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Local Temperature 

The whole system has 
“thermalized” and the 
global state is thermal: 
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Reduced state of the block: 

 SBSB  tr

Is the block in a thermal state at the same temperature as the whole system? 



Motivations 

• What are typical states of thermalized systems? 

• Is temperature an intensive quantity? 

• How can temperature be estimated from local 
observables? 

• Which role do correlations play in the definition of 
temperature? 

• Which correlations? Classical or quantum? 

Some of these issues have previously been considered in: 
M. Hartmann, G. Mahler and O. Hess, Phys. Rev. Lett. 93, 080402 (2004). 



Thermodynamics: a huge simplification 

Temperature: 25⁰ C 
Length: 50 m 

Na  molecules of H2O 

This simplification comes from the fact that we have access to coarse grained observables.  



The model and the tools 

We consider systems composed of coupled harmonic oscillators in 1D and 
2D geometries.  
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1 Coupling in the position 
degrees of freedom 

Chain with nearest-neighbor interactions: 
 
Criticality:  
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Advantages 

• Ground and thermal states are Gaussian → 
large-size computations become possible → 
“thermodynamical” limit. 

• These systems model several interesting 
physical systems: crystal lattices, trapped ions, 
nano-mechanical oscillators. 

• Quantum information quantities can be 
efficiently calculated for Gaussian states: 
entanglement, correlation measures, fidelities, 
partial traces,… 



Gaussian thermal states 
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• Ground state: 
 
 
 
 
• Thermal state: 
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Statement of the problem 

 SBSB  tr  
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Similarity between these two states:  
 
Temperature is intensive whenever F ≈ 1 

 BBF , Distinguishability 
over all possible 
measurements. 



Hamiltonian for the block 

A  temperature-independent Hamiltonian for the block is necessary. 
 
 
Criterion: in the limit of high temperatures, intensiveness should be recovered, F → 1. 
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Putting these two things together: 
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Hamiltonian for the block 

• Other criteria lead to the same Hamiltonian for the block. 
 
• In the case of coupled classical harmonic oscillators, this 
Hamiltonian leads to an intensive fidelity for all values of 
the temperature and system sizes. 
 
• This choice makes F equal to one in the large-T limit. 



Guess the fidelity behavior! 
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(1) It decreases 
with system size. (2) It approaches 

one for large sizes. 

(3) It saturates, though <1, 
for large sizes. 







The cores are effectively 
indistinguishable. 
 
 
 
All the distinguishability 
is at the boundary. 



Local Thermal States 

• The distinguishability between the ideal thermal state and the actual state 
increases with the system and block size. 

 

• Still, the two states become indistinguishable for standard coarse grained 
observables. Example: magnetization.  

 

 

 

 

• It is possible to define an effective thermal state already for small sizes: 
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Classical and quantum correlations 

• Total correlations: 
1.  Mutual Information 
2.  Correlation Length 

• Quantum correlations: 
1.  Entanglement 
2.  Quantum discord 

Does any of these correlations play a role in this discussion? 

Since the thermal state is mixed, it contains all forms of correlations. 

















Summary of results 

• The distinguishability between the ideal 
thermal state and the actual state follows an 
area law. 

• For “standard” observables, the two states 
become more and more undistinguishable. 

• An effective thermal state can be associated to 
the block for any size, temperature and 
observables. 

• Entanglement seems to capture these effects. 



Further work 

• Extension to other systems. We have also 
obtained similar results, namely area law for 
the fidelity, for spin-one-half systems. Still, 
more calculations are needed. 

• Analytical results? Locality! 

• Strengthen the connection with quantum 
correlations (if any). 

• Extension to dynamical processes. 

• Relation to experiments? 


