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Plan

Motivation
Randomness via strings
Basics of algebra
Computable tree lemma
ML-randomness for algebras
Generator Independence Theorem
Random graphs, trees, and monoids
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Recent work

The modern history is fascinating; goes back to the works
of Kolmogorov, Martin-Löf, Chaitin, Schnorr and Levin.
The last 15 years has seen significant advances in the
study of algorithmic randomness on infinite strings.
Monographs by Downey and Hirschfeldt, and Nies.
Many notions of randomness, various techniques, and
ideas have been studied.
There are connections to other fields; e.g. the recent work
of V. Brattka, J. Miller and A. Nies.
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Strings as infinite structures

Identify a binary string β ∈ 2ω with the structure Aβ = (ω; S,P):

S(i) = i + 1 and P(n) ⇐⇒ β(n) = 1.

So, algorithmic randomness of β is identified with algorithmic
randomness of specific infinite structures Aβ.

This does not answer the following question:

What is an algorithmically random infinite tree, graph, monoid,
or generally, a universal algebra?
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The main task: we need a good measure

Martin-Löf tests constitute the central concept for algorithmic
randomness in the setting of infinite strings. This concept is
based on the natural measure on the Cantor space.

In the case of infinite structures, how does one introduce a
meaningful measure for the class?

We answer this question by putting a very limited and yet
natural finiteness conditions on structures.
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What do we expect from an infinite
algorithmically random structure?

Absoluteness: Algorithmic randomness should be an
isomorphism invariant property. In particular, we do not
want algorithmically random structures to be isomorphic to
computable structures.

Continuum: Random structures should be in abundance,
the continuum. This is a property of a collective, the idea
that goes back to Von Mises.

Selection: There should be no effective way to describe
the isomorphism type or an infinite part of the structure.
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Somewhat naive approach: String-randomness

Let A = (ω; Pn0
0 , . . . ,Pnk

k ) be a structure with A = ω. Form the
following string αA:

Pn0
0 cn0(0) . . .Pnk

k cnk (0)Pn0
0 cn0(1) . . .Pnk

k cnk (1) . . .

This string codes up the atomic diagram of the structure.

Definition
The structure A is string-random if the string αA is ML-random.

To avoid much notation, we now consider graphs.
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String-random implies model-theoretic random

Theorem
If G is a string-random graph then G is random model
theoretically.

Proof.
One needs to show that the following property, known as
extension axiom, holds for G:

For any finite set X of vertices and non-trivial partition Y1, Y2 of
X there exists a vertex z such that {z, y1} is an edge for all

y1 ∈ Y1 and {z, y2} is not an edge for all y2 ∈ Y2.

This is guaranteed by the fact that αG is ML-random.
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Consquences

Thus, we have the following:

Any two string-random structures are isomorphic.
String-random structures are isomorphic to computable
structures.
The isomorphism type of string random structure is
axiomatised by extension axioms.

All of the above defy our intuition that we postulated for
algorithmically random infinite structures.
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Basics of algebra

An algebra A is (A; f1, . . . , fn, c1, . . . , cm), where:
The set A 6= ∅ is the domain,
Each fi : Aki → A an atomic operation,
Each cj is a distinguished element.

Ground terms are defined by induction:

Each cj is a ground term,
If t1, . . . , tki are ground terms, then so is fi(t1, . . . , tki ).

The height, h(t), of the term t is defined as follows:
h(cj) = 0,
h(fi(t1, . . . , tki )) = max{h(t1), . . . ,h(tn)}+ 1.
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c̄-generated algebras

Definition
An algebra A is c-generated if every element of A is a value of
some ground term.

Thus, if A is c-generated, then ∀a ∈ A∃t(tA = a). Call t a
representation of a in A. Set:

h(a) = min{h(t) | tA = a}.

The height of A is the supremum of all the heights of its
elements.
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Proper partial algebras

Let A be a c-generated. For each n ∈ ω, consider

A[n] = {a ∈ A | h(a) ≤ n}.

Each atomic operation f defines a partial operation fn on A[n]
as follows. For all a1, . . . ,aki ∈ A[n]:

fn(a1, . . . ,aki ) equals f (a1, . . . ,aki ) if h(ai) < n for all i ;
fi,n(a1, . . . ,aki ) is undefined otherwise.

Call the partial algebra A[n], the n-th slice of A. We refer to the
isomorphism types of these algebras as proper partial algebras.
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Preparatory Lemmas

Lemma

Two c-generated algebras A and B are isomorphic iff they
agree at n for all n.

Lemma

Let A be an infinite c-generated algebra. For each n ≥ 0 there
is a proper partial algebra B such that A and B agree at n.

Lemma

If B is a proper partial of height n, then there is an infinite
c-generated algebra A such that A and B agree at n.

18 / 42

Bakh Khoussainov A quest for algorithmically random infinite structures



Definition of tree Tm

1 The root is ∅. This is level −1.

2 The nodes of at level n ≥ 0 are proper partial algebras of
height n.

3 Let B be a proper partial algebra of height n. Its successor
is any proper partial algebra C of height n + 1 such that B
and C agree at n.

The function n→ rm(n), where rm(n) is the number of proper
partial algebras of height n, is computable.
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Properties of the tree Tm

Γωm denotes all c̄-generated infinite algebras of signature Γm.

Lemma (Computable Tree Lemma)

1 Given any node x of the three, we can effectively compute
the proper partial algebra Bx associated with the node x.

2 Each x in Tm has an immediate successor. We can
compute the number of immediate successors of x.

3 Each path η = B0,B1, . . . determines the algebra
Bη = ∪iBi ∈ Γωm.

4 The mapping η → Bη is a bijection from [Tm] to Γωm.
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Topology

Using Tm we can introduce the topology into the class Γωm.

Definition (Topology)

Let B be a proper partial algebra of height n. The cone of B is:

Cone(B) = {A | A ∈ Γωm, and A and B agree at n}.

Declare the cones Cone(B) to be the base open sets of the
topology on Γωm. We refer to the proper partial algebra B as the
base of the cone.
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Measure

Definition (Measure)
The measure of the cone based at the root is 1.
Assume that the measure µm(Cone(Bx )) has been
defined. Let ex be the number of immediate successors of
x . Then for any immediate successor y of x the measure
of Cone(By ) is

µm(Cone(By )) =
µm(Cone(Bx ))

ex
.
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Metric

Definition (Metric)
For two c-generated algebras A and B, let n be the maximal
level at which A and B agree. Let C be the n-th slice of A
(hence of B). The distance d(A,B) between the algebras is
then defined as follows: d(A,B) = µm(Cone(C)).

Lemma

The function d is a metric in the space Γωm .
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Basic properties of the space Γωm

Fact
The spaceM = (Γ?m ∪ Γωm,d) has the following properties:

1 M is compact.
2 The set Γ?m is countable and dense inM.
3 Finite unions of cones form clo-open sets in the topology.
4 The set of all µm-measurable sets is a σ-algebra.
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ML-random algebras

Definition

1 A Martin-Löf test is a uniformly c.e. sequence {Gn}n≥1 of
Σ0

1-classes in Γωm such that Gn+1 ⊂ Gn and
µm(Gn) < 1/rm(n) for all n ≥ 1.

2 A c-generated algebra A fails the Martin-Löf test {Gn}n≥1
if A belongs to ∩nGn. Otherwise, we say that the algebra A
passes the test.

3 A c-generated algebra A is ML-random if if it passes every
Martin-Löf test.

Corollary

The number of ML-random algebras is continuum.
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Generator independence theorem

Theorem (Generator independence theorem)

ML-randomness for algebras is independent on the generators.

Proof (idea). Let ā = a1, . . ., am and b̄ = b1, . . ., bk be
generators of A. Thus, (A, ā) ∈ Γωm and (A, b̄) ∈ Γωk .

Goal: (A, ā) is ML-random if and only if (A, b̄) is ML-random.
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Generator independence

There exist ground terms t1, . . . , tk and q1, . . . ,qm such that

ti(ā) = bi and qj(b̄) = aj ,

with i = 1, k and j = 1,m. Call these the base equalities B.

If (D,b1, . . . ,bk ) |= B then (D,q1(b̄), . . . ,qm(b̄)) ∈ Γωm.

Lemma

The partial mapping α : (D,b1, . . . ,bk )→ (D,q1(b̄), . . . ,qm(b̄))
preserves ML-tests.

This proves the theorem.
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Computable algebras

Let A be a c-generated infinite algebra and h : TG → A be the
onto homomorphism. The word problem of A is:

WP(A) = {(t ,q) | t ,w ∈ TG & h(t) = h(q)}.

Fact

If A is a computable algebra then A is not ML-random.
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Computability in the Halting set

Denote the halting set by H.

Definition
An algebra A is H-computable if WP(A) is computable in H.

Theorem

ML-random H-computable algebras exist.
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Proof idea

Consider a universal ML-test: {Un}n≥1.
We build A so that A 6∈ U1.

Using H, write U1 as a disjoint union C(B1) ∪ C(B2) ∪ . . ..

Using H, construct A by stages s so that:

1 As−1 ⊂ As.
2 The cone C(As) avoids all the cones C(Ai), i = 1, s.
3 The measure of C(As) is greater than the measure of the

remaining cones.
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A set up for graphs

We consider connected graphs of bounded degree d > 2.
Let G be an infinite graph. Fix an initial vertex, say c.

For n ∈ ω, let DG,n(c) be the collection of all the vertices in G
that are at distance at most n form c.

We call the graphs DG,n(c) the n-neighbourhoods of c.
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The tree of neighbourhoods

Define the following tree T .

1 The root is ∅. This is level −1.
2 The nodes at level n ≥ 0 are the isomorphism types of the

n-neighbourhoods of c.
3 Let G be a graph at level n. Its successor is any

(n + 1)-neighbourhood G′ such that G ⊂ G′.
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Computable tree lemma

1 Given any node x , we can effectively compute the graph Gx
associated with x .

2 For every x in T , we can compute the number of
immediate successors of x .

3 For each path η in T , The union Gη = ∪Gi∈ηGi ∈ Γωm is a
connected graph of bounded degree d .

4 The mapping η → Gη is a bijection between [T ] and all
infinite connected graphs of bounded degree d .
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ML-random graphs

Just like in the case of finitely generated universal algebras, we
have the following result:

Theorem
1 The ML-randomness for graphs is on the constant c.
2 ML-randomness is an isomorphism invariant property.
3 There are continually many ML-random graphs.
4 ML-random H-computable graphs exist.
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Computably enumerable trees

Let E be an equivalence relation on ω.

Definition

Relation Edge ⊆ ω2 respects E if ∀x1, y1, x2, y2 ∈ ω we have

[(x1, x2) ∈ E & (y1, y2) ∈ E ]→ (Edge(x1, y1)↔ Edge(x2, y2))].

If Edge respects E then we can naturally define the structure

(ω/E ; Edge).

Definition
A graph G is c.e. if there is a c.e. equivalence relation E on ω
and a binary relation Edge that respects E such that the graph
G is isomorphic to the graph (ω/E ; Edge).
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The computable tree T for trees

Select a node c in a d-ary tree. It is the root.
Define the heights of finite trees.
Construct a computable tree T such that

1 For any node v of T , we can effectively compute the tree
Xv associated with the node v .

2 For every node v in T , we can compute the number of
immediate successors of v .

3 For each path η the mapping η → Xη is a bijection between
[T ] and all infinite d-ary trees.
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ML-random trees

Everything goes as in the case of algebras and graphs.
However, the theorems about the existence of ML-random
H-computable algebras and graphs is strengthen significantly:

Theorem

ML-random computably enumerable d-ary trees exist.

Proof.
The proof uses an c.e. reduction process that shrinks finite
trees without obstructing their tree structure.
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The reduction process

Let X = (I/E ; Edge) be a tree, with I finite.
The root of X is [c].

Let [x1], [x2], [x3] ∈ I/E , all distinct, such that [x3] is a leaf,
([x2], [x3]) ∈ Edge and ([x1], [x2]) ∈ Edge.

Set E ′ = equivalence relation generated by E and (x1, x3).
The structure X ′ = (I/E ′; Edge) is a tree.

Denote this by X B X ′.

Lemma

For the tree X and any of its subtrees Y of height at least 2
there is a sequence of reductions X1 B X2 B . . .Xn−1 B Xn
such that X1 = X and Xn = Y.
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Monoids case

Proceed just like in the the previous cases. Build a tree T for
the class of finitely generated monoids. However, we need to
be a careful in building T . We do not want the tree to collapse
at some nodes. This is guaranteed by the following lemma:

Lemma

LetM be a proper partial monoid of height n. There are at
least two non-isomorphic infinite monoids that extendM. In
particularM has at least two non-isomorphic proper partial
monoid extensions of the same height.
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ML-random monoids

Just like in the case of finitely generated universal algebras and
graphs, we have the following result:

Theorem
1 The ML-randomness for monoids is independent on the

generators c.
2 ML-randomness is an isomorphism invariant property.
3 There are continually many ML-random monoids.
4 ML-random H-computable monoids exist.
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Open questions

1 Are there ML-random c.e. universal algebras and graphs?

2 Is there a finitely presented yet random universal algebra?

3 Is there an effectively infinite ML-random universal
algebra?

4 Build ML-random finitely generated groups and rings.
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