Local Thermal States and Correlations

joint work with Alessandro Ferraro and Artur Garcia

Antonio Acín ICREA Professor at ICFO-Institut de Ciencies Fotoniques, Barcelona

Information theoretic approaches to thermodynamics Singapore, September 2013

Institut de Ciències Fotòniques

Local Temperature

Is the block in a thermal state at the same temperature as the whole system?

Motivations

- What are typical states of thermalized systems?
- Is temperature an intensive quantity?
- How can temperature be estimated from local observables?
- Which role do correlations play in the definition of temperature?
- Which correlations? Classical or quantum?

Some of these issues have previously been considered in: M. Hartmann, G. Mahler and O. Hess, Phys. Rev. Lett. 93, 080402 (2004).

Thermodynamics: a huge simplification

Temperature: 25° C Length: 50 m N_a molecules of H₂O

This simplification comes from the fact that we have access to coarse grained observables.

The model and the tools

We consider systems composed of coupled harmonic oscillators in 1D and 2D geometries.

$$H = \frac{1}{2} \sum_{i} p_i^2 + \sum_{i,j} q_i V_{ij} q_j \longrightarrow \begin{array}{c} \text{Couple} \\ \text{degree} \end{array}$$

Coupling in the position degrees of freedom

Chain with nearest-neighbor interactions: $V = \operatorname{circ}(1, -c, 0, \dots, 0, -c)$

Criticality:
$$c \rightarrow \frac{1}{2^{D}}$$

Advantages

- Ground and thermal states are Gaussian → large-size computations become possible → "thermodynamical" limit.
- These systems model several interesting physical systems: crystal lattices, trapped ions, nano-mechanical oscillators.
- Quantum information quantities can be efficiently calculated for Gaussian states: entanglement, correlation measures, fidelities, partial traces,...

Gaussian thermal states

$$H = \frac{1}{2} \sum_{i} p_{i}^{2} + \sum_{i,j} q_{i} V_{ij} q_{j}$$

• Ground state:

$$\gamma_{\rm gr} = V^{-1/2} \oplus V^{1/2}$$

• Thermal state:

$$\gamma_{\mathrm{th}} = V^{-1/2} W(\beta) \oplus V^{1/2} W(\beta)$$

with

$$W(\beta) = 1 + 2(\exp(\beta V^{1/2}) - 1)^{-1}$$

Statement of the problem

Temperature is intensive whenever $F \approx 1$

over all possible measurements.

Hamiltonian for the block

A temperature-independent Hamiltonian for the block is necessary.

Criterion: in the limit of high temperatures, intensiveness should be recovered, $F \rightarrow 1$.

$$\gamma \xrightarrow{\beta \to 0} \frac{2}{\beta} \left(V^{-1} \oplus 1 \right) \qquad \gamma_B \xrightarrow{\beta \to 0} \frac{2}{\beta} \left(\widetilde{V}^{-1} \oplus 1 \right)$$
$$\widetilde{V} = V_B - V_{BR} V_R^{-1} V_{BR}^T \qquad V = \begin{pmatrix} V_B & V_{BR} \\ V_{BR}^T & V_R \end{pmatrix}$$

Putting these two things together:

$$H_B = \frac{1}{2} \sum_{i} p_i^2 + \sum_{i,j} q_i \widetilde{V}_{ij} q_j$$

Hamiltonian for the block

- Other criteria lead to the same Hamiltonian for the block.
- In the case of coupled classical harmonic oscillators, this Hamiltonian leads to an intensive fidelity for all values of the temperature and system sizes.
- This choice makes F equal to one in the large-T limit.

Guess the fidelity behavior!

Results: 1D – the fidelity saturates

Results: 2D – the fidelity decreases

Larger deviations from intensiveness for larger systems!

(despite the more and more negligible weight of the interaction at the boundary)

The fidelity follows an area law

Deviation from intensiveness resides in the boundary

Local Thermal States

- The distinguishability between the ideal thermal state and the actual state increases with the system and block size.
- Still, the two states become indistinguishable for standard coarse grained observables. Example: magnetization. $M = \sum_{i} \sigma_z^i$

$$\operatorname{tr}(M \ \rho_B) = \sum_i \operatorname{tr}(\sigma_z^i \rho_B^i) \approx \sum_{i \in \operatorname{com}} \operatorname{tr}(\sigma_z^i \rho_B^i) \approx \operatorname{tr}(M \ \Omega_B)$$

• It is possible to define an effective thermal state already for small sizes:

$$\rho_{B} \approx \operatorname{tr}_{\varepsilon}(\Omega_{B+\varepsilon})$$

Classical and quantum correlations

Since the thermal state is mixed, it contains all forms of correlations.

• Total correlations:

- 1. Mutual Information
- 2. Correlation Length

• Quantum correlations:

- 1. Entanglement
- 2. Quantum discord

Does any of these correlations play a role in this discussion?

Temperature remains intensive in relevant cases

Mutual Information

MI follows an area law, however MI is finite for high temperatures

 $I \approx \alpha_I l_B$

Size independent slope

Compare with the Fidelity

Mutual Information

Correlation Length

Two-point correlation function (nearest-neighbors):

```
\langle q_i q_{i+r} \rangle \propto e^{-\frac{r}{\xi}}
```


Log-Negativity of Entanglement

 E_N follows an area law and it is zero for high T

> $E_N \approx \alpha_E l_B$ Size independent slope

Compare with the Fidelity

Log-Negativity of Entanglement

Quantum Discord

Gaussian quantum discord between nearest-neighbors [G.Adesso *et al.*, arXiv:1003.4979; P.Giorda *et al.*, arXiv:1003.3207]:

Summary of results

- The distinguishability between the ideal thermal state and the actual state follows an area law.
- For "standard" observables, the two states become more and more undistinguishable.
- An effective thermal state can be associated to the block for any size, temperature and observables.
- Entanglement seems to capture these effects.

Further work

- Extension to other systems. We have also obtained similar results, namely area law for the fidelity, for spin-one-half systems. Still, more calculations are needed.
- Analytical results? Locality!
- Strengthen the connection with quantum correlations (if any).
- Extension to dynamical processes.
- Relation to experiments?