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Basic empirical fact:

Under “adiabatic conditions” certain changes of the states of
thermodynamical systems are possible and some are not.

(Note: For macroscopic systems the distinction between the
possible and the impossible is unambiguous. For meso- or
microscopic systems probability may be involved and the
distinction not as sharp, but that is not our concern here.)
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Second Law of Thermodynamics:

For equilibrium states, at least, the possible state changes are
characterized by the increase (non-decrease) of an (essentially)
unique state function, called ENTROPY, that is extensive, and
additive on subsystems.
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Remarks

The uniqueness is very important! It means that all methods to
define entropy for equilibrium states lead to the same result,
provided the basic requirements (that the entropy characterizes
adiabatic accessibility and is additive and extensive) are fulfilled.

The additivity and extensivity are also essential. First, they
guarantee the (essential) uniqueness and secondly, they simplify
greatly the experimental or theoretical determination of entropy.
For instance, in order to predict the efficiency of a geothermal
power plant it suffices to know the properties of 1 kg of H2O.
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Remarks (cont.)

The mere existence of entropy satisfying the fundamental
relation

dS =
1

T
dU +

P

T
dV −

∑
i

µi

T
dni

leads to surprising connections between quantities that at first
sight are unrelated, for instance:
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Remarks (cont.)

Another consequence of the existence of entropy is a formula,
due to Max Planck, that relates an arbitrary empirical
temperature scale Θ to the absolute temperature scale T :

T (Θ) = T0 exp

( ∫ Θ

Θ0

(
∂P
∂Θ′

)
V

P +
(
∂U
∂V

)
Θ′

dΘ′

)
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Remarks (cont.)

The entropy determines also the maximal work that can be
obtained from a system in an environment with temperature T0:

ΦX0(X) = (U − U0)− T0(S − S0)

where X is the initial state with energy U and entropy S, and X0

is the final state with energy U0 and entropy S0. (This quantity is
also called availability or exergy.)
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A quote:

“Boltzmann was right about atoms but utterly wrong in believing
that atoms provided a necessary basis for thermodynamics. The
second law does not require atoms. Thermodynamics would be
equally correct if the basic constituents of the world were atoms,
or quantum fields, or even strings.”

L. Kadanoff

Jakob Yngvason (Uni Vienna) Entropy 8 / 30



Mathematical facts:

There is a very simple and direct approach to the existence
and uniqueness of entropy of thermodynamical equilibrium
states based only on properties of the relation of adiabatic
accessibility. In particular, neither “heat”,
“temperature”,“thermal reservoirs”, nor statistical mechanics
are needed for the definition of entropy.

The required properties are necessary for the existence of
entropy and all very plausible except one: The adiabatic
comparability of states.
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More mathematical facts:

For equilibrium states comparability can be derived from
some further physical assumptions, but this requires
substantially more work mathematically.

For non-equilibrium states an entropy characterizing the
relation exists if and only if comparability holds and this in
turn holds if and only if every state is adiabatically equivalent
to an equilibrium state.

This condition can not be expected to be fulfilled in general,
in which case at least two entropy functions are needed.
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Basic concepts for equilibrium thermodynamics

Thermodynamical systems, simple or compound

Equilibrium states X,X ′ . . . and state spaces Γ,Γ′, . . .

Composition of states, (X,X ′) ∈ Γ× Γ′

Scaled copies, λX ∈ λΓ

Basic relation between states:

Adiabatic accessibility, denoted by

X ≺ Y
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Operational definition

A state Y is adiabatically accessible from a state X, written
X ≺ Y (‘X precedes Y ’), if it is possible to change the state from
X to Y in such a way that the only net effect on the surroundings
is that a weight may have risen or fallen.

Important point: The process taking X to Y need not be
“quasi-static” (let alone reversible). It can be arbitrarily violent!

Another important point: For the mathematical reasoning the
physical interpretation of ≺ is irrelevant! The mathematics can
be applied whenever the basic premisses hold.
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The conditions on ≺

A1. Reflexivity : X ≺ X.

A2. Transitivity: If X ≺ Y and Y ≺ Z, then X ≺ Z.

A3. Consistency : If X ≺ X ′ and Y ≺ Y ′, then (X, Y ) ≺ (X ′, Y ′)

A4. Scaling Invariance: If λ > 0 and X, Y ∈ Γ with X ≺ Y , then
λX ≺ λY

A5. Splitting and Recombination: X ≺ ((1− λ)X,λX) ≺ X.

A6. Stability : If (X, εZ0) ≺ (Y, εZ1) for some Z0, Z1 and a
sequence of ε’s tending to zero, then X ≺ Y .

Notation: Two states, X and Y , are (adiabatically) comparable if
either X ≺ Y or Y ≺ X holds. They are adiabatically equivalent,
written X ∼A Y if both conditions hold. If X ≺ Y but Y 6≺ X we
write X ≺≺ Y .
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The Comparison Property

Conditions (A1)-(A6) are all highly plausible if ≺ is interpreted as
the relation of adiabatic accessibility in the sense of the
operational definition. They are also clearly necessary, but still
not sufficient for the existence of an entropy that characterizes
the relation on compound systems made of scaled copies of Γ.
A further property is needed:

CP. Comparison Property for scaled products of a state space Γ:

Any two states in (1− λ)Γ× λΓ are comparable, for all
0 ≤ λ ≤ 1.
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Existence and uniqueness of equilibrium entropy

Theorem
The following are equivalent:
(1) The relation ≺ satisfies assumptions A1-A6 and the

comparison property, CP, holds.
(2) There is a function S on Γ, such that if

X1, . . . Xn, Y1, . . . , Ym ∈ Γ and
∑

i λi =
∑

j µj, then

(λ1X1, . . . , λnXn) ≺ (µY1, . . . , µmYm)

if and only if

λ1S(X1) + · · ·+ λnS(Xn) ≤ µ1S(Y1) + · · ·+ µnS(Yn).

The function S is uniquely determined up to an affine
transformation of scale.
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Proof of uniqueness

Pick two reference points X0 ≺≺ X1 in Γ and let X be an
arbitrary state with X0 ≺ X ≺ X1. For any entropy function S we
have S(X0) < S(X1) and S(X0) ≤ S(X) ≤ S(X1) so there is a
unique number λ between 0 and 1 such that

S(X) = (1− λ)S(X0) + λS(X1).

By the required properties of entropy this is equivalent to

X ∼A ((1− λ)X0, λX1). (∗)

Any other entropy function S ′ also leads to (*) with λ replaced by
some λ′, but from the assumptions A1-A6 and X0 ≺≺ X1 it
follows easily that (*) can hold for at most one λ, i.e., λ = λ′.
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Proof of existence (sketch)

From assumtions A1-A6 and CP it follows that

λ∗ := sup{λ : ((1− λ)X0, λX1) ≺ X}
!

= inf {λ : X ≺ ((1− λ)X0, λX1)}

does satisfy
X ∼A ((1− λ∗)X0, λ

∗X1).

Note: Comparability of all states in (1− λ)Γ× λΓ (not only of
those in Γ) is essential!
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With the choice

S(X0) = 0 and S(X1) = 1

for some reference points X0 ≺≺ X1, we now have an explicit
formula for the entropy

S(X) = sup{λ : ((1− λ)X0, λX1) ≺ X}
= inf {λ : X ≺ ((1− λ)X0, λX1)}

that uses only the relation ≺ and makes neither appeal to Carnot
cycles nor to statistical mechanics.

Any other choice of S(X0) and S(X1) leads simply to an affine
transformation of the values of S.
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The special role of CP

We do not want to adopt CP as an axiom (although most authors
do, usually without saying!) because we do not find it physically
compelling. Our preference is to derive it from some more
immediate assumptions. Consequently, an essential part our
analysis and, in fact, mathematically the most complex one, is a
derivation of CP from additional assumptions about simple
systems which are the basic building blocks of thermodynamics.
At the same time one makes contact with the traditional
concepts of thermodynamics such as pressure and temperature.

The additional assumptions concern a) the possibility to form
combinations of states, b) existence of at east one irreversible
state change from any give state and c) a continuity assumption
about the pressure.

The bottom line is that CP is well established for equilibrium
states!
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Generalizations 1: Non-extensive entropies

The scaling assumption is not always natural (systems with long
range forces, or when surface effects are important). The
entropy for such a system Γ can be defined, however, by using a
‘normal’ system Γ0 as an ‘entropy meter’ and defining for X ∈ Γ

S(X) := sup{S(Z) : (X1, Z) ≺ (X,Z0)}
!

= inf{S(Z) : (X,Z0) ≺ (X1, Z))}.

where Z0 ∈ Γ0 and X1 ∈ Γ are (arbitrarily chosen) reference
points.

But, again, comparability of states is essential for the equality of
sup and inf!
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Generalizations 2: Non-equilibrium states

General remarks:

There exist many variants of non-equilibrium
thermodynamics: Classical Irreversible Thermodynamics,
Extended Irreversible Thermodynamics, ...

The role of Entropy is less prominent than in equilibrium
thermodynamics.

Consider a system with a space Γ of equilibrium states that is a
subset of some larger space Γ̂ of non-equilibrium states.

We assume that a relation ≺ is defined on Γ̂ such that its
restriction to Γ is characterized by an entropy function S as
discussed previously.
Basic question:

What are the possible extensions of S to Γ̂ that are monotone
w.r.t. ≺?
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Assumption for the nonequilibriums states

N1 The relation ≺ on Γ̂ satisfies the assumptions A1
(Reflexivity), A2 (Transitivity), A3 (Consistency) and A6
(Stability) (but A4 (Scaling) and A5 (Splitting) are only
required on Γ).

N2 For every X ∈ Γ̂ there are X ′, X ′′ ∈ Γ such that
X ′ ≺ X ≺ X ′′.
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Non-equilibrium entropies

For X ∈ Γ̂ define

S−(X) := sup{S(X ′) : X ′ ∈ Γ, X ′ ≺ X}
S+(X) := inf {S(X ′′) : X ′′ ∈ Γ, X ≺ X ′′}

Properties:
Both functions are monotone with respect to ≺.

Any other function on Γ̂ that has this property lies between
S− and S+.

(U − U0)− T0(S+ − S0) ≤ ΦX0(X) ≤ (U − U0)− T0(S− − S0).
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The role of comparability

Theorem
The following are equivalent:

(i) S−(X) = S+(X) for all X ∈ Γ̂.

(ii) There exists a unique Ŝ extending S such that X ≺ Y implies
Ŝ(X) ≤ Ŝ(Y ).

(iii) There exists a (necessarily unique!) Ŝ extending S such that
Ŝ(X) ≤ Ŝ(Y ) implies X ≺ Y .

(iv) Every X ∈ Γ̂ is comparable with every Y ∈ Γ̂, i.e., the
Comparison Property holds on Γ̂.

(v) Every X ∈ Γ̂ is adiabatically equivalent to some Z ∈ Γ.
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A toy example

The system consists of two identical pieces of copper glued
together by a thin layer of finite heat conductivity. The state of
the system as uniquely specified by the temperatures T1 and T2

of the two copper pieces. Mathematically, the state space Γ̂ of
this system is thus R2

+ with coordinates (T1, T2) and the
equilibrium state space Γ is the diagonal, T1 = T2.

Assume to begin with that the relation ≺ is defined by the
following ‘restricted’ adiabatic operations:

Rubbing each of the copper pieces.

Heat conduction through the connecting layer.
The ‘forward sector’ AX = {Y : X ≺ Y } of X = (T1, T2) then
consists of all points that can be obtained by rubbing, starting
from any point on the line segment between (T1, T2) and the
equilibrium point (1

2
(T1 + T2), 1

2
(T1 + T2)).
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A toy example (cont.)

As equilibrium entropy we take S(T, T ) = log T .

The points X ′ and X ′′ are

X ′ = (min{T1, T2},min{T1, T2}) X ′′ = (1
2
(T1 + T2), 1

2
(T1 + T2))

and hence

S−(T1, T2) = min{log T1, log T2} S+(T1, T2) = log(1
2
(T1 + T2)).

It is clear that CP does not hold.

Extending the relation ≺ by allowing separation of the pieces
and reversible thermal equilibration restores CP and leads to the
unique entropy

S(T1, T2) = 1
2
(log T1 + log T2)

This corresponds to the framework of Classical Irreversible
Thermodynamics (CIT) where the global state is determined by
local equilibrium variables.
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A toy example (cont.)

However, when heat conduction does not obey Fourier’s law but
rather a hyperbolic equation as in Cattaneo’s law it is necessary
to introduce the heat fluxes as a new independent variables and
apply Extended Irreversible Thermodynamics (EIT).

An entropy depending explicitly on the fluxes can be introduced
and this entropy behaves in some respects better than the CIT
entropy that is not monotone under heat conducetion. The
numerical equality of the extended entropy with the entropy of
some equilibrium state does, however, not imply that the state
with a flux and the equilibrium state are adiabatically equivalent.
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Summary and Conclusions

1. The possibility of defining a unique entropy that is monotone
under the relation of adiabatic accessibility is, under the
stated general assumptions, equivalent to the comparability
of states.

2. Comparability is a highly nontrivial property. Even in the the
equilibrium situation it requires additional assumptions
beyond A1-A6.

3. It is implausible to postulate comparability for arbitrary
non-equilibrium states.

4. It is, however, always possible to delimit the range of
adiabatic state changes by means of two well defined
entropy functions. Comparability holds if and only if these
two functions coincide.
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