# Relating and contrasting plain and prefix Kolmogorov complexity 

Bruno Bauwens

UGent University

9/6/2014 CCR Singapure
(1) Definitions and some results
(2) Relating $C$ and $K$
(3) Contrasting plain and prefix deficiency
(1) Definitions and some results

## (2) Relating $C$ and $K$

3 Contrasting plain and prefix deficiency

## Definitions

- Plain complexity of a bitstring: $C_{U}(x \mid y)=\min \{|p|: U(p, y)=x\}$.
- $p$ and $y$ are written on the work-tape containing symbos $0,1, b$.
- $|p|$ can be scanned at any stage of the computation: $C(x \mid C(x))=C(x)+O(1)$.
- $\max \{C(x):|x|=n\}=n+O(1)$.
- Prefix complexity $K(x)$
- Plain complexity of a bitstring: $C_{U}(x \mid y)=\min \{|p|: U(p, y)=x\}$.
- $p$ and $y$ are written on the work-tape containing symbols $0,1, b$.

- Plain complexity of a bitstring: $C_{U}(x \mid y)=\min \{|p|: U(p, y)=x\}$.
- $p$ and $y$ are written on the work-tape containing symbols $0,1, b$.
- $|p|$ can be scanned at any stage of the computation: $C(x \mid C(x))=C(x)+O(1)$.

- Plain complexity of a bitstring: $C_{U}(x \mid y)=\min \{|p|: U(p, y)=x\}$.
- $p$ and $y$ are written on the work-tape containing symbols $0,1, b$.
- $|p|$ can be scanned at any stage of the computation: $C(x \mid C(x))=C(x)+O(1)$.
- $\max \{C(x):|x|=n\}=n+O(1)$.

- Plain complexity of a bitstring: $C_{U}(x \mid y)=\min \{|p|: U(p, y)=x\}$.
- $p$ and $y$ are written on the work-tape containing symbols $0,1, b$.
- $|p|$ can be scanned at any stage of the computation: $C(x \mid C(x))=C(x)+O(1)$.
- $\max \{C(x):|x|=n\}=n+O(1)$.
- Prefix complexity $K(x \mid y)$
- for all $y$, the domain of $U$ is prefix-free
- Equivalently: p presented on a one-way read tape. $U(p)=x$ if $p$ is the scanned part of the input tape when Halting (self-delimiting programs)
- |p| available at the end of the computation: $K(x)=K(K(x), x)$
- $\max \{K(x):|x|=n\}=n+K(n)+O(1)$.

- Plain complexity of a bitstring: $C_{U}(x \mid y)=\min \{|p|: U(p, y)=x\}$.
- $p$ and $y$ are written on the work-tape containing symbols $0,1, b$.
- $|p|$ can be scanned at any stage of the computation: $C(x \mid C(x))=C(x)+O(1)$.
- $\max \{C(x):|x|=n\}=n+O(1)$.
- Prefix complexity $K(x \mid y)$
- for all $y$, the domain of $U$ is prefix-free
- Equivalently: p presented on a one-way read tape.
$U(p)=x$ if $p$ is the scanned part of the input tape when Halting
(self-delimiting programs)
- $|p|$ available at the end of the computation: $K(x)=K(K(x), x)$
- $\max \{K(x):|x|=n\}=n+K(n)+O(1)$.

- Plain complexity of a bitstring: $C_{U}(x \mid y)=\min \{|p|: U(p, y)=x\}$.
- $p$ and $y$ are written on the work-tape containing symbols $0,1, b$.
- $|p|$ can be scanned at any stage of the computation: $C(x \mid C(x))=C(x)+O(1)$.
- $\max \{C(x):|x|=n\}=n+O(1)$.
- Prefix complexity $K(x \mid y)$
- for all $y$, the domain of $U$ is prefix-free
- Equivalently: $p$ presented on a one-way read tape.
$U(p)=x$ if $p$ is the scanned part of the input tape when Halting (self-delimiting programs)
- $|p|$ available at the end of the computation: $K(x)=K(K(x), x)$ - $\max \{K(x):|x|=n\}=n+K(n)+O(1)$.

- Plain complexity of a bitstring: $C_{U}(x \mid y)=\min \{|p|: U(p, y)=x\}$.
- $p$ and $y$ are written on the work-tape containing symbols $0,1, b$.
- $|p|$ can be scanned at any stage of the computation: $C(x \mid C(x))=C(x)+O(1)$.
- $\max \{C(x):|x|=n\}=n+O(1)$.
- Prefix complexity $K(x \mid y)$
- for all $y$, the domain of $U$ is prefix-free
- Equivalently: $p$ presented on a one-way read tape.
$U(p)=x$ if $p$ is the scanned part of the input tape when Halting (self-delimiting programs)
- $|p|$ available at the end of the computation: $K(x)=K(K(x), x)$.

- Plain complexity of a bitstring: $C_{U}(x \mid y)=\min \{|p|: U(p, y)=x\}$.
- $p$ and $y$ are written on the work-tape containing symbols $0,1, b$.
- $|p|$ can be scanned at any stage of the computation: $C(x \mid C(x))=C(x)+O(1)$.
- $\max \{C(x):|x|=n\}=n+O(1)$.
- Prefix complexity $K(x \mid y)$
- for all $y$, the domain of $U$ is prefix-free
- Equivalently: $p$ presented on a one-way read tape.
$U(p)=x$ if $p$ is the scanned part of the input tape when Halting (self-delimiting programs)
- $|p|$ available at the end of the computation: $K(x)=K(K(x), x)$.
- $\max \{K(x):|x|=n\}=n+K(n)+O(1)$.

- Plain complexity of a bitstring: $C_{U}(x \mid y)=\min \{|p|: U(p, y)=x\}$.
- $p$ and $y$ are written on the work-tape containing symbols $0,1, b$.
- $|p|$ can be scanned at any stage of the computation: $C(x \mid C(x))=C(x)+O(1)$.
- $\max \{C(x):|x|=n\}=n+O(1)$.
- Prefix complexity $K(x \mid y)$
- for all $y$, the domain of $U$ is prefix-free
- Equivalently: $p$ presented on a one-way read tape.
$U(p)=x$ if $p$ is the scanned part of the input tape when Halting (self-delimiting programs)
- $|p|$ available at the end of the computation: $K(x)=K(K(x), x)$.
- $\max \{K(x):|x|=n\}=n+K(n)+O(1)$.

prefix machine can simulate plain prog. $p$ if $|p|$ is known: $K(x \mid C(x)) \leq C(x))+O(1)$.



## Definitions

- Plain complexity of a bitstring: $C_{U}(x \mid y)=\min \{|p|: U(p, y)=x\}$.
- $p$ and $y$ are written on the work-tape containing symbols $0,1, b$.
- $|p|$ can be scanned at any stage of the computation: $C(x \mid C(x))=C(x)+O(1)$.
- $\max \{C(x):|x|=n\}=n+O(1)$.
- Prefix complexity $K(x \mid y)$
- for all $y$, the domain of $U$ is prefix-free
- Equivalently: $p$ presented on a one-way read tape.
$U(p)=x$ if $p$ is the scanned part of the input tape when Halting (self-delimiting programs)
- $|p|$ available at the end of the computation: $K(x)=K(K(x), x)$.
- $\max \{K(x):|x|=n\}=n+K(n)+O(1)$.

prefix machine can simulate plain prog. $p$ if $|p|$ is known: $K(x \mid C(x)) \leq C(x))+O(1)$.



## Definitions

- Plain complexity of a bitstring: $C_{U}(x \mid y)=\min \{|p|: U(p, y)=x\}$.
- $p$ and $y$ are written on the work-tape containing symbols $0,1, b$.
- $|p|$ can be scanned at any stage of the computation: $C(x \mid C(x))=C(x)+O(1)$.
- $\max \{C(x):|x|=n\}=n+O(1)$.
- Prefix complexity $K(x \mid y)$
- for all $y$, the domain of $U$ is prefix-free
- Equivalently: $p$ presented on a one-way read tape.
$U(p)=x$ if $p$ is the scanned part of the input tape when Halting (self-delimiting programs)
- $|p|$ available at the end of the computation: $K(x)=K(K(x), x)$.
- $\max \{K(x):|x|=n\}=n+K(n)+O(1)$.

prefix machine can simulate plain prog. $p$ if $|p|$ is known: $K(x \mid C(x)) \leq C(x))+O(1)$.

It can be shown that [Levin]
$C(x)=K(x \mid C(x))+O(1)$.
A minimal prefix program contains more information than a minimal plain program


## Definitions

- Plain complexity of a bitstring: $C_{U}(x \mid y)=\min \{|p|: U(p, y)=x\}$.
- $p$ and $y$ are written on the work-tape containing symbols $0,1, b$.
- $|p|$ can be scanned at any stage of the computation: $C(x \mid C(x))=C(x)+O(1)$.
- $\max \{C(x):|x|=n\}=n+O(1)$.
- Prefix complexity $K(x \mid y)$
- for all $y$, the domain of $U$ is prefix-free
- Equivalently: $p$ presented on a one-way read tape.
$U(p)=x$ if $p$ is the scanned part of the input tape when Halting
(self-delimiting programs)
- $|p|$ available at the end of the computation: $K(x)=K(K(x), x)$.
- $\max \{K(x):|x|=n\}=n+K(n)+O(1)$.

prefix machine can simulate plain prog. $p$ if
 $|p|$ is known: $K(x \mid C(x)) \leq C(x))+O(1)$.
It can be shown that [Levin]
$C(x)=K(x \mid C(x))+O(1)$.
A minimal prefix program contains more information than a minimal plain program

Question: $K(C(x))+C(x)=K(x)$ or $K(C(x) \mid x, K(x)) \leq O(1)$ ?

## Theorem (B.)

There exists a sequence $\omega$ for which $K\left(\omega_{1} \ldots \omega_{N}\right)-K(N) \leq O(1)$ for infinitely many $N$, and for which $C\left(\omega_{1} \ldots \omega_{N}\right)-C(N)$ tends to infinity.
(A question from [Barmpalias 2013].)

For 2-random $\alpha$ (i.e. Martin-Löf random relative to the halting problem), $\exists c$, e and $\exists^{\infty} n$ : $\begin{array}{lll}C\left(\alpha_{1} \cdots \alpha_{n}\right) & \geq n-c & \text { i.e. } C(\cdot) \text { is maximal } \\ K\left(\alpha_{1} \cdots \alpha_{n}\right) & \geq n+K(n)-e & \text { i.e. } K(\cdot) \text { is maximal }\end{array}$

## [Miller 2004 and 2009, Nies-Stephan-Terwijn 2004]

Nice proof using Kolmogorov complexity?
Have initial segments with maximal $C(\cdot)$ also maximal $K(\cdot)$ ? [Bienvenu]

## Theorem (B.)

For every 3-random sequence $w$ there are a c and infinitely many j such that


## Theorem (B.)

There exists a sequence $\omega$ for which $K\left(\omega_{1} \ldots \omega_{N}\right)-K(N) \leq O(1)$ for infinitely many $N$, and for which $C\left(\omega_{1} \ldots \omega_{N}\right)-C(N)$ tends to infinity.
(A question from [Barmpalias 2013].)

For 2-random $\alpha$ (i.e. Martin-Löf random relative to the halting problem), $\exists c, e$ and $\exists^{\infty} n$ :

$$
\begin{array}{ll}
C\left(\alpha_{1} \cdots \alpha_{n}\right) \geq n-c & \text { i.e. } C(\cdot) \text { is maximal } \\
K\left(\alpha_{1} \cdots \alpha_{n}\right) \geq n+K(n)-e & \text { i.e. } K(\cdot) \text { is maximal }
\end{array}
$$

[Miller 2004 and 2009, Nies-Stephan-Terwijn 2004]
Nice proof using Kolmogorov complexity?
Have initial segments with maximal $C(\cdot)$ also maximal $K(\cdot)$ ? [Bienvenu]

## Theorem (B)

## Theorem (B.)

There exists a sequence $\omega$ for which $K\left(\omega_{1} \ldots \omega_{N}\right)-K(N) \leq O(1)$ for infinitely many $N$, and for which $C\left(\omega_{1} \ldots \omega_{N}\right)-C(N)$ tends to infinity.
(A question from [Barmpalias 2013].)

For 2-random $\alpha$ (i.e. Martin-Löf random relative to the halting problem), $\exists c, e$ and $\exists^{\infty} n$ :

$$
\begin{array}{ll}
C\left(\alpha_{1} \cdots \alpha_{n}\right) \geq n-c & \text { i.e. } C(\cdot) \text { is maximal } \\
K\left(\alpha_{1} \cdots \alpha_{n}\right) \geq n+K(n)-e & \text { i.e. } K(\cdot) \text { is maximal }
\end{array}
$$

[Miller 2004 and 2009, Nies-Stephan-Terwijn 2004]
Nice proof using Kolmogorov complexity?
Have initial segments with maximal $C(\cdot)$ also maximal $K(\cdot)$ ? [Bienvenu]


## Theorem (B.)

There exists a sequence $\omega$ for which $K\left(\omega_{1} \ldots \omega_{N}\right)-K(N) \leq O(1)$ for infinitely many $N$, and for which $C\left(\omega_{1} \ldots \omega_{N}\right)-C(N)$ tends to infinity.
(A question from [Barmpalias 2013].)

For 2-random $\alpha$ (i.e. Martin-Löf random relative to the halting problem), $\exists c, e$ and $\exists^{\infty} n$ :

$$
\begin{array}{ll}
C\left(\alpha_{1} \cdots \alpha_{n}\right) \geq n-c & \text { i.e. } C(\cdot) \text { is maximal } \\
K\left(\alpha_{1} \cdots \alpha_{n}\right) \geq n+K(n)-e & \text { i.e. } K(\cdot) \text { is maximal }
\end{array}
$$

[Miller 2004 and 2009, Nies-Stephan-Terwijn 2004]
Nice proof using Kolmogorov complexity?
Have initial segments with maximal $C(\cdot)$ also maximal $K(\cdot)$ ? [Bienvenu]


## Theorem (B.)

There exists a sequence $\omega$ for which $K\left(\omega_{1} \ldots \omega_{N}\right)-K(N) \leq O(1)$ for infinitely many $N$, and for which $C\left(\omega_{1} \ldots \omega_{N}\right)-C(N)$ tends to infinity.
(A question from [Barmpalias 2013].)

For 2-random $\alpha$ (i.e. Martin-Löf random relative to the halting problem), $\exists c, e$ and $\exists^{\infty} n$ :

$$
\begin{array}{ll}
C\left(\alpha_{1} \cdots \alpha_{n}\right) \geq n-c & \text { i.e. } C(\cdot) \text { is maximal } \\
K\left(\alpha_{1} \cdots \alpha_{n}\right) \geq n+K(n)-e & \text { i.e. } K(\cdot) \text { is maximal }
\end{array}
$$

[Miller 2004 and 2009, Nies-Stephan-Terwijn 2004]
Nice proof using Kolmogorov complexity?
Have initial segments with maximal $C(\cdot)$ also maximal $K(\cdot)$ ? [Bienvenu]

## Theorem (B.)

For every 3-random sequence $\omega$ there are a c and infinitely many $j$ such that
$j-C\left(\omega_{1} \ldots \omega_{j}\right) \leq c$ and $K(j)+j-K\left(\omega_{1} \ldots \omega_{j}\right) \geq \log \log j-c$.

## Outline

## (1) Definitions and some results

(2) Relating $C$ and $K$

3 Contrasting plain and prefix deficiency

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$

We use two lemma's:

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$

We use two lemma's:

- $K(x, y)=K(x)+K(y \mid x, K(x)) \quad$ [Symmetry of information]

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$

We use two lemma's:

- $K(x, y)=K(x)+K(y \mid x, K(x)) \quad$ [Symmetry of information]
- $K(x \mid i)=i+c \quad \Longrightarrow \quad C(x)=i+O(c)$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$

We use two lemma's:

- $K(x, y)=K(x)+K(y \mid x, K(x)) \quad$ [Symmetry of information]
- $K(x \mid i)=i+c \quad \Longrightarrow \quad C(x)=i+O(c)$

Proof: note that $|K(x \mid i)-K(x \mid j)| \leq K(i-j)+O(1) \leq O(\log |i-j|)$.

$$
i-K(x \mid i)=c
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$

We use two lemma's:

- $K(x, y)=K(x)+K(y \mid x, K(x)) \quad$ [Symmetry of information]
- $K(x \mid i)=i+c \quad \Longrightarrow \quad C(x)=i+O(c)$

Proof: note that $|K(x \mid i)-K(x \mid j)| \leq K(i-j)+O(1) \leq O(\log |i-j|)$.

$$
\begin{aligned}
& C(x) \\
& X \\
& X \\
& \hline
\end{aligned} K_{(x \mid i)}=c+C(x)-i
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$

We use two lemma's:

- $K(x, y)=K(x)+K(y \mid x, K(x)) \quad$ [Symmetry of information]
- $K(x \mid i)=i+c \quad \Longrightarrow \quad C(x)=i+O(c)$

Proof: note that $|K(x \mid i)-K(x \mid j)| \leq K(i-j)+O(1) \leq O(\log |i-j|)$.

$$
\begin{aligned}
& C(x) \quad C(x) \\
& X X-K(x \mid, X)=c+C(x)-i+O(\log |C(x)-i|)
\end{aligned}
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$

We use two lemma's:

- $K(x, y)=K(x)+K(y \mid x, K(x)) \quad$ [Symmetry of information]
- $K(x \mid i)=i+c \quad \Longrightarrow \quad C(x)=i+O(c)$

Proof: note that $|K(x \mid i)-K(x \mid j)| \leq K(i-j)+O(1) \leq O(\log |i-j|)$.

$$
\begin{aligned}
& C(x) \quad C(x) \\
& \frac{X-K(x \mid, x)}{X-O(1)}=c+C(x)-i+O(\log |C(x)-i|)
\end{aligned}
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$

We use two lemma's:

- $K(x, y)=K(x)+K(y \mid x, K(x)) \quad$ [Symmetry of information]
- $K(x \mid i)=i+c \quad \Longrightarrow \quad C(x)=i+O(c)$

Proof: note that $|K(x \mid i)-K(x \mid j)| \leq K(i-j)+O(1) \leq O(\log |i-j|)$.

$$
\begin{aligned}
& C(x) \quad C(x) \\
& \begin{array}{l}
X-K(x \mid, x) \\
X O(1)
\end{array} \Longrightarrow|C(x)-i| \leq O(c) .
\end{aligned}
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$

We use two lemma's:

- $K(x, y)=K(x)+K(y \mid x, K(x)) \quad$ [Symmetry of information]
- $K(x \mid i)=i+c \quad \Longrightarrow \quad C(x)=i+O(c)$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x)) \\
& \text { use two lemma's: }
\end{aligned}
$$

- $K(x, y)=K(x)+K(y \mid x, K(x)) \quad$ [Symmetry of information]
- $K(x \mid i)=i+c \Longrightarrow C(x)=i+O(c)$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x)) \\
& \text { use two lemma's: }
\end{aligned}
$$

- $K(x, y)=K(x)+K(y \mid x, K(x)) \quad$ [Symmetry of information]
$0 K(x \mid i)=i+c \Longrightarrow C(x)=i+O(c)$
Up to $O(1)$ :

$$
K(x)=K(K(x), x)
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x)) \\
& \text { use two lemma's: }
\end{aligned}
$$

- $K(x, y)=K(x)+K(y \mid x, K(x)) \quad$ [Symmetry of information]
$0 K(x \mid i)=i+c \Longrightarrow C(x)=i+O(c)$
Up to $O(1): \quad$ Symmetry of information with $y=K(x)$

$$
K(x)=K(K(x), x)=K(K(x))+K(x \mid K(x), K(K(x)))
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x)) \\
& \text { use two lemma's: }
\end{aligned}
$$

- $K(x, y)=K(x)+K(y \mid x, K(x)) \quad$ [Symmetry of information]
$0 K(x \mid i)=i+c \Longrightarrow C(x)=i+O(c)$
Up to $O(1)$ : $\quad$ Symmetry of information with $y=K(x)$

$$
K(x)=K(K(x), x)=K K(x)+K(x \mid K(x), K K(x))
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x)) \\
& \text { use two lemma's: }
\end{aligned}
$$

- $K(x, y)=K(x)+K(y \mid x, K(x)) \quad$ [Symmetry of information]
$0 K(x \mid i)=i+c \Longrightarrow C(x)=i+O(c)$
Up to $O(1): \quad$ Symmetry of information with $y=K(x)$

$$
K(x)=K(K(x), x)=K K(x)+K(x \mid K(x), K K(x))
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x)) \\
& \text { use two lemma's: }
\end{aligned}
$$

- $K(x, y)=K(x)+K(y \mid x, K(x)) \quad$ [Symmetry of information]
$0 K(x \mid i)=i+c \Longrightarrow C(x)=i+O(c)$
Up to $O(1): \quad$ Symmetry of information with $y=K(x)$

$$
K(x)=K(K(x), x)=K K(x)+K(x \mid K(x), K K(x))
$$

equiv condition $K(x)-K K(x), K K(x)$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x)) \\
& \text { use two lemma's: }
\end{aligned}
$$

- $K(x, y)=K(x)+K(y \mid x, K(x)) \quad$ [Symmetry of information]
$0 K(x \mid i)=i+c \Longrightarrow C(x)=i+O(c)$
Up to $O(1): \quad$ Symmetry of information with $y=K(x)$

$$
K(x)=K(K(x), x)=K K(x)+K(x \mid K(x), K K(x))
$$

$$
\text { equiv condition } K(x)-K K(x), K K(x)
$$

$$
K(x \mid K(x)-K K(x))+O(K K K(x))
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x)) \\
& \text { use two lemma's: }
\end{aligned}
$$

- $K(x, y)=K(x)+K(y \mid x, K(x)) \quad$ [Symmetry of information]
$0 K(x \mid i)=i+c \Longrightarrow C(x)=i+O(c)$
Up to $O(1): \quad$ Symmetry of information with $y=K(x)$

$$
\begin{aligned}
K(x)= & K(K(x), x)=K K(x)+K(x \mid K(x), K K(x)) \\
& \text { equiv condition } K(x)-K K(x), K K(x) \\
K(x)-K K(x)= & K(x \mid K(x)-K K(x))+O(K K K(x))
\end{aligned}
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{align*}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x)) \tag{OK}
\end{align*}
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$

$$
\text { Let } K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots
$$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$

This follows from

$$
\begin{aligned}
C C(x) & =K K(x)+O(K K K(x)) \\
K K K(x) & \leq O(\operatorname{CCC}(x)) .
\end{aligned}
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$

This follows from

$$
\begin{aligned}
C C(x) & =K K(x)+O(K K K(x)) \\
K K K(x) & \leq O(C C C(x)) .
\end{aligned}
$$

Apply OK with $x \longleftarrow K(x)$ :

$$
C(K(x))=K(K(x))+K K(K(x))+O(K K K(K(x)))
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$



This follows from

$$
\begin{aligned}
C C(x) & =K K(x)+O(K K K(x)) \\
K K K(x) & \leq O(C C C(x)) .
\end{aligned}
$$

Apply OK with $x \longleftarrow K(x)$ :

$$
C(K(x))=K(K(x))+K K(K(x))+O(K K K(K(x)))
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$



This follows from

$$
\begin{aligned}
C C(x) & =K K(x)+O(K K K(x)) \\
K K K(x) & \leq O(C C C(x)) .
\end{aligned}
$$

Apply OK with $x \longleftarrow K(x)$ :

$$
C(K(x))=K(K(x))+K K(K(x))+O(K K K(K(x)))
$$

Note that

$$
\begin{array}{ccccccc}
a & = & b & + & c & + & O(d) \\
C(a) & = & C(b) & + & O(K(c)) & + & O(d)
\end{array}
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$

This follows from


Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$

This follows from


Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{align*}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x)) \tag{OK}
\end{align*}
$$

This follows from

$$
\begin{aligned}
C C(x) & =K K(x)+O(K K K(x)) \quad \text { OKE } \\
\operatorname{KKK}(x) & \leq O(\operatorname{CCC}(x)) .
\end{aligned}
$$

Apply OK with $x \longleftarrow K(x)$ :

$$
C(K(x))=K(K(x))+K K(K(x))+O(K K K(K(x)))
$$

Note that

$$
\begin{array}{rccccll}
a & = & b & + & c & & + \\
C(d) & & & \\
C & = & C(b) & + & O(K(c)) & & + \\
\text { i.e. } & O(d) \\
C(C(x)) & = & C(K(x)) & + & O(K(K K(x))) & + & O(K K K(x))
\end{array}
$$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{align*}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x)) \tag{OK}
\end{align*}
$$

This follows from
$\begin{aligned} C C(x) & =K K(x)+O(K K K(x)) & \text { OKE } & \begin{array}{l}C K(x)=K K(x)+O(K K K(x)) \\ C C(x)=C K(x)+O(K K K(x))\end{array} \\ K K K(x) & \leq O(C C C(x)) . & & \end{aligned}$
Apply OK with $x \longleftarrow K(x)$ :

$$
C(K(x))=K(K(x))+K K(K(x))+O(K K K(K(x)))
$$

Note that

$$
\begin{array}{rccccll}
a & = & b & + & c & & + \\
& & O(d) \\
C(a) & = & C(b) & + & + & O(K(c)) & \\
\text { i.e. } & O(d) \\
C(C(x)) & = & C(K(x)) & + & O(K(K K(x))) & + & O(K K K(x))
\end{array}
$$

$K K K(x) \leq 2 C K K(x)$

Let $K K(x)=K(K(x)), C C(x)=C(C(x)), \ldots$

$$
\begin{aligned}
& K(x)=C(x)+C C(x)+O(C C C(x)) \\
& C(x)=K(x)-K K(x)+O(K K K(x))
\end{aligned}
$$

This follows from
$\begin{aligned} C C(x) & =K K(x)+O(K K K(x)) & \text { OKE } & \begin{array}{l}C K(x)=K K(x)+O(K K K(x)) \\ C C(x)=C K(x)+O(K K K(x))\end{array} \\ K K K(x) & \leq O(C C C(x)) . & & \end{aligned}$

Thus

Apply OK with $x \longleftarrow K(x)$ :

$$
C(K(x))=K(K(x))+K K(K(x))+O(K K K(K(x)))
$$

Note that

$$
\begin{array}{rlccccl}
\text { Note that } a & = & b & + & c & + & O(d) \\
C(a) & & & C(b) & \Downarrow & + & O(K(c)) \\
& & + & + & O(d) \\
C(C(x)) & = & C(K(x)) & + & O(K(K K(x))) & + & O(K K K(x)) \\
K K K(x) \leq 2 C K K(x) \leq & 2 C C C(x)+O(\log K K K(x)) & & \\
\text { Because } K(y) \leq 2 C(y) \text {. Apply } C(\cdot) \text { to OKE }
\end{array}
$$

## (1) Definitions and some results

(2) Relating $C$ and $K$
(3) Contrasting plain and prefix deficiency

If $\alpha$ is random, then $0^{1,000,000} \alpha$ is "less" random.

If $\alpha$ is random, then $0^{1,000,000} \alpha$ is "less" random.<br>Kolmogorov complexity: strings $\longrightarrow$ numbers<br>Randomness deficiency: sequences $\longrightarrow$ numbers

## Randomness deficiency: 2 definitions

If $\alpha$ is random, then $0^{1,000,000} \alpha$ is "less" random.
Kolmogorov complexity: strings $\longrightarrow$ numbers
Randomness deficiency: sequences $\longrightarrow$ numbers
plain deficiency of a sequence $\alpha$ is

$$
d_{C}(\alpha)=\max \left\{k: \alpha \in U_{k}\right\}
$$

with $U_{k}$ a universal Martin-Löf-test.
(the choice of $U_{k}$ affects $d_{C}$ by at most $O(1)$ )

## Randomness deficiency: 2 definitions

If $\alpha$ is random, then $0^{1,000,000} \alpha$ is "less" random.
Kolmogorov complexity: strings $\longrightarrow$ numbers

Randomness deficiency: sequences $\longrightarrow$ numbers
prefix deficiency is $d_{K}(\alpha)=\log f(\alpha)$ where $f$ is a maximal lower semicomputable integral test:

$$
d_{C}(\alpha)=\max \left\{k: \alpha \in U_{k}\right\}
$$

with $U_{k}$ a universal Martin-Löf-test.
(the choice of $U_{k}$ affects $d_{C}$ by at most $O(1)$ )

## Randomness deficiency: 2 definitions

If $\alpha$ is random, then $0^{1,000,000} \alpha$ is "less" random.
Kolmogorov complexity: strings $\longrightarrow$ numbers

Randomness deficiency: sequences $\longrightarrow$ numbers
prefix deficiency is $d_{K}(\alpha)=\log f(\alpha)$ where $f$ is a maximal lower semicomputable integral test:

- $f:\{0.1\} \rightarrow \mathbb{R}^{+}$is basic if if for some $n$ and all $x \in\{0,1\}^{n}, f$ is constant in $[x]$.
with $U_{k}$ a universal Martin-Löf-test.
(the choice of $U_{k}$ affects $d_{C}$ by at most $O(1)$ )


If $\alpha$ is random, then $0^{1,000,000} \alpha$ is "less" random.

| Kolmogorov complexity: | strings | $\longrightarrow$ | numbers |
| ---: | ---: | ---: | ---: |
| Randomness deficiency: |  |  |  |

prefix deficiency is $d_{K}(\alpha)=\log f(\alpha)$ where $f$ is a maximal lower semicomputable integral test:

- $f:\{0.1\} \rightarrow \mathbb{R}^{+}$is basic if if for some $n$ and all $x \in\{0,1\}^{n}, f$ is constant in $[x]$.
- $f:\{0.1\} \rightarrow \mathbb{R}^{+} \cup\{\infty\}$ is lower semicomputable if

$$
f=\sum_{i \in \mathbb{N}} f_{i}
$$

for a uniformly computable sequence of basic functions.

- a lower semicomputable $f$ is an integral test
- an integral test $f$ is maximal if for all such $g$ : $g-f$ is bounded.

If $\alpha$ is random, then $0^{1,000,000} \alpha$ is "less" random.

| olmogorov complexity: | strings |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |

plain deficiency of a sequence $\alpha$ is

$$
d_{C}(\alpha)=\max \left\{k: \alpha \in U_{k}\right\}
$$

with $U_{k}$ a universal Martin-Löf-test.
(the choice of $U_{k}$ affects $d_{C}$ by at most $O(1)$ )

prefix deficiency is $d_{K}(\alpha)=\log f(\alpha)$ where $f$ is a maximal lower semicomputable integral test:

- $f:\{0.1\} \rightarrow \mathbb{R}^{+}$is basic if if for some $n$ and all $x \in\{0,1\}^{n}, f$ is constant in $[x]$.
- $f:\{0.1\} \rightarrow \mathbb{R}^{+} \cup\{\infty\}$ is lower semicomputable if

$$
f=\sum_{i \in \mathbb{N}} f_{i}
$$

for a uniformly computable sequence of basic functions.

- a lower semicomputable $f$ is an integral test if

$$
\int f(\alpha) \mathrm{d} \alpha \leq O(1)
$$

- an integral test $f$ is maximal if for all such $g$ : $g-f$ is bounded.

If $\alpha$ is random, then $0^{1,000,000} \alpha$ is "less" random.

| olmogorov complexity: | strings |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |

plain deficiency of a sequence $\alpha$ is

$$
d_{C}(\alpha)=\max \left\{k: \alpha \in U_{k}\right\}
$$

with $U_{k}$ a universal Martin-Löf-test.
(the choice of $U_{k}$ affects $d_{C}$ by at most $O(1)$ )

prefix deficiency is $d_{K}(\alpha)=\log f(\alpha)$ where $f$ is a maximal lower semicomputable integral test:

- $f:\{0.1\} \rightarrow \mathbb{R}^{+}$is basic if if for some $n$ and all $x \in\{0,1\}^{n}, f$ is constant in $[x]$.
- $f:\{0.1\} \rightarrow \mathbb{R}^{+} \cup\{\infty\}$ is lower semicomputable if

$$
f=\sum_{i \in \mathbb{N}} f_{i}
$$

for a uniformly computable sequence of basic functions.

- a lower semicomputable $f$ is an integral test if

$$
\int f(\alpha) \mathrm{d} \alpha \leq O(1)
$$

- an integral test $f$ is maximal if for all such $g$ : $g-f$ is bounded.

If $\alpha$ is random, then $0^{1,000,000} \alpha$ is "less" random.

| olmogorov complexity: | strings |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |

plain deficiency of a sequence $\alpha$ is

$$
d_{C}(\alpha)=\max \left\{k: \alpha \in U_{k}\right\}
$$

with $U_{k}$ a universal Martin-Löf-test.
(the choice of $U_{k}$ affects $d_{C}$ by at most $O(1)$ )

prefix deficiency is $d_{K}(\alpha)=\log f(\alpha)$ where $f$ is a maximal lower semicomputable integral test:

- $f:\{0.1\} \rightarrow \mathbb{R}^{+}$is basic if if for some $n$ and all $x \in\{0,1\}^{n}, f$ is constant in $[x]$.
- $f:\{0.1\} \rightarrow \mathbb{R}^{+} \cup\{\infty\}$ is lower semicomputable if

$$
f=\sum_{i \in \mathbb{N}} f_{i}
$$

for a uniformly computable sequence of basic functions.

- a lower semicomputable $f$ is an integral test if

$$
\int f(\alpha) \mathrm{d} \alpha \leq O(1)
$$

- an integral test $f$ is maximal if for all such $g$ : $g-f$ is bounded.
$d(\alpha)=\infty$ iff $\alpha$ is non-random.

If $\alpha$ is random, then $0^{1,000,000} \alpha$ is "less" random.

| Kolmogorov complexity: | $\left.\begin{array}{rl}\text { strings } & \longrightarrow \\ \text { numbers } \\ \text { Randomness deficiency: } & \\ \text { sequences } & \longrightarrow\end{array}\right)$ numbers |
| ---: | ---: |

plain deficiency of a sequence $\alpha$ is

$$
d_{C}(\alpha)=\max \left\{k: \alpha \in U_{k}\right\}
$$

with $U_{k}$ a universal Martin-Löf-test.
(the choice of $U_{k}$ affects $d_{C}$ by at most $O(1)$ )

$d_{K}(\omega)=\sup _{n}\left[n-K\left(\omega_{1} \cdots \omega_{n}\right)\right]+O(1)$
prefix deficiency is $d_{K}(\alpha)=\log f(\alpha)$ where $f$ is a maximal lower semicomputable integral test:

- $f:\{0.1\} \rightarrow \mathbb{R}^{+}$is basic if if for some $n$ and all $x \in\{0,1\}^{n}, f$ is constant in $[x]$.
- $f:\{0.1\} \rightarrow \mathbb{R}^{+} \cup\{\infty\}$ is lower semicomputable if

$$
f=\sum_{i \in \mathbb{N}} f_{i}
$$

for a uniformly computable sequence of basic functions.

- a lower semicomputable $f$ is an integral test if

$$
\int f(\alpha) \mathrm{d} \alpha \leq O(1)
$$

- an integral test $f$ is maximal if for all such $g$ : $g-f$ is bounded.
[Gács 1980]
- $d_{K}(\alpha, \beta)=d_{K}(\alpha)+d_{K}\left(\beta \mid \alpha, d_{K}(\alpha)\right)$

For prefiv-free c.e set $S \subset\{0,1\}^{*}$ one has: $d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x))$.

- $d_{C}(\alpha)=d_{K}\left(\alpha \mid d_{C}(\alpha)\right)$
$d_{k}^{\prime}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{c}(\alpha)=k+O(c)$.
- $d_{K}(\alpha)=d_{C}(\alpha)+C\left(d_{C}(\alpha)\right)+O\left(C C\left(d_{C}(\alpha)\right)\right)$
- $d_{C}(\alpha)=d_{K}(\alpha)-K\left(d_{K}(\alpha)\right)+O\left(K K\left(d_{K}(\alpha)\right)\right)$
- There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ such that

$$
\begin{aligned}
& d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right) \rightarrow+\infty \\
& d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) \rightarrow-\infty
\end{aligned}
$$

if $\ell \rightarrow \infty$. [B.]

- $K(x, y)=K(x)+K(y \mid x, K(x))$
- $C(x)=K(x \mid C(x))$ $K(x \mid k)=k+c \quad C(x)=k+O(c)$.
- $K(x)=C(x)+C C(x)+O(C C C(x))$
- $C(x)=K(x)-K K(x)+O(K K K(x))$
- There exist families of sequences $x_{\ell}$ and $y_{\ell}$ such that

$$
\begin{aligned}
& C\left(x_{\ell}\right)-C\left(y_{\ell}\right) \rightarrow+\infty \\
& K\left(x_{\ell}\right)-K\left(y_{\ell}\right) \rightarrow-\infty
\end{aligned}
$$

if $\ell \rightarrow \infty$. [Solovay 74, Muchnik]

- $d_{K}(\alpha, \beta)=d_{K}(\alpha)+d_{K}\left(\beta \mid \alpha, d_{K}(\alpha)\right)$
- $K(x, y)=K(x)+K(y \mid x, K(x))$

For prefix-free c.e. set $S \subset\{0,1\}^{*}$ one has: $d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x))$.

- $d_{C}(\alpha)=d_{K}\left(\alpha \mid d_{C}(\alpha)\right)$ $d_{k}(a \mid k)=k+c \Longrightarrow d_{c}(a)=k+O(c)$.
- $d_{K}(\alpha)=d_{C}(\alpha)+C\left(d_{C}(\alpha)\right)+O\left(C C\left(d_{C}(\alpha)\right)\right)$
- $d_{C}(\alpha)=d_{K}(\alpha)-K\left(d_{K}(\alpha)\right)+O\left(K K\left(d_{K}(\alpha)\right)\right)$
- There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ such that

- $C(x)=K(x \mid C(x))$
$K(x \mid k)=k+c \quad \Longrightarrow \quad C(x)=k+O(c)$.
- $K(x)=C(x)+C C(x)+O(C C C(x))$
- $C(x)=K(x)-K K(x)+O(K K K(x))$
- There exist families of sequences $x_{\ell}$ and $y_{\ell}$ such that

if $\ell \rightarrow \infty$. [Solovay 74, Muchnik]
- $d_{K}(\alpha, \beta)=d_{K}(\alpha)+d_{K}\left(\beta \mid \alpha, d_{K}(\alpha)\right)$

For prefix-free c.e. set $S \subset\{0,1\}^{*}$ one has:
$d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x))$.

- $d_{C}(\alpha)=d_{K}\left(\alpha \mid d_{C}(\alpha)\right)$ $d_{k}(a \mid k)=k+c \Longrightarrow d_{c}(a)=k+O(c)$.
- $d_{K}(\alpha)=d_{C}(\alpha)+C\left(d_{C}(\alpha)\right)+O\left(C C\left(d_{C}(\alpha)\right)\right)$
- $d_{C}(\alpha)=d_{K}(\alpha)-K\left(d_{K}(\alpha)\right)+O\left(K K\left(d_{K}(\alpha)\right)\right)$
- There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ such that
- $K(x, y)=K(x)+K(y \mid x, K(x))$
- $C(x)=K(x \mid C(x))$

- $K(x)=C(x)+C C(x)+O(C C C(x))$
- $C(x)=K(x)-K K(x)+O(K K K(x))$
- There exist families of sequences $x_{\ell}$ and $y_{\ell}$ such that

if $\ell \rightarrow \infty$. [Solovay 74, Muchnik]
- $d_{K}(\alpha, \beta)=d_{K}(\alpha)+d_{K}\left(\beta \mid \alpha, d_{K}(\alpha)\right)$

For prefix-free c.e. set $S \subset\{0,1\}^{*}$ one has:
$d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x))$.

- $d_{C}(\alpha)=d_{K}\left(\alpha \mid d_{C}(\alpha)\right)$
$d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow$

- $d_{k}(\alpha)=d_{C}(\alpha)+C\left(d_{C}(\alpha)\right)+O\left(C C\left(d_{C}(\alpha)\right)\right)$
- $d_{C}(\alpha)=d_{K}(\alpha)-K\left(d_{K}(\alpha)\right)+O\left(K K\left(d_{K}(\alpha)\right)\right)$
- There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ such that
- $K(x, y)=K(x)+K(y \mid x, K(x))$
- $C(x)=K(x \mid C(x))$
- There exist families of sequences $x_{\ell}$ and $y_{\ell}$ such that
- $d_{K}(\alpha, \beta)=d_{K}(\alpha)+d_{K}\left(\beta \mid \alpha, d_{K}(\alpha)\right)$

For prefix-free c.e. set $S \subset\{0,1\}^{*}$ one has:
$d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x))$.

- $d_{C}(\alpha)=d_{K}\left(\alpha \mid d_{C}(\alpha)\right)$
$d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
- $d_{C}(\alpha)=d_{K}(\alpha)-K\left(d_{K}(\alpha)\right)+O\left(K K\left(d_{K}(\alpha)\right)\right)$
- There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ such that
- $K(x, y)=K(x)+K(y \mid x, K(x))$
- $C(x)=K(x \mid C(x))$

$$
K(x \mid k)=k+c \quad \Longrightarrow \quad C(x)=k+O(c) .
$$

- There exist families of sequences $x_{\ell}$ and $y_{\ell}$ such that
- $d_{K}(\alpha, \beta)=d_{K}(\alpha)+d_{K}\left(\beta \mid \alpha, d_{K}(\alpha)\right)$

For prefix-free c.e. set $S \subset\{0,1\}^{*}$ one has:
$d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x))$.

- $d_{C}(\alpha)=d_{K}\left(\alpha \mid d_{C}(\alpha)\right)$
$d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
- $d_{K}(\alpha)=d_{C}(\alpha)+C\left(d_{C}(\alpha)\right)+O\left(C C\left(d_{C}(\alpha)\right)\right)$
- $d_{C}(\alpha)=d_{K}(\alpha)-K\left(d_{K}(\alpha)\right)+O\left(K K\left(d_{K}(\alpha)\right)\right)$
- There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ such that
- $K(x, y)=K(x)+K(y \mid x, K(x))$
- $C(x)=K(x \mid C(x))$
$K(x \mid k)=k+c \quad \Longrightarrow \quad C(x)=k+O(c)$.
- $K(x)=C(x)+C C(x)+O(C C C(x))$


## - There exist families of sequences $x_{\ell}$ and $y_{\ell}$

 such that- $d_{K}(\alpha, \beta)=d_{K}(\alpha)+d_{K}\left(\beta \mid \alpha, d_{K}(\alpha)\right)$

For prefix-free c.e. set $S \subset\{0,1\}^{*}$ one has:
$d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x))$.

- $d_{C}(\alpha)=d_{K}\left(\alpha \mid d_{C}(\alpha)\right)$
$d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
- $d_{K}(\alpha)=d_{C}(\alpha)+C\left(d_{C}(\alpha)\right)+O\left(C C\left(d_{C}(\alpha)\right)\right)$
- $d_{C}(\alpha)=d_{K}(\alpha)-K\left(d_{K}(\alpha)\right)+O\left(K K\left(d_{K}(\alpha)\right)\right)$
- There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ such that
- $K(x, y)=K(x)+K(y \mid x, K(x))$
- $C(x)=K(x \mid C(x))$

$$
K(x \mid k)=k+c \quad \Longrightarrow \quad C(x)=k+O(c) .
$$

- $K(x)=C(x)+C C(x)+O(\operatorname{CCC}(x))$
- $C(x)=K(x)-K K(x)+O(K K K(x))$
- There exist families of sequences $x_{\ell}$ and $y_{\ell}$ such that
- $d_{K}(\alpha, \beta)=d_{K}(\alpha)+d_{K}\left(\beta \mid \alpha, d_{K}(\alpha)\right)$
- $K(x, y)=K(x)+K(y \mid x, K(x))$

For prefix-free c.e. set $S \subset\{0,1\}^{*}$ one has:
$d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x))$.

- $d_{C}(\alpha)=d_{K}\left(\alpha \mid d_{C}(\alpha)\right)$
$d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
- $d_{K}(\alpha)=d_{C}(\alpha)+C\left(d_{C}(\alpha)\right)+O\left(C C\left(d_{C}(\alpha)\right)\right)$
- $d_{C}(\alpha)=d_{K}(\alpha)-K\left(d_{K}(\alpha)\right)+O\left(K K\left(d_{K}(\alpha)\right)\right)$
- There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ such that

$$
\begin{aligned}
& d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right) \rightarrow+\infty \\
& d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) \rightarrow-\infty
\end{aligned}
$$

if $\ell \rightarrow \infty$. [B.]

- $C(x)=K(x \mid C(x))$
$K(x \mid k)=k+c \quad \Longrightarrow \quad C(x)=k+O(c)$.
- $K(x)=C(x)+C C(x)+O(C C C(x))$
- $C(x)=K(x)-K K(x)+O(K K K(x))$
- There exist families of sequences $x_{\ell}$ and $y_{\ell}$ such that

$$
\begin{aligned}
& C\left(x_{\ell}\right)-C\left(y_{\ell}\right) \rightarrow+\infty \\
& K\left(x_{\ell}\right)-K\left(y_{\ell}\right) \rightarrow-\infty
\end{aligned}
$$

if $\ell \rightarrow \infty$. [Solovay 74, Muchnik]

- $d_{K}(\alpha, \beta)=d_{K}(\alpha)+d_{K}\left(\beta \mid \alpha, d_{K}(\alpha)\right)$
- $K(x, y)=K(x)+K(y \mid x, K(x))$

For prefix-free c.e. set $S \subset\{0,1\}^{*}$ one has:
$d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x))$.

- $d_{C}(\alpha)=d_{K}\left(\alpha \mid d_{C}(\alpha)\right)$
$d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
- $d_{K}(\alpha)=d_{C}(\alpha)+C\left(d_{C}(\alpha)\right)+O\left(C C\left(d_{C}(\alpha)\right)\right)$
- $d_{C}(\alpha)=d_{K}(\alpha)-K\left(d_{K}(\alpha)\right)+O\left(K K\left(d_{K}(\alpha)\right)\right)$
- There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ such that

$$
\begin{aligned}
& d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right) \rightarrow+\infty \\
& d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) \rightarrow-\infty
\end{aligned}
$$

if $\ell \rightarrow \infty$. [B.]

- $C(x)=K(x \mid C(x))$
$K(x \mid k)=k+c \quad \Longrightarrow \quad C(x)=k+O(c)$.
- $K(x)=C(x)+C C(x)+O(\operatorname{CCC}(x))$
- $C(x)=K(x)-K K(x)+O(K K K(x))$
- There exist families of sequences $x_{\ell}$ and $y_{\ell}$ such that

$$
\begin{aligned}
& C\left(x_{\ell}\right)-C\left(y_{\ell}\right) \rightarrow+\infty \\
& K\left(x_{\ell}\right)-K\left(y_{\ell}\right) \rightarrow-\infty
\end{aligned}
$$

if $\ell \rightarrow \infty$. [Solovay 74, Muchnik]

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O(1)$ terms).

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O(1)$ terms).

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O(1)$ terms).

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O(1)$ terms).

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O(1)$ terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that
$d_{P}(\omega \mid k, K(k)) \leq O(1)$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O(1)$ terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O(1)$ terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

| $\alpha$ | $d_{K}(\alpha)$ | $d_{C}(\alpha)$ |
| ---: | :--- | :--- |
| $0^{k} 1 \omega$ | $k-K(k)$ | $k$ |
| $0^{k} 1\langle K(k)\rangle^{\ell} \omega$ | $k-K(k)+\ell$ | $k$ |

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O(1)$ terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$



Choose $S=\left\{0^{m} 1\right\}$

$$
d_{K}\left(0^{k} 1 \omega\right)=k-K(k)+d_{K}(\omega \mid k, K(k)) .
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O(1)$ terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

| $\alpha$ | $d_{K}(\alpha)$ | $d_{C}(\alpha)$ |
| ---: | :--- | :--- |
| $0^{k} 1 \omega$ | $k-K(k)$ | $k$ |
| $0^{k} 1\langle K(k)\rangle^{\ell} \omega$ | $k-K(k)+\ell$ | $k$ |

Choose $S=\left\{0^{m} 1\right\}$

$$
d_{K}\left(0^{k} 1 \omega\right)=k-K(k)+d_{K}(\omega \mid k, K(k)) .
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O$ (1) terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

| $\alpha$ | $d_{K}(\alpha)$ | $d_{C}(\alpha)$ |
| ---: | :--- | :--- |
| $0^{k} 1 \omega$ | $k-K(k)$ | $k$ |
| $0^{k} 1\langle K(k)\rangle^{\ell} \omega$ | $k-K(k)+\ell$ | $k$ |

Choose $S=\left\{0^{m} 1\right\}$

$$
d_{K}\left(0^{k} 1 \omega\right)=k-K(k)+d_{K}(\omega \mid k, K(k)) .
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O$ (1) terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

| $\alpha$ | $d_{K}(\alpha)$ | $d_{C}(\alpha)$ |
| ---: | :--- | :--- |
| $0^{k} 1 \omega$ | $k-K(k)$ | $k$ |
| $0^{k} 1\langle K(k)\rangle^{\ell} \omega$ | $k-K(k)+\ell$ | $k$ |

Choose $S=\left\{0^{m} 1\right\}$

$$
d_{K}\left(0^{k} 1 \omega\right)=k-K(k)+d_{K}(\omega \mid k, K(k)) .
$$

Choose $S=\left\{0^{m} 1 z:|z|=\log \log m\right\}$ and recall $K(k, K(k))=K(k)$

$$
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega\right)=k+\log \log k-K(k)+d_{E}(\omega \mid k, K(k)) .
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O$ (1) terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

| $\alpha$ | $d_{K}(\alpha)$ | $d_{C}(\alpha)$ |
| ---: | :--- | :--- |
| $0^{k} 1 \omega$ | $k-K(k)$ | $k$ |
| $0^{k} 1\langle K(k)\rangle^{\ell} \omega$ | $k-K(k)+\ell$ | $k$ |

Choose $S=\left\{0^{m} 1\right\}$

$$
d_{K}\left(0^{k} 1 \omega\right)=k-K(k)+d_{K}(\omega \mid k, K(k)) .
$$

Choose $S=\left\{0^{m} 1 z:|z|=\log \log m\right\}$ and recall $K(k, K(k))=K(k)$

$$
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega\right)=k+\log \log k-K(k)+d_{E}(\omega \mid k, K(k)) .
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O$ (1) terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

| $\alpha$ | $d_{K}(\alpha)$ | $d_{C}(\alpha)$ |
| ---: | :--- | :--- |
| $0^{k} 1 \omega$ | $k-K(k)$ | $k$ |
| $0^{k} 1\langle K(k)\rangle^{\ell} \omega$ | $k-K(k)+\ell$ | $k$ |

Choose $S=\left\{0^{m} 1\right\}$

$$
d_{K}\left(0^{k} 1 \omega\right)=k-K(k)+d_{K}(\omega \mid k, K(k)) .
$$

Choose $S=\left\{0^{m} 1 z:|z|=\log \log m\right\}$ and recall $K(k, K(k))=K(k)$

$$
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega\right)=k+\log \log k-K(k)+d_{E}(\omega \mid k, K(k)) .
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O$ (1) terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

| $\alpha$ | $d_{K}(\alpha)$ | $d_{C}(\alpha)$ |
| ---: | :--- | :--- |
| $0^{k} 1 \omega$ | $k-K(k)$ | $k$ |
| $0^{k} 1\langle K(k)\rangle^{\ell} \omega$ | $k-K(k)+\ell$ | $k$ |

Choose $S=\left\{0^{m} 1\right\}$

$$
d_{K}\left(0^{k} 1 \omega\right)=k-K(k)+d_{K}(\omega \mid k, K(k)) .
$$

Choose $S=\left\{0^{m} 1 z:|z|=\log \log m\right\}$ and recall $K(k, K(k))=K(k)$

$$
\begin{aligned}
& d_{K}\left(0^{k} 1\langle K(k)\rangle \omega\right)=k+\log \log k-K(k)+d_{E}(\omega \mid k, K(k)) . \\
& \quad d_{K}\left(0^{k} 1 \omega \mid k\right)=
\end{aligned}
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O$ (1) terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

| $\alpha$ | $d_{K}(\alpha)$ | $d_{C}(\alpha)$ |
| ---: | :--- | :--- |
| $0^{k} 1 \omega$ | $k-K(k)$ | $k$ |
| $0^{k} 1\langle K(k)\rangle^{\ell} \omega$ | $k-K(k)+\ell$ | $k$ |

Choose $S=\left\{0^{m} 1\right\}$

$$
d_{K}\left(0^{k} 1 \omega\right)=k-K(k)+d_{K}(\omega \mid k, K(k)) .
$$

Choose $S=\left\{0^{m} 1 z:|z|=\log \log m\right\}$ and recall $K(k, K(k))=K(k)$

$$
\begin{gathered}
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega\right)=k+\log \log k-K(k)+d_{E}(\omega \mid k, K(k)) . \\
d_{K}\left(0^{k} 1 \omega \mid k\right)=k-K\left(0^{k} 1 \mid k\right)+d_{K}\left(\omega \mid K\left(0^{k} 1 \mid k\right), k\right)
\end{gathered}
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O$ (1) terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

| $\alpha$ | $d_{K}(\alpha)$ | $d_{C}(\alpha)$ |
| ---: | :--- | :--- |
| $0^{k} 1 \omega$ | $k-K(k)$ | $k$ |
| $0^{k} 1\langle K(k)\rangle^{\ell} \omega$ | $k-K(k)+\ell$ | $k$ |

Choose $S=\left\{0^{m} 1\right\}$

$$
d_{K}\left(0^{k} 1 \omega\right)=k-K(k)+d_{K}(\omega \mid k, K(k)) .
$$

Choose $S=\left\{0^{m} 1 z:|z|=\log \log m\right\}$ and recall $K(k, K(k))=K(k)$

$$
\begin{gathered}
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega\right)=k+\log \log k-K(k)+d_{E}(\omega \mid k, K(k)) . \\
d_{K}\left(0^{k} 1 \omega \mid k\right)=k-K\left(0^{k} 1 \mid k\right)+d_{K}\left(\omega \mid K\left(0^{k} 1 \mid k\right), k\right) .
\end{gathered}
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O$ (1) terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

| $\alpha$ | $d_{K}(\alpha)$ | $d_{C}(\alpha)$ |
| ---: | :--- | :--- |
| $0^{k} 1 \omega$ | $k-K(k)$ | $k$ |
| $0^{k} 1\langle K(k)\rangle^{\ell} \omega$ | $k-K(k)+\ell$ | $k$ |

Choose $S=\left\{0^{m} 1\right\}$

$$
d_{K}\left(0^{k} 1 \omega\right)=k-K(k)+d_{K}(\omega \mid k, K(k)) .
$$

Choose $S=\left\{0^{m} 1 z:|z|=\log \log m\right\}$ and recall $K(k, K(k))=K(k)$

$$
\begin{gathered}
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega\right)=k+\log \log k-K(k)+d_{E}(\omega \mid k, K(k)) . \\
d_{K}\left(0^{k} 1 \omega \mid k\right)=k-K\left(0^{k} 1 \mid k\right)+d_{K}\left(\omega \mid K\left(0^{k} 1 \mid k\right), k\right)=k .
\end{gathered}
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O$ (1) terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

| $\alpha$ | $d_{K}(\alpha)$ | $d_{C}(\alpha)$ |
| ---: | :--- | :--- |
| $0^{k} 1 \omega$ | $k-K(k)$ | $k$ |
| $0^{k} 1\langle K(k)\rangle^{\ell} \omega$ | $k-K(k)+\ell$ | $k$ |

Choose $S=\left\{0^{m} 1\right\}$

$$
d_{K}\left(0^{k} 1 \omega\right)=k-K(k)+d_{K}(\omega \mid k, K(k)) .
$$

Choose $S=\left\{0^{m} 1 z:|z|=\log \log m\right\}$ and recall $K(k, K(k))=K(k)$

$$
\begin{gathered}
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega\right)=k+\log \log k-K(k)+d_{E}(\omega \mid k, K(k)) . \\
d_{K}\left(0^{k} 1 \omega \mid k\right)=k-K\left(0^{k} 1 \mid k\right)+d_{K}\left(\omega \mid K\left(0^{k} 1 \mid k\right), k\right)=k .
\end{gathered}
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O$ (1) terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

| $\alpha$ | $d_{K}(\alpha)$ | $d_{C}(\alpha)$ |
| ---: | :--- | :--- |
| $0^{k} 1 \omega$ | $k-K(k)$ | $k$ |
| $0^{k} 1\langle K(k)\rangle^{\ell} \omega$ | $k-K(k)+\ell$ | $k$ |

Choose $S=\left\{0^{m} 1\right\}$

$$
d_{K}\left(0^{k} 1 \omega\right)=k-K(k)+d_{K}(\omega \mid k, K(k)) .
$$

Choose $S=\left\{0^{m} 1 z:|z|=\log \log m\right\}$ and recall $K(k, K(k))=K(k)$

$$
\begin{gathered}
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega\right)=k+\log \log k-K(k)+d_{E}(\omega \mid k, K(k)) . \\
d_{K}\left(0^{k} 1 \omega \mid k\right)=k-K\left(0^{k} 1 \mid k\right)+d_{K}\left(\omega \mid K\left(0^{k} 1 \mid k\right), k\right)=k .
\end{gathered}
$$

Note that $K\left(0^{k} 1\langle K(k)\rangle \mid k\right)=K(K(k) \mid k)$.

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O$ (1) terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

| $\alpha$ | $d_{K}(\alpha)$ | $d_{C}(\alpha)$ |
| ---: | :--- | :--- |
| $0^{k} 1 \omega$ | $k-K(k)$ | $k$ |
| $0^{k} 1\langle K(k)\rangle^{\ell} \omega$ | $k-K(k)+\ell$ | $k$ |

Choose $S=\left\{0^{m} 1\right\}$

$$
d_{K}\left(0^{k} 1 \omega\right)=k-K(k)+d_{K}(\omega \mid k, K(k)) .
$$

Choose $S=\left\{0^{m} 1 z:|z|=\log \log m\right\}$ and recall $K(k, K(k))=K(k)$

$$
\begin{gathered}
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega\right)=k+\log \log k-K(k)+d_{E}(\omega \mid k, K(k)) . \\
d_{K}\left(0^{k} 1 \omega \mid k\right)=k-K\left(0^{k} 1 \mid k\right)+d_{K}\left(\omega \mid K\left(0^{k} 1 \mid k\right), k\right)=k .
\end{gathered}
$$

Note that $K\left(0^{k} 1\langle K(k)\rangle \mid k\right)=K(K(k) \mid k)$.

$$
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega \mid k\right)=
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O$ (1) terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

| $\alpha$ | $d_{K}(\alpha)$ | $d_{C}(\alpha)$ |
| ---: | :--- | :--- |
| $0^{k} 1 \omega$ | $k-K(k)$ | $k$ |
| $0^{k} 1\langle K(k)\rangle^{\ell} \omega$ | $k-K(k)+\ell$ | $k$ |

Choose $S=\left\{0^{m} 1\right\}$

$$
d_{K}\left(0^{k} 1 \omega\right)=k-K(k)+d_{K}(\omega \mid k, K(k)) .
$$

Choose $S=\left\{0^{m} 1 z:|z|=\log \log m\right\}$ and recall $K(k, K(k))=K(k)$

$$
\begin{gathered}
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega\right)=k+\log \log k-K(k)+d_{E}(\omega \mid k, K(k)) . \\
d_{K}\left(0^{k} 1 \omega \mid k\right)=k-K\left(0^{k} 1 \mid k\right)+d_{K}\left(\omega \mid K\left(0^{k} 1 \mid k\right), k\right)=k .
\end{gathered}
$$

Note that $K\left(0^{k} 1\langle K(k)\rangle \mid k\right)=K(K(k) \mid k)$.

$$
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega \mid k\right)=
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O$ (1) terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

| $\alpha$ | $d_{K}(\alpha)$ | $d_{C}(\alpha)$ |
| ---: | :--- | :--- |
| $0^{k} 1 \omega$ | $k-K(k)$ | $k$ |
| $0^{k} 1\langle K(k)\rangle^{\ell} \omega$ | $k-K(k)+\ell$ | $k$ |

Choose $S=\left\{0^{m} 1\right\}$

$$
d_{K}\left(0^{k} 1 \omega\right)=k-K(k)+d_{K}(\omega \mid k, K(k)) .
$$

Choose $S=\left\{0^{m} 1 z:|z|=\log \log m\right\}$ and recall $K(k, K(k))=K(k)$

$$
\begin{gathered}
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega\right)=k+\log \log k-K(k)+d_{E}(\omega \mid k, K(k)) . \\
d_{K}\left(0^{k} 1 \omega \mid k\right)=k-K\left(0^{k} 1 \mid k\right)+d_{K}\left(\omega \mid K\left(0^{k} 1 \mid k\right), k\right)=k .
\end{gathered}
$$

Note that $K\left(0^{k} 1\langle K(k)\rangle \mid k\right)=K(K(k) \mid k)$.

$$
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega \mid k\right)=k+\log \log k-K(K(k) \mid k)+d_{K}(\omega \mid K(k), k)
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O$ (1) terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

| $\alpha$ | $d_{K}(\alpha)$ | $d_{C}(\alpha)$ |
| ---: | :--- | :--- |
| $0^{k} 1 \omega$ | $k-K(k)$ | $k$ |
| $0^{k} 1\langle K(k)\rangle^{\ell} \omega$ | $k-K(k)+\ell$ | $k$ |

Choose $S=\left\{0^{m} 1\right\}$

$$
d_{K}\left(0^{k} 1 \omega\right)=k-K(k)+d_{K}(\omega \mid k, K(k)) .
$$

Choose $S=\left\{0^{m} 1 z:|z|=\log \log m\right\}$ and recall $K(k, K(k))=K(k)$

$$
\begin{gathered}
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega\right)=k+\log \log k-K(k)+d_{E}(\omega \mid k, K(k)) . \\
d_{K}\left(0^{k} 1 \omega \mid k\right)=k-K\left(0^{k} 1 \mid k\right)+d_{K}\left(\omega \mid K\left(0^{k} 1 \mid k\right), k\right)=k .
\end{gathered}
$$

Note that $K\left(0^{k} 1\langle K(k)\rangle \mid k\right)=K(K(k) \mid k)$.

$$
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega \mid k\right)=k+\log \log k-K(K(k) \mid k)+d_{K}(\omega \mid K(k), k)
$$

There exist families of sequences $\alpha_{\ell}$ and $\beta_{\ell}$ s.t.

$$
\begin{aligned}
\left|d_{C}\left(\alpha_{\ell}\right)-d_{C}\left(\beta_{\ell}\right)\right| & \leq 0 \\
d_{K}\left(\alpha_{\ell}\right)-d_{K}\left(\beta_{\ell}\right) & \geq \ell
\end{aligned}
$$

if $\ell \rightarrow \infty$ (up to $O$ (1) terms).

## Proof.

- Choose $k$ as in Lemma 3.
- Choose $\omega \in\{0,1\}^{\infty}$ such that

$$
d_{P}(\omega \mid k, K(k)) \leq O(1)
$$

We use Lemmas:
(1) $d_{k}(\alpha \mid k)=k+c \quad \Longrightarrow \quad d_{C}(\alpha)=k+O(c)$.
(2) for prefix-free c.e. set $S \subset\{0,1\}^{*}$ :

$$
d_{K}(x \alpha)=|x|-K(x)+d_{K}(\alpha \mid x, K(x)) .
$$

(3) [Gács 1974] $\forall \ell \exists k$ such that

$$
K(K(k) \mid k)=\log \log k=\ell=\log K(k) .
$$

| $\alpha$ | $d_{K}(\alpha)$ | $d_{C}(\alpha)$ |
| ---: | :--- | :--- |
| $0^{k} 1 \omega$ | $k-K(k)$ | $k$ |
| $0^{k} 1\langle K(k)\rangle^{\ell} \omega$ | $k-K(k)+\ell$ | $k$ |

Choose $S=\left\{0^{m} 1\right\}$

$$
d_{K}\left(0^{k} 1 \omega\right)=k-K(k)+d_{K}(\omega \mid k, K(k)) .
$$

Choose $S=\left\{0^{m} 1 z:|z|=\log \log m\right\}$ and recall $K(k, K(k))=K(k)$

$$
\begin{gathered}
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega\right)=k+\log \log k-K(k)+d_{E}(\omega \mid k, K(k)) . \\
d_{K}\left(0^{k} 1 \omega \mid k\right)=k-K\left(0^{k} 1 \mid k\right)+d_{K}\left(\omega \mid K\left(0^{k} 1 \mid k\right), k\right)=k .
\end{gathered}
$$

Note that $K\left(0^{k} 1\langle K(k)\rangle \mid k\right)=K(K(k) \mid k)$.

$$
d_{K}\left(0^{k} 1\langle K(k)\rangle \omega \mid k\right)=k+\log \log k-K(K(k) \mid k)+d_{K}(\omega \mid K(k), k)=k .
$$

## Thanks for listening.

