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Interacting particles in disordered media

Bernoulli random potential

Electronic transport

Many particles

Particles interact

Number of particles is
proportional to volume

Problem

Describe a system of interacting quantum particles in the thermodynamic
limit.
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Multiparticle systems in random environment

One particle in random potential Vω and domain Λ ⊂ Rd :

Hω(Λ, 1) = −∆d + Vω on H(Λ) = L2(Λ)

n particles interacting though potential U:

HU
ω (Λ, n) =

n∑
i=1

1⊗ . . .⊗ 1︸ ︷︷ ︸
i − 1 times

⊗Hω(Λ, 1)⊗1⊗ . . .⊗ 1︸ ︷︷ ︸
n − i times

+
∑
i<j

U(x i −x j),

acting on

Hn(Λ) =



n⊗
i=1

H(Λ) = L2(Λn), Boltzmann statistics

n⊗s

i=1
H(Λ) = L2

+(Λn), Bose – Einstein statistics∧n
i=1 H(Λ) = L2

−(Λn), Fermi – Dirac statistics
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Thermodynamic limit and problem statement

Large volume limit: Λ→ Rd if
1 |Λ| → +∞,
2 there exists a “shape” function π, satisfying limα→0 π(α) = 0, s.t. for
α sufficiently small,

|Λα diam(Λ)|/|Λ| 6 π(α).

Thermodynamic limit:

n→ +∞, Λ→ Rd ,
n

|Λ|
→ ρ > 0

Problem:

describe HU
ω (Λ, n) in the thermodynamic limit
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Conditions on a one-particle model

Hω(Λ, 1) is uniformly lower bounded and has a discrete spectrum:

Hω(Λ, 1) > C ω-a.s.

Independence at a distance: there exists R0 > 0 such that if
dist(A,B) > R0 then Hω(A, 1) and Hω(B, 1) are independent.

Ergodicity: for γ ∈ Zd ,

H(Λ + γ, 1) = UγHτγ(ω)U∗γ .
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Conditions on interactions

Stable interactions: there exists a constant B such that for all Λ,

HU
ω (Λ, n) > −Bn, ω-a.s.

Example. Repulsive interactions (U > 0) are stable.

Tempered interactions: there exist λ > d , R0 > 0 and A such that

|U(x)| 6 A|x |−λ for |x | > R0.

Example. Compactly supported interactions are tempered.
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Ground state energy thermodynamic limit

Let EU
ω (Λ, n) be the ground state energy of HU

ω (Λ, n).

Theorem

Suppose that

1 one-particle random operator is lower bounded, has a discrete
spectrum, ergodic and satisfies the independence at a distance
condition,

2 interactions are by pairs, translation invariant, stable and tempered.

Then, there exists a function EU(ρ) such that

EU
ω (Λ, n)

n
→ EU(ρ), Λ→ Rd ,

n

|Λ|
→ ρ > 0,

in L2 with respect to ω. The energy density EU is a non-random,
increasing and convex in ρ−1.
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Energy subadditivity

Main tool: subadditive type inequality. If

r := dist(Λ1,Λ2) > R0

then

EU
ω (Λ1 ∪ Λ2, n1 + n2) 6 EU

ω (Λ1, n1) + EU
ω (Λ2, n2) + An1n2r−λ.

Theorem

If U is compactly supported then the convergence is ω-a.s. (besides L2
ω).

Remark. We strongly believe that for “reasonable” (but more general)
U, the convergence is also ω-a.s.
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Basic idea to describe ground state: perturbative approach

Objective: describe ΨU
ω (Λ, n), the ground state of HU

ω (Λ, n), in the
thermodynamic limit

Approach:
HU
ω (Λ, n) = H0

ω(Λ, n) + Wn,

where the free part

H0
ω(Λ, n) =

n∑
i=1

1⊗ . . .⊗ 1︸ ︷︷ ︸
i − 1 times

⊗Hω(Λ, 1)⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
n − i times

and the interactions

Wn =
∑
i<j

U(x i − x j).

First step: study the non-interacting system H0
ω(Λ, n)
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Free particles: bosons and classical particles

Consider H0
ω(Λ, n), i.e., take U = 0. We study Ψ0

ω(Λ, n), E 0
ω(Λ, n) and

E0(ρ).

Let {ej(Λ)}j∈N and {ψj(Λ)}j∈N be eigenvalues and eigenfunctions of
Hω(Λ, 1).

Ψ0
ω(Λ, n) =

n⊗
ψ1(Λ), E 0

ω(Λ, n) = n · e1(Λ)

Proposition

For Bose – Einstein and Maxwell – Boltzmann statistics, if U = 0, then

E0(ρ) = inf Σ,

where Σ is the almost sure spectrum of Hω(1).
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Free particles: fermions

Ψ0
ω(Λ, n) =

1√
n!

n∧
j=1

ψj(Λ), E 0
ω(Λ, n) =

n∑
j=1

ej(Λ)

Let N(E ) be the integrated density of states of Hω(1).

Definition

Fermi energy Eρ is a solution to the equation

N(Eρ) = ρ.

Proposition

For Fermi – Dirac statistics, if U = 0, then

E0(ρ) =

∫ Eρ

−∞ EdN(E )∫ Eρ

−∞ dN(E )
.
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Influence of interactions on the ground state. Fermions

once E 0
ω(Λ, n) is calculated,

consider〈∑
i<j

U(x i − x j)Ψ0,Ψ0

〉

fermions spread over the
available space

one-particle wavefunctions are
localized (at the bottom of the
spectrum)

in the thermodynamic limit,
there are effectively of order of
n interactions
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