α

(g∗
αδΓα − gαδΓ

∗
α), δΓα)

◮ In examples, one choice of H as the “energy of the system”
will be singled out naturally.
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Families of Lindbladians

Lindbladians Lφ may depend on some control parameters
φ = (φµ) ∈ M. Can be used for

◮ virtual changes (next)
◮ to drive the system and probe its response (later)

Special case: Iso-spectral families

H(φ) = U(φ)HU∗(φ), Γα(φ) = U(φ)ΓαU∗(φ)

for a unitary U(φ) = e−iGµφµ

with generators Gµ = G∗
µ



The principle of virtual work in the Hamiltonian context

is a proven mean of associating observables Xµ (generalized
forces) to parameter changes δφµ by means of the induced δH:

Xµδφ
µ := δH

Examples:
◮ displacement → force (or strain → stress)
◮ angle → torque
◮ e.m. gauge transformation → current



The principle of virtual work in the Hamiltonian context

is a proven mean of associating observables Xµ (generalized
forces) to parameter changes δφµ by means of the induced δH:

Xµδφ
µ := δH

Examples:
◮ displacement → force (flux of momentum)
◮ angle → torque (flux of angular momentum)
◮ e.m. gauge transformation → current (flux of charge).
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The principle of virtual work in the Lindbladian context

Xµδφ
µ := δH + i

∑

α

(Γ∗αδΓα − δΓ∗αΓα)

◮ is formally self-adjoint
◮ is gauge invariant
◮ for iso-spectral families (δH = i[H,Gµ]δφ

µ, δΓα ditto) the
observable is a flux:

Xµ = L∗(Gµ) = i[H,Gµ] +D∗(Gµ)

◮ L∗(Gµ) = Hamiltonian flux + dissipative flux (Bellissard)
◮ If the generalized force Xµ = 0 determined by U(φ)

vanishes, then its generator Gµ is a constant of motion
(Noether).



Example: Brownian motion; charge
Lindbladian given by

H =
p2

2
, Γ =

√
γp

Heisenberg equation of motion

ẋ = L∗(x) = p, ṗ = L∗(p) = 0
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Example: Brownian motion; charge
Lindbladian given by

H =
p2

2
, Γ =

√
γp

Heisenberg equation of motion

ẋ = L∗(x) = p, ṗ = L∗(p) = 0

Iso-spectral family H(φ) obtained by e.m. gauge trsf G = χ(x):

X = L∗(χ) =
1
2
{p,∇χ}+ γ∆χ

read in terms of

χ =

∫

ρ(x)χ(x)dx , X =

∫

j(x) · ∇χ(x) dx

ρ(x0) = δ(x − x0), j(x0) =
1
2
{p, ρ(x0)} − γ(∇ρ)(x0)

Note:
◮ j = jdrift + jdiffusion as operators
◮ X = χ̇ is just ρ̇ = −∇ · j : local charge conservation
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H =
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Example: Fermions on a lattice; charge
Lindbladian given by

H =
∑

j∈Z

(a∗
j+1aj+a∗

j aj+1−µa∗
j aj), Γ−j =

√
γ−aj , Γ+j =

√
γ+a∗

j

Γ±j fills holes/removes particle at site j
Charge in the left half-lattice: Q =

∑

j≤0 a∗
j aj

Current

Q̇ = L∗(Q) = i[H,Q] +D∗(Q)

i[H,Q] = i(a∗
1a0 − a∗

0a1), D∗(Q) = 2
∑

j≤0

(γ+aja
∗
j − γ−a∗

j aj)

Only Hamiltonian current is local; dissipative is not.



Example: damped harmonic oscillator; momentum

Lindbladian given by

H = a∗a, Γ− =
√
γ
−

a, Γ+ =
√
γ+a∗, (γ− > γ+ > 0)

Γ±: exciting and damping.



Example: damped harmonic oscillator; momentum

Lindbladian given by

H = a∗a, Γ− =
√
γ
−

a, Γ+ =
√
γ+a∗, (γ− > γ+ > 0)

Γ±: exciting and damping.
Iso-spectral family H(φ) obtained by translations G = p

ṗ = L∗(p) = i[H, p] +D∗(p) ≡ −x − (γ− − γ+)p

spring force and friction.
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The spectrum of Lindbladians
Lindbladians L generate contractions. Thus

◮ The spectrum σ(L) is contained in the complex left
half-plane

◮ kerL ∩ ranL = {0}

Assumption (gap condition). 0 is a discrete point in the
spectrum.

P, Q: complementary (super) projections associated to
kerL ⊕ ranL

P = (2πi)−1
∮

(z − L)−1dz

Stationary states: σ = Pσ. In fact σ̇ = Lσ = 0.



Lindbladians with unique stationary states

Let σ be the stationary state (σ ≥ 0, trσ = 1). Then

P(ρ) = σ tr ρ, P∗(X ) = 1 · tr(Xσ)

◮ Indeed: P(σ) = σ, P∗(1) = 1

◮ P depends on σ, not on L
◮ Example: damped harmonic oscillator: σ is thermal with
β = log(γ−/γ+)



Dephasing Lindbladians
Recall the dissipative term:

D(ρ) =
∑

α

2ΓαρΓ∗α − Γ∗αΓαρ− ρΓ∗αΓα

The Lindbladian is dephasing if Γα = Γα(H). Then

L(P) = −i[H,P] +D(P) = 0

for any spectral projection P of H.



Dephasing Lindbladians
Recall the dissipative term:

D(ρ) =
∑

α

2ΓαρΓ∗α − Γ∗αΓαρ− ρΓ∗αΓα

The Lindbladian is dephasing if Γα = Γα(H). Then

L(P) = −i[H,P] +D(P) = 0

for any spectral projection P of H. Let H =
∑

j ejPj (spectral

decomposition). Then

P(ρ) =
∑

j

PjρPj , P∗(X ) =
∑

j

PjXPj

◮ Stationary states σ = P(σ) are the states obtained after a
projective measurement (“non-demolition”) of H

◮ If dim Pj = 1, the stationary states form a simplex.



Adiabatic response
Adiabatically changing controls φ = φ(s) where s = εt is the
slow time. Evolution equation for the state ρ is

ε
dρ
ds

= Lφρ.

with initial state that is an instantaneous equilibrium state σ(0).



Adiabatic response
Adiabatically changing controls φ = φ(s) where s = εt is the
slow time. Evolution equation for the state ρ is

ε
dρ
ds

= Lφρ.

with initial state that is an instantaneous equilibrium state σ(0).

Theorem Under the gap assumption the solution with initial
condition the stationary state σ(0) is

(Pρ)(s) = σ(s) +

{

0 if dimP = 1

O(ε) if dimP ≥ 2;

(Qρ)(s) = εL−1σ̇(s) + O(ε2),

where σ(s) is the corresponding integral of parallel transport
Pσ̇ = 0, i.e. σ̇ = Qσ̇.

L−1(σ̇) is well defined since σ̇ ∈ ranL by parallel transport.



The theorem as a picture

Distinct evolutions on kerL and ranL:

Blue: Parallel transport. Red: including O(ε) corrections



The picture in the Dephasing Lindbladian case
The instantaneous stationary states form a simplex (triangle).
Extreme points represent the spectral projections
Pi(s), i = 1, 2, 3.

P (s = 0)

PP

0

12

P (s = 1)
0

The motion in kerL:
◮ To order ε0: Parallel transport rotates the triangle as a rigid

body
◮ To order ε1: Irreversible motion away from the vertex
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The linear response of Lindbladian fluxes
Expectation of flux L∗(Gµ)

tr
(

L∗(Gµ)ρ
)

(s) = fµν(φ) εφ̇ν + O(ε2)

with response matrix fµν .
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The linear response of Lindbladian fluxes
Expectation of flux L∗(Gµ)

tr
(

L∗(Gµ)ρ
)

(s) = fµν(φ) εφ̇ν + O(ε2)

with response matrix fµν .

Theorem Suppose σ(φ) = U(φ)σU∗(φ) is an integral of parallel
transport. Then the response matrix is antisymmetric and given
by

fµν = −i tr([Gµ,Gν ]σ)

Remarks:
◮ Hypothesis for free if Lindbladian dephasing, or with

unique stationary state.
◮ Formula expresses geometric magnetism (Berry&

Robbins)
◮ If σ is a projection P, then

fµν = −i tr(P[∂µP, ∂νP])

(adiabatic curvature)



Proof

tr(L∗(Gµ)ρ) = tr(Q∗L∗(Gµ)ρ) = tr(L∗(Gµ)Qρ)
∼= ε tr(L∗(Gµ)L−1σ̇) = ε tr(Gµσ̇)

Use
σ̇ = (∂νσ)φ̇

ν , ∂νσ = −i[Gν , σ]

Result:
fµν = −i tr([Gµ,Gν ]σ)



Towards an example: Landau Hamiltonian
Model of a (single) quantum particle in the plane under the
influence of a uniform magnetic field.

H = D∗D, (D = −i∂1 + ∂2 + Bx2 ≡ v1 + iv2)

Ground state (1st Landau level) infinitely degenerate by
translation invariance
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Towards an example: Landau Hamiltonian
Model of a (single) quantum particle in the plane under the
influence of a uniform magnetic field.

H = D∗D, (D = −i∂1 + ∂2 + Bx2 ≡ v1 + iv2)

Ground state (1st Landau level) infinitely degenerate by
translation invariance

◮ Particle in the ground state. Driver ~E (electric field),
response ~v (velocity)

〈vµ〉 = fµνEν

with Hall mobility
fµν = B−1εµν

◮ Gas of independent particles in the ground state at density
ρ. Conductivity σµν = ρfµν

◮ Gas filling the ground state: ρ = B/2π.

σµν = (2π)−1εµν

Hall conductivity is quantized.
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H = D∗D, (D = −i∂1 + ∂2 + Bx2 ≡ v1 + iv2)

Γ− =
√
γ−D, Γ+ =

√
γ+D∗, (γ− > γ+ ≥ 0)

◮ j = jdrift + jdiffusion (cf. B-motion); local charge conservation
◮ guiding center xµ + Gµ conserved, with Gµ = B−1εµνvν .
◮ [v1, v2] = iB
◮ family Uφ (φ = (φ1, φ2)) generated by Gµ. Has

L∗(Gµ) = −L∗(xµ), UφvµU∗
φ = vµ − φµ

Response is (minus) velocity; driving −φ̇ is electric field.
Hence fµν is mobility.

◮ ”Unique” stationary state σ (thermal, 4πβ = log γ−/γ+).
Theorem states:

fµν = −i tr([Gµ,Gν ]σ) = B−1εµν

Hall mobility is quantized!
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Groundstate geometry

Family of Hamiltonians H(φ) with control parameters
φ = (φ1, . . . , φn) ∈ M. E.g. M is plane, sphere, torus,. . .

Gap above ground state (possibly degenerate)

Geometric data associated to ground state projection P(φ)

◮ curvature 2-form ω

ωµν = −i tr(P[∂µP, ∂νP])

(satisfies dω = 0, hence a symplectic form if
non-degenerate)

◮ Fubini-Study metric g

gµν = tr(∂µP)(∂νP)

with ∂µ = ∂ · /∂φµ



Response coefficients fµν

Observables: Hamiltonian fluxes Fµ = ∂µH = i[H,Gµ],
conjugate to φµ.

States
◮ 〈·〉0: Expectation in the ground state P(φ)

◮ For time-dependent controls φ(t)
〈·〉: Expectation in the state evolved by means of H(φ(t)).

For slowly varying controls

δ 〈Fµ〉 ≡ 〈Fµ〉 − 〈Fµ〉0 = fµν φ̇ν

Result:
fµν = ωµν
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◮ Lindbladian L, dephasing w.r.t. H.
Let |j〉 be the eigenvectors of H (with |0〉 ground state).
Then

L|j〉〈i | = λji |j〉〈i |

◮ − Imλj0: excitation energy of |j〉 (over |0〉)

◮ −Reλj0: dephasing rate (loss of phase coherence)
between |j〉 and |0〉.

◮ There is proportionality:

Reλj0 = γ Imλj0, (γ > 0)
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Example of such a Dephasing Lindbladian

◮ System Hamiltonian A on HS

◮ Bath: x ∈ R pointer position. Hilbert space: HB = L2(Rx)

◮ Joint dynamics: Bath steers System

H = A ⊗ B on HS ⊗HB

with B = x + 1.
Initial state ρ⊗ |ψ〉〈ψ| where

ψ(x) =

√

γ

π

1
x + iγ

Then φt+s = φt ◦ φs and L is of dephasing form w.r.t. A.
Moreover, the rate at which different eigenstates of A loose
phase coherence is proportional to their energy difference.



Generalized conductances

δ 〈Fµ〉 ≡ 〈Fµ〉 − 〈Fµ〉0 = fµν φ̇ν

d
dt

〈H〉 = fµν φ̇µφ̇ν

Result:
f = (1 + γ2)−1(γg + ω)

Decomposition into dissipative (symmetric) and reactive
(antisymmetric) parts

fµν = f(µ,ν) + f[µ,ν]

Hence

f(µ,ν) =
γ

1 + γ2 gµν f[µ,ν] =
1

1 + γ2ωµν

both affected by dephasing γ.



Kähler structure
A manifold M with metric g and symplectic form ω is almost
Kähler if J := g−1ω (mapping vectors to vectors) is an almost
complex structure:

J2 = −1

Equivalently,
ω−1g = −g−1ω (*)

M is Kähler if, in addition, M is a complex manifold w.r.t. J.

Examples: 1) CPN−1 (the rays of an N-dimensional Hilbert
space) is Kähler.
2) Manifold M ∋ φ of controls, P of rank 1: g, ω are pull-backs
by way of P : M → CPN−1. Iff (*) holds, then P(M) ⊂ CPN−1 is
a complex submanifold. Hence P(M) and M are Kähler

Criterion: Let P = |ψ〉〈ψ|/〈ψ|ψ〉. If

∂z̄j |ψ〉 = 0 (Cauchy-Riemann)

w.r.t. complex coordinates zj , then M is Kähler



Generalized resistances

φ̇ν = (f−1)µνδ 〈Fν〉
If M is Kähler, then

f−1 = γg−1 + ω−1

and the reactive resistance is immune to dephasing γ.

Indeed
f = (γ2 + 1)−1(γg + ω)

and

(γg−1 + ω−1)(γg + ω) = γ2 + 1 + γ(g−1ω + ω−1g) = γ2 + 1



Examples

The Hamiltonians are obtained by unitary families.

1) Harmonic oscillator

H(ζ, µ) =
ω

2
((p − µ)2 + (x − ζ)2 − 1)

with ground states P(ζ, µ) (coherent states):
M = C ∋ ζ + iµ =: z

ψ(z; x) = eµ
2
eiµx e−(x−ζ)2/2 = e−(x−z)2/2

Analytic in z.



Examples (cont.)

2) Spin 1/2
H(ê) = ê · ~σ (ê ∈ S2)

with ground state P(ê) (spin down | − ê〉): M = S2 ∋ ê
(Riemann sphere, z stereographic coordinate)

ψ(z) =
(

−1
z

)

Analytic in z.



Examples (cont.)

3) Let τ = τ1 + iτ2 ∈ C define the torus T = R
2/(Z+ τZ),

~r = x1 + yτ . Landau Hamiltonian H(φ1, φ2) on T with boundary
conditions φ1, φ2 and flux 2π. Then M = R

2 ∋ (φ1, φ2) with
complex structure τ (coordinate φ = φ1 − φ2/τ )

ψ(φ;~r) =
∞
∑

n=−∞

e2iπnx eiπ(y+n+φ)2

Analytic in φ.
Reactive resistance is Hall resistance.
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◮ Lindbladians describe the dynamics of open systems
◮ Interesting observables: Fluxes, related to virtual work
◮ Linbladian fluxes 6= Hamiltonian fluxes
◮ Adiabatic theory for Lindbladians, and linear response.
◮ Linear response theory can be geometric (adiabatic

curvature/Fubini-Study metric)
◮ Linear response coefficients can be quantized in presence

of dissipation
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◮ Lindbladians describe the dynamics of open systems
◮ Interesting observables: Fluxes, related to virtual work
◮ Linbladian fluxes 6= Hamiltonian fluxes
◮ Adiabatic theory for Lindbladians, and linear response.
◮ Linear response theory can be geometric (adiabatic

curvature/Fubini-Study metric)
◮ Linear response coefficients can be quantized in presence

of dissipation

Or for short: There is geometry in dissipation (decoherence,
dephasing ..)
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