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Models of Quantum Machines

Why quantum thermodynamic?

e Applicability of the laws of thermodynamics and related bounds (e.g. Carnot)
in the quantum domain.

e New designs of microscopic engines and refrigerators.

e Thermodynamical bounds on (quantum) information processing.

e Technological and biological applications.
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Models of Quantum Machines

A general scheme of QUANTUM MACHINE

e S - a microscopic "small" system - "working fluid"

e {B;;7 =1,..,M} - quantum heat bath at temperatures T; (e.g. bosonic
free field, ideal Fermi/Bose gas)

o {fo(t);aa=1,..., K} - external control (classical, deterministic) parameters

e Total Hamiltonian

Hy = (Hs+ Y fa(thha) + > Hp, + Y Hgg,
o J J
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Models of Quantum Machines

Slowly varying external control

Spohn, Lebowitz (1978), Davies, Spohn (1978), RA (1979)(weak coupling +
adiabatic limits)

Reduced dynamics of S is approximated by the Markovian Master equation:

%ﬂ(t) — _i[H(t)a p(t)] + Zﬁj(?ﬁ)p(t), (1)

where L£;(t) is a Lindblad-Gorini-Kossakowski-Sudarshan generator

Zero-th Law of Thermodynamics

L0 =0, 510 =~ )

H(t) - total, physical Hamiltonian of S, B; = 1/kT}
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Models of Quantum Machines

First Law of Thermodynamics

W -work performed on S, ) - heat absorbed by S, E - internal energy of .S

B(t) = Tr(p(t) H (1)) 3)
%w@ = Tr(p(t)dZ—ft)) , )

L - (W) - > HOL00(0) =3 5Q:(0).
(5)

@; - heat absorbed by S from B;.
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Models of Quantum Machines

Second Law of Thermodynamics

Entropy - S(t) = —kTr(p(t) In p(¢))
d

U ZT dt ZOJ

o;(t) - entropy production caused by B;

0,(t) = KTr(L;(0)p(0)[In p(t) — In p(1)]) > 0

Exercise

Show (7) using Lindblad H-theorem for S(p |,0’)
CP-dynamical map A. Use A = exp{sL;(t)}, p' = p5*(t)

]

S(AplAp") < S(plp")

(7)

Tr(plnp — plnp’) and
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Models of Quantum Machines

Periodic control

e \Weak coupling limit can be combined with Floquet theory to produce Markovian
master equations with periodic in time generators (RA, Lidar,Zanardi, (2006))

e With a proper definition of heat currents, |l-law is satisfied.

e At the steady state |-law allows to compute stationary power and prove the
Carnot bound even for a general non-equilibrium stationary environment.

e New types of microscopic engines and refrigerators can be designed.

See recent and future papers by RA, Gelbwasser, Kolar, Kosloff, Kurizki
Szczygielski.
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Models of Quantum Machines

A model of quantum machine

A qubit with periodic modulation

H(t) = %w(t)ag , w(t+7) = w(t), l/()Tcu(s)als =wy >0 (9)

T

weakly coupled to hot and cold baths at T", T°
Hipe = o' @ (B" 4+ B°). (10)

The Markovian master equation (notice time-independence of £¢(")

— = = —izw(t) [0, p(t)] + Lp(t) + L p(t). (11)
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Models of Quantum Machines

Sketch of derivation

Unitary propagator (interaction picture) for the total system (u-small constant)

—1

U,(t,0) = Texp{T'u /Ot(;l(s) @ R(s) ds}

o'(t) =) (E(q)e”otaiDieT 4 he)

q€Z

€(Q) — l /T et fg(w(s)—wo)dse—iqﬁtdt’
0

.
R(t) = B"(t) + B(t) , B(t) = e'pa’ B* e pat

{wo + ¢€2;q € Z} - "Bohr's quasi-frequencies"

(12)

(13)

(14)

(15)
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Models of Quantum Machines

Reduced dynamics (interaction picture)

p(t) = A(t,0)p = TIR<Uu(t7 0)p ® prU,(L, O)T)

Cumulant expansion

A(t,0) = exp > [p"K™ (1)),

n=1

Born approximation, WCL, Gaussian approximation:

A(t,0) = exp[p® K (t) + O(\?)].

tp = = /ds/ duTr(prR(s)R)o (s)po (u) + - - -

Markov approximation (in the interaction picture) — K (t) ~ tL

(16)

(17)

(18)

(19)
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Models of Quantum Machines

Generator’s structure
Fora =c¢, or a = h, Q = 27 /7 we have

Lip=>) Lip (20)

qEZ

@ (Ga(“o +qQ)(lo7p, 0"+ 07, p07])  (21)

+ G (wo—a®)(lop.o ]+ 0", po]))

G%w) = /+OO et BY(t)BY) . dt = e*/*BTe@(—w), (22)

— 00

Pl) = €@ &(0) = [ Bty ()
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Models of Quantum Machines

"Local", cold and hot heat currents

T4(t) = 5 (w0 + A Te(o® L3p(1)) T = 3 T°(0). (24)

q€Z
The second law of thermodynamics

d T | J" ()

—S(t) > T T, S(t) = —kgTr(p(t)Inp(t)).  (25)

dt
Heat currents at the stationary state p

-1
Je=5 > (wo + q)Tr(a® £p) (26)

qEZ
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Models of Quantum Machines

The Il-law 3 5
Je Jh
< 0. 27
1. + Ty, — ( )
The |-law and the stationary power
P=-Je—Jh (28)

Carnot bounds on the engine efficiency 1 and the coefficient of performance
(COP) for the refrigerator

~ ~

—P T, Je T,
p— — < _ ) — < .
== < =7, COP =5 <o (29)
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Models of Quantum Machines

An example of implementation
Charged particle in double-well potential with modulated barrier

Periodic
Tc Modulation TH

|
VeV
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Models of Quantum Machines

Universal machine
Can work as engine or refrigerator and reaches Carnot bounds
Time-dependence of the external field

w(t) = wo + Asin(Qt)

0 S A << S wo-
A/Q << 1 implies

are relevant.
Spectral separation condition

G(w) ~ 0 for w > wg and G"(w) ~ 0 for w < wy,

(30)

(31)

(32)

(33)
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Models of Quantum Machines

The formulas for heat currents and power

~ _(w0+Q) _(wO—Q)
Jh = N(wy+Q)(e FBTh" —e ‘FpTc’)
_ wn+2 wn—2
Je = —N(wo—Q)(e Fm) — e o))
~ _(M) _(OJO—Q)
P = —2NQ(e **BTh" —e “kpTe’) (34)
where
0< N — ( A )2 GC(wO—Q)Gh(wO+Q)
- _ (@09 _ (w0t
2 Gefwn — Q1+ " T5] + Gh(wp + Q) [1 + ¢ Fom)
(35)
A critical value of the modulation frequency
Ty, — T,
Qer = 36
U+ T %)
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Models of Quantum Machines

For 2 < )., the machine works as an engine with

2€)

= 37
=0 (37)
and for > Q., as a refrigerator with
wo + Q)
P = 38
CO 50 (38)

At Q. the engine/refrigerator reaches its maximal Carnot efficiency/COP, by
the vanishing value of power/cold current.
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Models of Quantum Machines

Conclusions:

e The class of periodically driven and weakly coupled to environment quantum
systems possess a complete and mathematically sound description in terms of
Markovian master equations.

e For this class basic thermodynamical notions are consistently defined and the
laws of thermodynamics are derived from first principles.

e No quantum miracles happen. The standard Carnot bounds hold.

e Various promising designs of microscopic quantum machines are obtained as
byproducts.
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