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Single Particle Systems

Random Schrödinger operator

On the set of states `2 ({0,1, . . . ,L,L + 1}), the discrete Schrödinger
operator is defined as:

H = −∆ + V

where −∆ is the discrete Laplacian defined by

(−∆φ)(x) = 2φ(x)− φ(x − 1)− φ(x + 1)

and V is a multiplication operator (Vφ)(x) = V (x)φ(x). The operator
becomes random when the set of potentials Vω is given a probability
measure.
The Ground State Energy, E0 is the minimizer of the associated
energy functional

E0 = min
{‖φ‖=1}

∑
x

|φ′(x)|2 + V (x)|φ(x)|2
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Single Particle Systems

Typical States in Bernoulli Disorder

In this case, an independent, identical Bernoulli distribution at each
x ∈ {0,1, . . . ,L,L + 1}.

P[V (x) = 0] = p
P[V (x) = b] = q = 1− p
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Figure: Densities of the lowest eigenstates of one-dimensional system with
Bernoulli potential. These states localize to large intervals of zero potential. -
J. Stasińska, P. Massignan, Institut de Ciéncies Fotóniques (ICFO)
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Multiparticle Systems

Cold Atom Experiments

Bose Einstein condensates were experimentally realized by Cornell
and Wieman at Colorado in 1995.

Figure: The velocity profile of rubidium atoms.1

1http://www.bec.nist.gov/gallery.html
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Multiparticle Systems

Interacting Systems

A system of N + 1 particles with bosonic symmetry is described by a
state in

⊗N+1
symm`

2({0, . . . ,L + 1})

with Dirichlet boundary conditions. The Schrödinger operator with
interactions is ∑

i

−∆i + Vi +
∑
j≤i

U(xi , xj)

with −∆i + Vi acting on the i-th coordinate and U(xi , xj) describing the
interaction between the i-th and j-th particle, which will be ‘soft core’
interactions of the form

U(xi , xj) = gδxi ,xj
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Multiparticle Systems

Random Potentials and Interactions

If g > 0, the interactions are repulsive.

Figure: Effects of Interaction. 2

A possible method for distinguishing cases is through the size of the
spatial support of the state.

2
B. Deissler, E. Lucioni, M. Modugno, G. Roati, L. Tanzi, M. Zaccanti, M. Inguscio, G. Modugno. Correlation

function of weakly interacting bosons in a disordered lattice. New Journal of Physics, 13:023020, 2011.
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Multiparticle Systems

Mean-field Approximation

Because the tensor space is large, it is common to approximate a state
by Gross-Pitaevskii mean-field where each particle is in the same
single particle state.

Φ(x0, . . . , xN) =
∏

i

φ(xi) (1)

The operator restricted to mean-field states becomes the nonlinear
Schrödinger operator

(N + 1)(−∆i + Vi) +
gN(N + 1)

2
|φ(x)|2 (2)
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Multiparticle Systems

Mean-field Ground State in Bernoulli Potential

The mean-field ground state energy in Bernoulli potential is the energy
(per particle) minimizer

E0 = min
{‖φ‖=1}

∑
x

|φ′(x)|2 + V (x)|φ(x)|2 +
gN
2
|φ(x)|4 (3)

with the ground state φ0 being the corresponding function.

How does the interaction term change the spatial support of the
ground state?
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Multiparticle Systems

Interaction Energy

Given a multiparticle state where each particle is in the single particle
state φ with energy per particle E ′ = E(φ), for ε ∈ (0,1), define the set

X>ε(φ) = {x : |φ(x)| > ε

L1/2 } (4)

The interaction energy is bounded below using

∑
x

|φ|4 ≥
(
‖φ|X>ε(φ)‖2

)2

#(X>ε(φ))
(5)

This lower bound can be achieved by a constant function. For the
interaction energy to be less than E ′, it is necessary that:

gN‖φ|X>ε‖4

2#(X>ε(φ))
≤ E ′ (6)
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Multiparticle Systems

Interaction Energy

Since the interaction energy to be less than E ′,

gN‖φ|X>ε‖2

2µ(X>ε(φ))
≤ E ′ (7)

Rearranged:

µ(X>ε(φ)) ≥ gN(1− ε2)2

2E ′
(8)
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Multiparticle Systems

Localization

For localization to hold in large system limits, gN/E ′ needs to be the
same order as the localization length.

Physicists are interested in cases where the particle density is
approximately constant, N ≈ ρLd , and g is a controlled variable. In this
case, µ(X>ε(φ)) ≈ O(gρLd

E ′ ).
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Multiparticle Systems

Ground State Bernoulli Case

What does the ground state look like in a Bernoulli potential on a one
dimensional lattice in the large system limit for small g?

The energy functional is

E(φ) =
∑

x

|φ′(x)|2 + V (x)|φ(x)|2 +
gρL

2
|φ(x)|4 (9)

where P[V = 0] = p and P[V = b] = q = 1− p, L is the lattice length,
and φ′ is the discrete derivative. The finite volume ground state φ0
minimizes this functional and E0 is the associated energy.

M. Bishop (UCDavis) IMS NUS September 10, 2013 12 / 24



Multiparticle Systems

Ground State Bernoulli Case

What is the nature of the ground state for small gρ?

Three factors:

1) Potential barriers should be sharp.

2) Kinetic energy favors long intervals of zero potential.

3) Interaction energy favors occupation of many sites.
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Multiparticle Systems

Ground State Bernoulli Case

The ground state is approximated by sine waves on intervals of zero
longer than L̃ = logp(gρ) + logp

(
logp(gρ)

)
. Its energy is bounded

above by

π2(
logp(gρ) + logp

(
logp(gρ)

))2 +
3gρL

4µ(X>0)
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Multiparticle Systems

Ground State Bernoulli Case

The intervals of zero potential are distributed geometrically:

P[Li = x ] = qpx−1

The number of sites on intervals longer than L̃ is approximately

(pqL) ∗ gρ logp(gρ) ∗
(

logp(gρ) + logp

(
logp(gρ)

))
The upper bound on the ground state energy is

E0 ≤
π2(

logp(gρ)
)2 +

3

4pq
(

logp(gρ)
)2
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Multiparticle Systems

Ground State Bernoulli Case

Applying the inequality

µ(X>ε(φ0)) ≥ gN(1− ε2)2

2E ′
(10)

Using this upper bound, the ground state must occupy

µ(X>ε(φ0)) ≥ O
(

gρL
(

logp(gρ)2
))

(11)
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Multiparticle Systems

Ground State Bernoulli Case

The steps for showing lower bound for the ground state energy 3:
The ground state φ0 exists but is unknown. It has the same
complex phase at each site:

E(φ) =
∑

x

|φ′(x)|2 + V (x)|φ(x)|2 +
gρL

2
|φ(x)|4 (12)

The space is split up into four sets: Mb, sites of high potential;
Mlong , sites on intervals longer than logp(gρ); as well as Mlight and
Mheavy .

3
MB, J. Wehr. Ground state energy of the one-dimensional discrete random Schrödinger operator in Bernoulli

potential. Journal of Statistical Physics, 147:529-541, 2012
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Multiparticle Systems

Ground State Bernoulli Case

Mlight is the set of intervals where φ0 is small relative to its
boundary conditions. Mheavy is the set of intervals where φ0 is
large relative to its boundary conditions, miδ

L and miδ
R. They are

determined by a parameter γ ∈ (0,1).

An interval is heavy if

max(δL, δR) ≤ γ√
Li

The norm of φ0 restricted to Mheavy goes to one as gρ→ 0.
The kinetic energy and interaction energy for a function in a heavy
interval on an interval length Li with norm mi is bounded below by

(1− γ)2 m2
i π

2

L2
i

+
gρLm4

i
2Li

(13)
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Multiparticle Systems

Ground State Bernoulli Case

Optimizing this quantity over
∑

m2
i = o(1), the kinetic energy must be

less than the Lagrange parameter λ:

m2
i =

Li

gρL

(
λ− (1− γ)2 π

2

L2
i

)
or

m2
i = 0

which means that the interval is not in Mheavy . With the normalization
condition, this λ determines a minimal interval length for intervals in
Mheavy . This minimal interval length is approximately L̃.
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Multiparticle Systems

Ground State Bernoulli Case

The ground state energy is then bounded below by the minimal
interaction energy of the ground state restricted to Mheavy . At most,
there are approximately

(pqL) ∗ gρ logp(gρ) ∗
(

logp(gρ) + logp

(
logp(gρ)

))
sites in Mheavy , which gives a lower bound of

E0 ≥ O

(
1

(logp(gρ))2

)
(14)
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Multiparticle Systems

Ground State Bernoulli Case

With probability one,

lim sup
gρ→0

lim
L→∞

E0
C+

log2
p(gρ)

= 1 (15)

lim inf
gρ→0

lim
L→∞

E0
C−

log2
p(gρ)

= 1 (16)
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Multiparticle Systems

Conclusions

Interaction changes the nature of the mean-field ground state and
should not be treated as a perturbation in the large system limit.
Localization is determined by

µ(X>ε(φ)) ≥ gN(1− ε2)2

2E ′
(17)

As seen in the Bernoulli case, random potentials are not a
perturbation either. They fragment the space and in turn, the
ground state.
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Multiparticle Systems

Future Work

Where are the phase transitions in terms of potential height b and
interaction strength g? (Thomas-Fermi approximation)

Is there a similar ‘delocalization’ criteria for the full tensor space?
Is the mean field an appropriate approximation? What information
does it provide on the true ground state?
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Multiparticle Systems
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