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“Irreversible” behavior in closed quantum systems: an example

anisotropc Heisenberg
spin-ladder, weakly
coupled leggs, N = 32
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x̂ : z-magnetization difference between leggs
PX (t): probability to find a certain, sharp X
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Data from solving the Schroedinger equation for
two pure, partially random initial states! (H. de
Raedt, K. Michielsen)

It is possible to find a positive (transition) matrix WXY such that

PX ((n + 1)τ ) ≈
∑

Y

WXY PY (nτ )
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Thermodynamic entropy in quantum mechanics?

Everybody is entitled to their own opinion!

I would like to have (for a start):
0. Entropy to be defined in equilibrium and non-equilibrium.
1. Entropy defined as function that can be shown to be in some sense
non-decreasing on the basis of some underlying theory (this is different from
entropy being close to maximum on an endless time average).
2. Entropy as converging to the standard equilibrium value in standard physical
scenarios.

Some candidates:

Von Neumann I: S I
VN = −Tr{ρ̂ ln ρ̂}.

Does not change under unitary
dynamics.

“diagonal energy-Shannon”:
SDS = −

∑

n Pn ln Pn, Pn := 〈n|ρ̂|n〉.
Does not change in non-driven systems.

Von Neumann II:
S II

VN = −
∑

n〈Π̂n〉 ln 〈Π̂n〉

Tr{Π̂n}
. Von

Neumann shows: S II
VN ≥ S I

VN . But S II
VN

does not change in non-driven systems.

“sum of parts entropy”:
SSP = −

∑

aTr{ρ̂a ln ρ̂a},
a:“subsystems”. Rigourously clear
definition is lacking. No statement of
the form S(t2) ≥ S(t1) if t2 ≥ t1

“fluctuation theorem inspired”:

e∆S =
W

if

W
fi

. i , f : initial/final states.

What precisely are these?
What about 2. ?

Please add more !
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My current concept of entropy, POVM’s and consistency

This concept is not especially quantum. It just holds in the quantum case as
well. Entropy is eventually taken to be a function of a sequence of
measurements.

Measurements are represented by
operators Ân (POVM’s), such that:
∑

n Â+
n Ân = 1̂

probability to measure n:
p(n) = Tr{ρ̂Â+

n Ân}

def: Anρ̂ := Ânρ̂Â
+
n

post-measurement state ρ̂′: ρ̂′ = An ρ̂

p(n)

def: e−i Ĥt ρ̂e i Ĥt := Uτ ρ̂

probability to measure the sequence
i , j , ...n at subsequent time-steps τ :
p(ij ..n) := Tr{AnUτ ...AjUτAi ρ̂}

assumption 1: Sequences of
measurements are decoherent,
“consistent”, etc. This means e.g.,

Tr{AnU2τAi ρ̂} =
∑

j

Tr{AnUτAjUτAi ρ̂}

This relates to the third Kolmogorov
axiom.

informal formulation:

probability to get first i and later n

=
∑

j probabilities to get first i then j

then n
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Conditional (transition) probabilities

The consistency allows for the interpretation of the above expressions as
conventional probabilities. The system dynamics does not depend on whether it
is being watched. Unlike the double-slit, etc.

formulation of conditional probabilities:
def: d(ij ..k) := Tr{AkUτ ...AjUτAi}
probability to measure l given one has measured i , j ..k without any prior
knowledge:

w(l |ij ...k) =
d(ij ...kl)

d(ij ...k)

This allows for a definition of k-step Markovianity:

e.g., 3-step w(l |......ijk) = w(l |ijk) or 1-step w(l |......ijk) = w(l |k)

assumption 2: The system is k-step Markovian for all measurement sequences
with k being finite.

def: Label ordered sequences of k measurements by greek letters, α, β, ..., call
them “macrostates”.
def: Let w(β|α) be the transition probability from α to β through performing
only one more measurement, regardeless of k , e.g.,
w(β = jkl |α = ijk) = w(l |ijk).
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Results: entropy definition and statement 1

def.: My currently favoured entropy: S(α) := ln d(α), α being the actual
macrostate of the system.

statement 1.:

w(β|α) ≤
d(β)

d(α)
= e

S(β)−S(α)

Unfortunately this does not yet imply irreversibility:

Fortunately there is a second statement.
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Results: statement 2, second law as a deal

statement 2.:
Introduce some normalized d(α) called g(α) through g(α) := d(α)∑

β d(β)

Consider the function L(t)

L(t) :=
∑

α

−p(α) ln p(α) + p(α) ln g(α).

This function L(t) is strictly non-decreasing in time, i.e.,

L(t′) ≥ L(t) if t
′ ≥ t

This tells whether or not some dynamics is indeed irreversible.

My point of view on this: there are two types of entropy to be considered,
“knowledge entropy” Sk :=

∑

α
−p(α) ln p(α) and “mean system entropy”

S̄s :=
∑

α
p(α) ln g(α) so the above statement reads:

Sk(t
′) + S̄s(t

′) ≥ Sk(t) + S̄s(t)

There is a trade-off: if knowledge entropy is supposed to shrink, mean system
entropy has to rise. So in this sense the second law is a prize we have to pay for
living in a predictable world..........back to physics!
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Results: statement 3, ETH and Landauer’s principle

statement 3.: Systems and sets of macrostates that fit into this scheme feature
(unique) equilibrium probability distributions. Those are peq(α) = g(α).

If the eigenstate thermalization hypothesis (ETH) would apply to the
observable (say, on the energy shell to which the dynamics is restricted) i.e.,
e.g. for k = 1, 〈i |Â+

n Ân|i〉 ≈ 〈j |Â+
n Ân|j〉 and if furthermore the non-resonance

condition would apply, then elementary quantum mechanics predict the same
equilibrium probabilities. ⇒ ETH and non-resonance condition are prerequisites
for the above two assumptions to hold.

Landauer’s principle as a consequence of statement 2: Consider erasure of one
bit. Knowledge entropy before erasure: S i

k = ln 2. Knowledge entropy after
erasure: S f

k = 0. ⇒ ∆Sk = − ln 2. This requires ∆S̄s ≥ ln 2. The easiest way to
do this is by heating up some environment by work. ⇒ ∆W ≥ T ln 2

Thank you for your attention, I am looking forward to lively discussions!

(This talk can be found on our webpage, I’ll be happy to explain the proofs of
the statements to anybody who is interested.)
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