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Introduction
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Overview

Over the past decade, there have been a number of important

generalizations in the theory of:

I Anderson Localization: For a single particle, the techniques

of multi-scale analysis and the fractional moment method

have greatly improved.

I Locality Estimates: For many-body systems, there are new

Lieb-Robinson bounds and correlation estimates for gapped

models.

Question: Do these new results shed some light on localization for

random many-body models?

Answer: Yes, at least for some very simple models. . .
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Oscillator Models
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Lattice Oscillators

Given the Hilbert Space

HL =
⊗
x∈ΛL

L2(R) where ΛL = [−L, L]d ∩ Zd

We will consider oscillator Hamiltonians

HL =
∑
x∈ΛL

(
1

2mx
p2
x + kxq2

x

)
+
∑
〈x ,y〉

λx ,y (qx − qy )2

Note: For each x ∈ ΛL, the single site position and momentum are

qx = 1l⊗ 1l · · · ⊗ q ⊗ · · · ⊗ 1l and px = 1l⊗ 1l · · · ⊗ i
d

dq
⊗ · · · ⊗ 1l

both self-adjoint operators on HL.

Note: The real parameters: {mx}, {kx}, and {λx ,y} are resp.

masses, spring constants, and interaction strengths
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Observables and Dynamics

Denote by

AL = B(HL) =
⊗
x∈ΛL

B(L2(R))

an algebra of observables associated to ΛL.

Example: For any x ∈ ΛL and z ∈ C,

Wx(z) = exp [i (Re[z ]qx + Im[z ]px)] ∈ AL

is called a strictly local Weyl Operator with support x ∈ ΛL.

The Heisenberg dynamics, or time evolution, associated to HL is

τL
t (A) = e itHLAe−itHL for any A ∈ AL and t ∈ R

Basic Goal: Given parameters, understand the time evolution of

local observables.
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Locality Estimates
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Deterministic Locality Bounds

A Lieb-Robinson bound for the constant coefficient case.

Theorem (Nachtergaele, Raz, Schlein, S. ’09)

Let

mx = m > 0, kx = k > 0, and λx ,y = λ > 0

for all x , y. There exist C <∞, η > 0, and 0 < v <∞ such that∥∥∥[τL
t (Wx(z)),Wy (z ′)

]∥∥∥ ≤ C |z ||z ′|e−η(|x−y |−v |t|)

for all L, x, y , z, and z ′.

Note: If x 6= y , then [Wx(z),Wy (z ′)] = 0. The above shows that,

in norm, the commutator is still small for v |t| << |x − y |.
v bounds the maximum velocity of propagation.
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Disordered Oscillators

Consider the Hamiltonian

HL =
∑
x∈ΛL

(
p2
x + µkxq2

x

)
+
∑
〈x ,y〉

(qx − qy )2

where we set 2mx = 1, λx ,y = 1, and

I Let {kx}x∈Zd be an i.i.d. sequence of random variables

with common distribution dP(k) = ρ(k)dk having

ρ ∈ L∞c [0,∞).

I Take µ > 0 a disorder parameter.
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Dynamical Localization

Theorem (Nachtergaele, S. , Stolz ’12)

For the model above, assume that µ > 0 is sufficiently large.

There exist C <∞ and η > 0 such that

E
(

sup
t∈R

∥∥∥[τL
t (Wx(z)),Wy (z ′)

]∥∥∥) ≤ C |z ||z ′|e−η|x−y |

for all L, x, y , z, and z ′.

I This result holds uniformly in L.

I For d = 1, there is a similar result for arbitrary µ > 0.

This is a strong form of dynamical localization. It establishes a

zero-velocity Lieb-Robinson bound.
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Effective One-Particle Hamiltonian

Crucial in the proof of this result is the fact that

HL = (qT , pT )

(
hL 0

0 1l

)(
q

p

)

where

I q = (qx)x∈ΛL
and p = (px)x∈ΛL

are regarded as vectors

I The effective one-particle Hamiltonian hL satisfies

〈f , hLg〉 =
∑
<x ,y>

(f (x)− f (y))(g(x)−g(y))+
∑
x∈ΛL

µkx f (x)g(x)

i.e. hL is an Anderson model on `2(ΛL).
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Relating the Dynamics

The key estimate relating the many-body dynamics of HL to the

single-particle dynamics of hL is:∥∥∥[τL
t (Wx(z)),Wy (z ′)

]∥∥∥ ≤ |z ||z ′|{2|〈δx , cos(2th
1/2
L )δy 〉|+

+|〈δx , h1/2
L sin(2th

1/2
L )δy 〉|+ |〈δx , h−1/2

L sin(2th
1/2
L )δy 〉|

}
Technical Issue: Since the spring constants kx have support in a

neighborhood of 0, the operator h
−1/2
L is unbounded.
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Singular Eigenfunction Correlators

Lemma

Let hL be the d-dimensional Anderson model at sufficiently large

disorder. For every α > −1, there exists C <∞ and η > 0 such

that

E

(
sup
|g |≤1

|〈δx , hαL g(hL)δy 〉|

)
≤ Ce−η|x−y |

for all L and x , y ∈ ΛL.

I For α = 0, this is a well studied quantity in the mathematics

community studying Anderson localization.

I The proof of this lemma uses a Riemann sum argument and

known results on dynamical localization.

I Applying this result , e.g. with α = −1/2 and

gt(x) = sin(2tx), completes the proof of the theorem.
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Correlation Decay
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On Deterministic Ground State Correlations

Let ΩL be the non-degenerate, normalized ground state of HL.

For any A ∈ AL, denote by

〈A〉 = 〈ΩL,AΩL〉

the expected value of A in the ground state.

Results for deterministic gapped HL:

Theorem (Cramer, Eisert ’06; Cramer, Eisert, Serafini ’07)

Let HL be chosen with λx ,y = 1, 2mx = 1, and

0 < a ≤ kx ≤ b <∞ for all x , y. Then there exist C <∞ and

η > 0 such that∣∣〈Wx(z)Wy (z ′)〉 − 〈Wx(z)〉〈Wy (z ′)〉
∣∣ ≤ Ce−η|x−y |

for all L, x, y , z, and z ′.

Note: Lower bound on kx ensures the model is gapped.
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On Disordered Ground State Correlations

Theorem (Nachtergaele, S. , Stolz ’12)

Let HL be chosen with λx ,y = 1, 2mx = 1, and {kx} i.i.d. with

dP(k) = ρ(k) dk and ρ ∈ L∞c [0,∞). Then there exist C <∞ and

η > 0 such that

E
(∣∣〈Wx(z)Wy (z ′)〉 − 〈Wx(z)〉〈Wy (z ′)〉

∣∣) ≤ C |z ||z ′|e−η|x−y |

for all L, x, y , z, and z ′.

I This holds for any d ≥ 1 and any disorder.

I This result applies to some gapless models.

I We have similar results for dynamically evolved correlations.



18

The Proof

Proof uses∣∣〈Wx(z)Wy (z ′)〉 − 〈Wx(z)〉〈Wy (z ′)〉
∣∣ ≤ 1

2
|z ||z ′|×

×
(
|〈δx , h−1/2

L δy 〉|+ |〈δx , h1/2
L δy 〉|

)
and a contour integration cutting through the localized part of the

spectrum.

Basic Idea: Despite the fact that the model is gapless, localization

provides an effective mobility gap above the ground state.

Note again: These static results hold in any dimension and at any

disorder. At large disorder, there are also results for dynamic

correlations . . .
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Results for Thermal States

We have similar results for correlations of thermal states.

For any β > 0, consider the thermal state

PL,β =
e−βHL

Tr[e−βHL ]

For any observable A ∈ AL,

〈A〉β = Tr[APL,β]

is the expected value of A in the thermal state PL,β.

Theorem (Nachtergaele, S. , Stolz ’12)

Let HL be as above. Then there exist C <∞ and η > 0 such that

E
(∣∣〈Wx(z)Wy (z ′)〉β − 〈Wx(z)〉β〈Wy (z ′)〉β

∣∣) ≤ C |z |1/2|z ′|1/2e−η|x−y |

for all L, x, y , z, and z ′.

Note: Also dynamical results at large disorder . . .
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Entanglement Bounds
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Entanglement Entropy

The Set-Up:

Fix a finite set Γ ⊂ Zd .

Take L large enough so that Γ ⊂ ΛL.

Form a Bipartite decomposition: HL = H1 ⊗H2 with

H1 =
⊗
x∈Γ

L2(R) and H2 =
⊗

x∈ΛL\Γ

L2(R)

Determine the ground state projector: PL = |ΩL〉〈ΩL|.
Trace out the exterior degrees of freedom: P1

L = TrH2 [PL].

Calculate the Entanglement Entropy of this restriction:

S(P1
L) = −Tr[P1

L ln(P1
L)]
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Area Laws for Ground States

Theorem (Nachtergaele, S. , Stolz)

Let HL be chosen with λx ,y = 1, 2mx = 1, and {kx} i.i.d. with

dP(k) = ρ(k) dk and ρ ∈ L∞c [0,∞). Then there exist C ′ <∞
such that

E
(
S(P1

L)
)
≤ C ′|∂Γ|

for all L with Γ ⊂ ΛL.

I For the deterministic gapped case, such (surface) area laws

are known e.g. Cramer, Dreissig, Eisert, Plenio ’04,’05.

I Here the systems may be gapless, but we again exploit

localization to achieve an effective mobility gap.
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Back to Thermal States

We also have similar bounds that hold for thermal states.

Consider the same Set-Up as before, i.e., fix Γ, take L large with

Γ ⊂ ΛL, and write HL = H1 ⊗H2.

Define the logarithmic negativity of the thermal state PL,β with

respect to this bipartite decomposition by:

N (PL,β) = ln
(
‖PT1

L,β‖1

)
Here the partial transpose used above is defined by

(A⊗ B)T1 = AT ⊗ B (where A 7→ AT is any transposition in H1)

and extended linearly to a larger class of observables.
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Area Laws at Positive Temperature

Theorem (Nachtergaele, S. , Stolz ’13)

Let HL be chosen with λx ,y = 1, 2mx = 1, and {kx} i.i.d. with

dP(k) = ρ(k) dk and ρ ∈ L∞c [0,∞). Then there exist C ′ <∞
such that

E (N (PL,β)) ≤ C ′|∂Γ|

for all L with Γ ⊂ ΛL.

Important Observation:

Lemma (Vidal-Werner ’02)

If P is a rank-one projection on H = H1 ⊗H2 and P1 = TrH2 [P],

then

S(P1) ≤ N (P)

We use this to prove our area law for the ground state.
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Conclusions

For this simple random model, one can relate localization

properties of the effective single-particle evolution to relevant

many-body quantities.

The goal is to identify signatures of many-body localization,

perhaps zero-velocity Lieb-Robinson bounds, decay of correlations,

or area laws, which could possibly be established in more general

random many-body systems.
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