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Disclaimer

These slides cover only the second part of my talk (with the
exception of adiabatic theorems for stochastic quantum equations).
The overview of the field that I presented in the first part is not
included.



Outline

Driven Lindblad equation

ερ̇(s) = L(s)ρ(s) (ε→ 0) ,

L(s)ρ = −i [H(s), ρ] +
∑
α

(
2Γα(s)ρΓ∗α(s)− {Γ∗α(s)Γα(s), ρ}

)
.

I Solve the equation

I History dependent term and optimization

I Instantaneous term and linear response



Outline

Driven Lindblad equation

ερ̇(s) = L(s)ρ(s) (ε→ 0) ,

L(s)ρ = −i [H(s), ρ] +
∑
α

(
2Γα(s)ρΓ∗α(s)− {Γ∗α(s)Γα(s), ρ}

)
.

I Solve the equation

I History dependent term and optimization

I Instantaneous term and linear response



Solving the equation ερ̇ = Lρ

Expansion close to stationary states σ ∈ KerL,

KerL = Span{σ1, σ2, . . . σn}.

The projection into stationary states is

Pρ =
∑
j

σjTr(M
jρ),

where M j are determined by conditions P2 = P and PL = 0.
Their exact form is unimportant.



Still solving the equation

Stationary states kerL with normalization Trσ = 1 form a convex
set. We assume polytope.

σ (s = 0)

σσ
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m (s=0) m (s=1)

Triangle: Dephasing case, σj = Pj , M
j = Pj .

Dot: Generic case, M = Id.
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A solution to ερ̇ = Lρ

Suppose that 0 is an isolated eigenvalue of L (Gap condition) and
let σ(s) be an extremal point of the polytope. Then for 0 ≤ s ≤ 1
the equation has a solution

ρ(s) = σ(s) + εL−1(s)σ̇(s)

+ ε
∑
j

σj(s)

∫ s

0
Tr
(
Ẋ j(τ)L−1(τ)σ̇(τ)

)
dτ + o(ε).

0th order term: Parallel transport inside stationary manifold.
1th order terms: Instantaneous response and history dependent
term .
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The solution in a picture
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Green: Stationary states; Black: Transversal instantaneous
correction; Red: Full 1.order correction.



Reversibility in picture



History dependent term for dephasing

Dephasing Lindbladians:
For a given Hamiltonian H =

∑
j EjPj a dephasing Lindbladian

satisfies
LPj = 0, σj = Pj .

It follows Γα = Γα(H).

Stationary states form a polytope when eigenvalues are
non-degenerate, Pj = |j〉〈j |, then

L|0〉〈j | = (−γj + iλj)|0〉〈j |, γj ≥ 0.

The projection on the kernel has a form

Pρ =
∑
j

PjTr(Pjρ).
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History dependent term for dephasing

For a driven Hamiltonian H(s) =
∑

j Ej(s)Pj(s) and a dephasing
Lindbladian L(s) the equation ερ̇ = Lρ has a solution

ρ(s) = P0(s) + ε · · ·

+ ε
∑
j 6=0

(Pj(s)− P0(s))

∫ s

0
Rj(τ)dτ,

where a tunneling rate

Rj(τ) = 2
γj(τ)

λ2j (τ) + γ2j (τ)
Tr(P0(τ)Ṗ2

j (τ)P0(τ)) ≥ 0.



Optimization of adiabatic control

Given a time ε−1 and path H(s) find a re-parametrization s(ϕ)
such that the evolution ερ̇(s) = L(s)ρ(s) minimize tunneling

T = 1− Tr(ρ(1)P0(1)) = ε

∫ 1

0
R(s)ṡ2 dϕ.

Solution

ṡ2 ∼ 1

R(s)
∼ λ2(s) + γ2(s)

γ(s)

1

Tr(P0(s)Ṗ2
1 (s)P0(s))

.

I The control is local: ”Keep constant tunneling”.

I No prior knowledge of the system is required.
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1 (s)P0(s))

.

I The control is local: ”Keep constant tunneling”.

I No prior knowledge of the system is required.



Linear response theory

We study response of an observable X to a driving φ(s),
ρ̇ = L(φ)ρ,

Tr(Xρ(s)) = · · ·+ # φ̇+ o(φ̇).

Response of fluxes Ẋ ,

Tr(Ẋρ) = Tr
[
L∗(X )

(
σ + L−1∂σφ̇+ Hist.T .+ o(φ̇)

)]
= Tr

[
XL

(
σ + L−1∂σφ̇+ Hist.T .+ o(φ̇)

)]
= Tr[X∂σ]φ̇+ o(φ̇).

I Response of fluxes depends on stationary states, not on
dynamics!
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Response of Isospectral family

Consider symmetry generators Gν ,

H(φν) = exp(iGνφ
ν)H exp(−iGνφ

ν),

Γα(φν) = exp(iGνφ
ν)Γα exp(−iGνφ

ν).

Then the response of Ġν is geometric, given by

Tr(Ġµρ) = Tr(Gµ∂νσ)φ̇ν + o(φ̇)

= Tr(Gµi [Gν , σ])φ̇ν + o(φ̇)

= −iTr([Gµ, Gν ]σ)φ̇ν + o(φ̇).

Example: When Gµ are shears on a plane, then [Gµ,Gν ] is a
rotation and the formula relates Hall viscosity to the angular
momentum.
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Conclusions, outlooks

I Adiabatic expansion of the equation ερ̇(s) = L(s)ρ(s) near
stationary states.

I Driven dephasing Lindbladians and their application to
optimal control.

I Linear response theory for fluxes.

I Counting of resources in open system.

I Response of open many body systems.
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Thanks for your attention!
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