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Models of Quantum Machines

Why quantum thermodynamic?

• Applicability of the laws of thermodynamics and related bounds (e.g. Carnot)
in the quantum domain.

• New designs of microscopic engines and refrigerators.

• Thermodynamical bounds on (quantum) information processing.

• Technological and biological applications.
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Models of Quantum Machines

A general scheme of QUANTUM MACHINE

• S - a microscopic "small" system - "working fluid"

• {Bj; j = 1, ..,M} - quantum heat bath at temperatures Tj (e.g. bosonic
free field, ideal Fermi/Bose gas)

• {fα(t);α = 1, ...,K} - external control (classical, deterministic) parameters

• Total Hamiltonian

Htot =
(

HS +
∑

α

fα(t)hα

)

+
∑

j

HBj
+

∑

j

HSBj
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Models of Quantum Machines

Slowly varying external control

Spohn, Lebowitz (1978), Davies, Spohn (1978), RA (1979)(weak coupling +
adiabatic limits)
Reduced dynamics of S is approximated by the Markovian Master equation:

d

dt
ρ(t) = −i[H(t), ρ(t)] +

∑

j

Lj(t)ρ(t), (1)

where Lj(t) is a Lindblad-Gorini-Kossakowski-Sudarshan generator

Zero-th Law of Thermodynamics

Lj(t)ρ
eq
j (t) = 0 , ρeqj (t) =

e−βjH(t)

Tre−βjH(t)
. (2)

H(t) - total, physical Hamiltonian of S, βj = 1/kTj
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Models of Quantum Machines

First Law of Thermodynamics

W -work performed on S, Q - heat absorbed by S, E - internal energy of S

E(t) = Tr
(

ρ(t)H(t)
)

(3)

d

dt
W (t) = Tr

(

ρ(t)
dH(t)

dt

)

, (4)

d

dt
Q(t) = Tr

(dρ(t)

dt
H(t)

)

=
∑

j

Tr
(

H(t)Lj(t)ρ(t)
)

≡
∑

j

d

dt
Qj(t) .

(5)
Qj - heat absorbed by S from Bj.
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Models of Quantum Machines

Second Law of Thermodynamics

Entropy - S(t) = −kTr
(

ρ(t) ln ρ(t)
)

d

dt
S(t)−

∑

j

1

Tj

d

dt
Qj(t) =

∑

j

σj(t) ≥ 0 (6)

σj(t) - entropy production caused by Bj

σj(t) = kTr
(

Lj(t)ρ(t)[ln ρ(t)− ln ρeqj (t)]
)

≥ 0 (7)

Exercise

Show (7) using Lindblad H-theorem for S(ρ|ρ′) = Tr(ρ ln ρ − ρ ln ρ′) and
CP-dynamical map Λ. Use Λ = exp{sLj(t)}, ρ

′ = ρeqj (t)

S(Λρ|Λρ′) ≤ S(ρ|ρ′) (8)
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Models of Quantum Machines

Periodic control

• Weak coupling limit can be combined with Floquet theory to produce Markovian
master equations with periodic in time generators (RA, Lidar,Zanardi, (2006))

• With a proper definition of heat currents, II-law is satisfied.

• At the steady state I-law allows to compute stationary power and prove the
Carnot bound even for a general non-equilibrium stationary environment.

• New types of microscopic engines and refrigerators can be designed.

See recent and future papers by RA, Gelbwasser, Kolar, Kosloff, Kurizki,
Szczygielski.
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Models of Quantum Machines

A model of quantum machine

A qubit with periodic modulation

H(t) =
1

2
ω(t)σ3 , ω(t+ τ) = ω(t),

1

τ

∫ τ

0

ω(s)ds = ω0 ≥ 0 (9)

weakly coupled to hot and cold baths at Th, T c

Hint = σ1 ⊗ (Bh +Bc). (10)

The Markovian master equation (notice time-independence of Lc(h))

dρ(t)

dt
= −i

1

2
ω(t)[σ3, ρ(t)] + Lcρ(t) + Lhρ(t). (11)

MHQP, Singapore 2013 7



Models of Quantum Machines

Sketch of derivation

Unitary propagator (interaction picture) for the total system (µ-small constant)

Uµ(t, 0) = T exp
{−iµ

h̄

∫ t

0

σ1(s)⊗R(s) ds
}

(12)

σ1(t) =
∑

q∈Z

(

ξ(q)e−i(ω0+qΩ)tσ− + h.c.
)

(13)

ξ(q) =
1

τ

∫ τ

0

ei
∫ t
0 (ω(s)−ω0)dse−iqΩtdt, (14)

R(t) = Bh(t) +Bc(t) , Ba(t) = eiHBatBa e−iHBat (15)

{ω0 + qΩ; q ∈ Z} - "Bohr’s quasi-frequencies"
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Models of Quantum Machines

Reduced dynamics (interaction picture)

ρ(t) = Λ(t, 0)ρ ≡ TrR
(

Uµ(t, 0)ρ⊗ ρRUµ(t, 0)
†
)

(16)

Cumulant expansion

Λ(t, 0) = exp

∞
∑

n=1

[µnK(n)(t)], (17)

Born approximation, WCL, Gaussian approximation:

Λ(t, 0) = exp[µ2K(t) +O(λ3)]. (18)

K(t)ρ =
1

2

∫ t

0

ds

∫ t

0

duTr(ρRR(s)R)σ1(s)ρσ1(u) + · · · (19)

Markov approximation (in the interaction picture) – K(t) ≃ tL
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Models of Quantum Machines

Generator’s structure

For a = c, or a = h, Ω = 2π/τ we have

Laρ =
∑

q∈Z

La
qρ (20)

La
qρ =

P (q)

2

(

Ga(ω0 + qΩ)
(

[σ−ρ, σ+] + [σ−, ρσ+]
)

(21)

+ Ga(−ω0 − qΩ)
(

[σ+ρ, σ−] + [σ+, ρσ−]
)

)

Ga(ω) =

∫ +∞

−∞

eiωt〈Ba(t)Ba〉Tadt = eω/kBTaGa(−ω), (22)

P (q) = |ξ(q)|2 , ξ(q) =
1

τ

∫ τ

0

ei
∫ t
0 (ω(s)−ω0)dse−iqΩtdt. (23)
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Models of Quantum Machines

"Local", cold and hot heat currents

J a
q(t) =

1

2
(ω0 + qΩ)Tr

(

σ3La
qρ(t)

)

, J a(t) =
∑

q∈Z

J a
q(t). (24)

The second law of thermodynamics

d

dt
S(t) ≥

J c(t)

Tc
+

J h(t)

Th
, S(t) = −kBTr

(

ρ(t) ln ρ(t)
)

. (25)

Heat currents at the stationary state ρ̃

J̃ a =
1

2

∑

q∈Z

(ω0 + qΩ)Tr
(

σ3La
q ρ̃
)

(26)
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Models of Quantum Machines

The II-law
J̃ c

Tc
+

J̃ h

Th
≤ 0. (27)

The I-law and the stationary power

P̃ = −J̃ c − J̃ h. (28)

Carnot bounds on the engine efficiency η and the coefficient of performance
(COP) for the refrigerator

η =
−P̃

J̃ h
≤ 1−

Tc

Th
, COP =

J̃ c

P̃
≤

Tc

Th − Tc
. (29)
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Models of Quantum Machines

An example of implementation

Charged particle in double-well potential with modulated barrier

Tc TH

Periodic

Modulation
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Models of Quantum Machines

Universal machine

Can work as engine or refrigerator and reaches Carnot bounds
Time-dependence of the external field

ω(t) = ω0 + λ sin(Ωt) (30)

0 ≤ λ << Ω ≤ ω0. (31)

λ/Ω << 1 implies

P (0) ≃ 1−
1

2

(λ

Ω

)2
, P (±1) ≃

( λ

2Ω

)2
(32)

are relevant.
Spectral separation condition

Gc(ω) ≃ 0 for ω ≥ ω0 and Gh(ω) ≃ 0 for ω ≤ ω0, (33)
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Models of Quantum Machines

The formulas for heat currents and power

J̃ h = N(ω0 +Ω)(e
−(

ω0+Ω
kBTh

)
− e

−(
ω0−Ω
kBTc

)
)

J̃ c = −N(ω0 − Ω)(e
−(

ω0+Ω
kBTh

)
− e

−(
ω0−Ω
kBTc

)
)

P̃ = −2NΩ(e
−(

ω0+Ω
kBTh

)
− e

−(
ω0−Ω
kBTc

)
) (34)

where

0 ≤ N =
( λ

2Ω

)2 Gc(ω0 − Ω)Gh(ω0 +Ω)

Gc(ω0 − Ω)
[

1 + e
−(

ω0−Ω
kBTc

)]
+Gh(ω0 +Ω)

[

1 + e
−(

ω0+Ω
kBTh

)]

(35)
A critical value of the modulation frequency

Ωcr = ω0
Th − Tc

Th + Tc
(36)
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Models of Quantum Machines

For Ω < Ωcr the machine works as an engine with

η =
2Ω

ω0 +Ω
(37)

and for Ω > Ωcr as a refrigerator with

COP =
ω0 +Ω

2Ω
(38)

At Ωcr the engine/refrigerator reaches its maximal Carnot efficiency/COP, by
the vanishing value of power/cold current.
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Models of Quantum Machines

Conclusions:

• The class of periodically driven and weakly coupled to environment quantum
systems possess a complete and mathematically sound description in terms of
Markovian master equations.

• For this class basic thermodynamical notions are consistently defined and the
laws of thermodynamics are derived from first principles.

• No quantum miracles happen. The standard Carnot bounds hold.

• Various promising designs of microscopic quantum machines are obtained as
byproducts.
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