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6 Definitions and some results
@ Relating C and K

e Contrasting plain and prefix deficiency

Bruno Bauwens (UGent University) Relating and contrasting C (x) and K (x) 0/7



0 Definitions and some results

Bruno Bauwens (UGent University) Relating and contrasting C (x) and K (x) 0/7



@ Plain complexity of a bitstring: Cy (x|y) = min{|p| : U(p,y) = x} .
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@ Plain complexity of a bitstring: Cy (x|y) = min{|p| : U(p,y) = x} .
e p and y are written on the work-tape containing symbols 0, 1, b.
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@ Plain complexity of a bitstring: Cy (x|y) = min{|p|: U(p,y) = x} .
e p and y are written on the work-tape containing symbols 0, 1, b.
@ |p| can be scanned at any stage of the computation: C (x| C(x)) = C (x) + O(1).
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@ Plain complexity of a bitstring: Cy (x|y) = min{|p|: U(p,y) = x} .
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@ |p| can be scanned at any stage of the computation: C (x| C (x)) = C(x) + O(1).
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Definitions

@ Plain complexity of a bitstring: Cy (x|y) = min{|p| : U(p,y) = x} .

e p and y are written on the work-tape containing symbols 0, 1, b.
@ |p| can be scanned at any stage of the computation: C (x| C (x)) = C(x) + O(1).
e max{C(x):|x| =n} =n+ O(1).
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U(p) = x if pis the scanned part of the input tape when Halting
(self-delimiting programs)
@ |p| available at the end of the computation: K (x) = K (K (x), x).
e max{K (x):|x|=n}=n+K(n)+ O(1).

prefix machine can simulate plain prog. p if
y |p| is known: K (x| C(x)) < C(x))+ O(1).
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A minimal prefix program contains more infor-
mation than a minimal plain program
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U(p) = x if pis the scanned part of the input tape when Halting

(self-delimiting programs)

@ |p| available at the end of the computation: K (x) = K (K (x), x).

e max{K (x):|x|=n}=n+K(n)+ O(1).

p
“lofr]ofof1[1]o]~

Bruno Bauwens (UGent University)

Relating and contrasting C (x) and K (x)

prefix machine can simulate plain prog. p if
|p| is known: K (x| C(x)) < C(x))+ O(1).

__Itcan be shown that [Levin]
C(x) =K (x| C(x))+ O(1).

A minimal prefix program contains more infor-
mation than a minimal plain program
Question: K (C(x)) + C(x)
K(C(x)Ix, K (x)) < O(1)?

K(x) or



Minimal self-delimiting programs contain more information

Theorem (B.)

There exists a sequence w for which K (w1 ...wn) — K (N) < O(1) for infinitely many N, and
for which C (w1 ...wyn) — C(N) tends to infinity.

(A question from [Barmpalias 2013].)
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For 2-random « (i.e. Martin-L6f random relative to the halting problem), 3¢, e and 3°°n:
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K(ai---an) > n+K(n)—e ie. K())ismaximal
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There exists a sequence w for which K (w1 ...wn) — K (N) < O(1) for infinitely many N, and
for which C (w1 ...wyn) — C(N) tends to infinity.

(A question from [Barmpalias 2013].)

For 2-random « (i.e. Martin-L6f random relative to the halting problem), 3¢, e and 3°°n:

Clay--ap) > n—c i.e. C(-)is maximal
K(ai---an) > n+K(n)—e ie. K())ismaximal

[Miller 2004 and 2009, Nies—Stephan—Terwijn 2004]

Nice proof using Kolmogorov complexity?
Have initial segments with maximal C () also maximal K (-)? [Bienvenu]

Theorem (B.)

For every 3-random sequence w there are a ¢ and infinitely many j such that
J—C(wi...wj))<candK(j)+j— K(w1...wj) >loglogj — c.
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@ Relating C and K
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Let KK (x) = K (K (x)), CC (x) = C(C (x)), ...

K (x)
C(x)

— C(x)+CC(x) + O(CCC(x))
= K(x) — KK(x) + O(KKK (x))
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Clx) = K(x) — KK(x) + O(KKK (x))

We use two lemma’s:
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Let KK (x) = K (K (x)), CC (x) = C(C (x)), ...

K(x) = C(x)+CC(x) + O(CCC(x))
Clx) = K(x) — KK(x) + O(KKK (x))

We use two lemma’s:
@ K(x,y)=K(x)+ K(y|x,K(x)) [Symmetry of information]
® K(xl)=i+c = C(x)= i + O(c)

Proof: note that | K (x|i) — K (x|j)| < K (i —j)+ O(1) < O(log |i — jI).

i — Kx|i) =c¢
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Let KK (x) = K (K (x)), CC (x) = C(C (x)), ...
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We use two lemma’s:
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Let KK (x) = K (K (x)), CC (x) = C(C (x)), ...

K(x) = C(x)+CC(x) + O(CCC(x))
C(x) = K(x) — KK(x)|+ | O(KKK(x))

We use two lemma’s:
@ K(x,y)=K(x)+ K(y|x,K(x)) [Symmetry of information]
= C(x)= i + O(c)
Up to O(1):
K (x) = K(K(x),x)
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Let KK (x) = K (K (x)), CC (x) = C(C (x)), ...

K(x) = c;x+cc)< + 0(CCC (x
(x) (x) \+]OKKK

We use two Iemmas
® K(x y xX)+ K(y|x, K [Symmetry of information]

=> C(x—/+O(c

Upto O(1): Symmetry of information with y = K (x)
K(x)=K(K(x),x) = K(K(x))+K(xIK(x),K(K(x)))
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Let KK (x) = K (K (x)), CC (x) = C(C (x)), ...

K(x) = C(X)+CC(X) + O(CCC (x))

C (x) :Kx

()| + | O(KKK (x))

We use two Iemmas
° K(x y) =

Up to O(1):

i
Re)
I
X
=
=
=
[

)+ K(y|x,K [Syxetry of information]

=> Cx)=1i + O(c)

Symmetry of information with y = K (x)
KK (x) + K(x|K(x),KK(x))
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Let KK (x) = K (K (x)), CC (x) = C(C (x)), ...
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=> C(x =i + O(c)
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Let KK (x) = K (K (x)), CC (x) = C(C (x)), ...
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=> C(x =i + O(c)
Up to O(1): Symmetry of information with y = K (x)
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Let KK (x) = K (K (x)), CC (x) = C(C (x)), ...

K(x) = C(x)+CC(x) + O(CCC(x))
C(x) = K(x) — KK(x) + O(KKK (x))
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Let KK (x) = K (K (x)), CC (x) = C(C (x)), ...

K (x)
C(x)
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Let KK (x) = K (K (x)), CC (x) = C(C (x)), ...

K(x) = C(x)+CC(x) + O(CCC(x))
Clx) = K(x) — KK(x) + O(KKK (x))

This follows from

CC (x) KK (x

- ) + O(KKK (x))
KKK (x) < O(CCC

(X))
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Let KK (x) = K (K (x)), CC (x) = C(C (x)), ...

K(x) = C(x)+CC(x) + O(CCC (x))
C(x) = K(x) — KK(x) + O(KKK (x)) OK
This follows from

CC(x) = KK(x)+ O(KKK (x))
KKK (x) < O(CCC(x)).

Apply OK with x «— K (x):
C(K(x))=K(K(x))+ KK (K (x))+ O(KKK (K (x)))

Relating and contrasting C (x) and K (x)
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Let KK (x) = K (K (x)), CC (x) = C(C (x)), ...
K(x) = C(x)+CC(x) + O(CCC(x))
C(x) = K(x) — KK(x) + O(KKK (x))

This follows from Thus

CK (x) = KK (x) + O(KKK (x))
CC(x) = KK (x)+ O(KKK (x))
KKK (x) < O(CCC(x)).

Apply with x «— K (x):
C(K(x))=K(K(x))+ KK (K (x))+ O(KKK (K (x)))

Note that a = b + c + O(d)

Ca = C(b) + O(K (c)) +  O(d)
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K(x) = C(x)+CC(x) + O(CCC(x))
C(x) = K(x) — KK(x) + O(KKK (x)) OK

hus
CK\(x) = KK (x) + O(KKK (x))

Note that O(d)
I

Ca) = C(b) .—&- O(K (c)) + O(d)
l.e.

C(C(x)) = C(K(x) + OKK(KK(x)) + O(KKK (x))
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Clx) = K(x) — KK(x) + O(KKK (x))
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Relating and contrasting C (x) and K (x)



Let KK (x) = K (K (x)), CC (x) = C(C (x)), ...

K(x) = C(x)+CC(x) + O(CCC (x))
C(x) = K(x) — KK(x) + O(KKK (x))
This follows from Thus
CK (x) = KK (x) + O(KKK (x))
CC(x) = CK (x) + O(KKK (x))
KKK (x) < 0O(CCC(x)).
Apply with x «— K (x):

C(K(x))=K(K(x))+ KK (K (x))+ O(KKK (K (x)))

Note that a = b + c + O(d)
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Let KK (x) = K (K (x)), CC (x) = C(C (x)), ...

K(x) = C(x)+CC(x) + O(CCC (x))
C(x) = K(x) — KK(x) + O(KKK (x))
This follows from Thus
CK (x) = KK (x) + O(KKK (x))

)

CC (x) = CK (x) + O(KKK (x))
KKK (x) < O(CCC(x)).

Apply with x «— K (x):
C(K(x))=K(K(x))+ KK (K (x))+ O(KKK (K (x)))

Note that a = b + c + O(d)
3
Ca) = C(b) + O(K (c)) + O(d)
l.e.
C(C(x)) = C(K(x) + OK(KK(x)) + O(KKK(x))

KKK (x) < 2 CKK (x)
Because K (y) <2C(y).
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Let KK (x) = K (K (x)), CC (x) = C(C (x)), ...

K(x) = C(x)+CC(x) + O(CCC (x))
C(x) = K(x) — KK(x) + O(KKK (x))
This follows from Thus
CK (x) = KK (x) + O(KKK (x))

)

CC (x) = CK (x) + O(KKK (x))
KKK (x) < O(CCC(x)).

Apply with x «— K (x):
C(K(x))=K(K(x))+ KK (K (x))+ O(KKK (K (x)))

Note that a = b + c + O(d)
3
Ca) = C(b) + O(K (c)) + O(d)
l.e.
C(C(x)) = C(K(x) + OK(KK(x)) + O(KKK(x))

KKK (x) <2 CKK (x) <2 CCC (x) + O(log KKK (x))
Because K (y) <2C(y). Apply C(-) to
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Randomness deficiency: 2 definitions

01 ,000,000

If o is random, then a is “less” random.
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Randomness deficiency: 2 definitions

01 ,000,000

If o is random, then a is “less” random.

Kolmogorov complexity: strings  — numbers
Randomness deficiency: sequences — numbers

plain deficiency of a sequence « is
de(a) = max {k:a € U}

with Uk a universal Martin-L6f-test.
(the choice of Uy affects d¢ by at most O(1))

Bruno Bauwens (UGent University) Relating and contrasting C (x) and K (x) 4/7



Randomness deficiency: 2 definitions

01 ,000,000

If o is random, then a is “less” random.

Kolmogorov complexity: strings  — numbers
Randomness deficiency: sequences — numbers
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Randomness deficiency: sequences — numbers
prefix deficiency is dk(a) = log f(«) where f is a
plain deficiency of a sequence « is maximal lower semicomputable integral test:
de(e) = max {k : o € Ui} @ f:{0.1} — R™ is basic f if for some n and
all x € {0,1}", f is constant in [x].

with Uy a universal Martin-L6f-test.
(the choice of Uy affects d¢ by at most O(1))
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Randomness deficiency: 2 definitions

If o is random, then 0'-°%0:0%0, is “less” random.

Kolmogorov complexity: strings  — numbers
Randomness deficiency: sequences — numbers
prefix deficiency is dk(a) = log f(«) where f is a

plain deficiency of a sequence « is maximal lower semicomputable integral test:
do(a) = max {k : a € Uy} @ f:{0.1} — R™ is basic f if for some n and
all x € {0,1}", f is constant in [x].
with Uy a universal Martin-L6f-test.  7:{0.1} = R* U{oc} is lower

(the choice of Uy affects d¢ by at most O(1)) semicomputable if

=3
ieN
for a uniformly computable sequence of
basic functions.
R+

{0, 13
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Randomness deficiency: 2 definitions

01 ,000,000

If o is random, then a is “less” random.

Kolmogorov complexity: strings  — numbers
Randomness deficiency: sequences — numbers
prefix deficiency is dk(a) = log f(«) where f is a
plain deficiency of a sequence « is maximal lower semicomputable integral test:
de(e) = max {k : o € Ui} @ f:{0.1} — R™ is basic f if for some n and
all x € {0,1}", f is constant in [x].
@ :{0.1} = R" U {cc} is lower
semicomputable if

f=>f

ieN

with Uk a universal Martin-L6f-test.
(the choice of Uy affects d¢ by at most O(1))

for a uniformly computable sequence of
basic functions.

R* @ a lower semicomputable f is an integral test
if
/f(a)da < O(1).

{0, 13
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Randomness deficiency: 2 definitions

01 ,000,000

If o is random, then a is “less” random.

Kolmogorov complexity: strings  — numbers
Randomness deficiency: sequences — numbers
prefix deficiency is dk(a) = log f(«) where f is a

plain deficiency of a sequence « is maximal lower semicomputable integral test:
do(a) = max {k : a € Uy} @ f:{0.1} — R™ is basic f if for some n and
all x € {0,1}", f is constant in [x].
with Uy a universal Martin-L6f-test.  7:{0.1} = R* U{oc} is lower

(the choice of Uy affects d¢ by at most O(1)) semicomputable if

f=>1
ieN
for a uniformly computable sequence of
basic functions.
R* @ a lower semicomputable f is an integral test
if
/f(a)da < O(1).

@ an integral test f is maximal if for all such g:
{0,1}> g — f is bounded.
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01 ,000,000

If o is random, then a is “less” random.

Kolmogorov complexity: strings  — numbers
Randomness deficiency: sequences — numbers
prefix deficiency is dk(a) = log f(«) where f is a

plain deficiency of a sequence « is maximal lower semicomputable integral test:
do(a) = max {k : a € Uy} @ f:{0.1} — R™ is basic f if for some n and
all x € {0,1}", f is constant in [x].
with Uy a universal Martin-L6f-test.  7:{0.1} = R* U{oc} is lower

(the choice of Uy affects d¢ by at most O(1)) semicomputable if

f=>f
ieN
for a uniformly computable sequence of
basic functions.
R* @ a lower semicomputable f is an integral test
if
/f(a)da < O(1).
@ an integral test f is maximal if for all such g:
{0,1}> g — f is bounded.
d(a) = o iff @ is non-random.

Bruno Bauwens (UGent University) Relating and contrasting C (x) and K (x) 4/7



Randomness deficiency: 2 definitions

01 ,000,000

If o is random, then a is “less” random.

Kolmogorov complexity: strings  — numbers
Randomness deficiency: sequences — numbers
prefix deficiency is dk(a) = log f(«) where f is a

plain deficiency of a sequence « is maximal lower semicomputable integral test:
do(a) = max {k : a € Uy} @ f:{0.1} — R™ is basic f if for some n and
all x € {0,1}", f is constant in [x].
with Uy a universal Martin-L6f-test.  7:{0.1} = R* U{oc} is lower

(the choice of Uy affects d¢ by at most O(1)) semicomputable if

f=>f
IEN

for a uniformly computable sequence of
basic functions.

R* @ a lower semicomputable f is an integral test
if
/f(a)da < O(1).
@ an integral test f is maximal if for all such g:
{0,1}> g — f is bounded.
di(w) = sup,[n— K (wr -+ -wn)] + O(1) d(a) = o iff o is non-random.

[Gacs 1980]
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@ di(a, B) = dk(e) + dk(Bla, dk(a)) @ K(x,y) =K () +K(ylx,K(x))

For prefix-free c.e. set S € {0,1}* one has:
dk(xa) = x| — K () + dk(alx, K (x)).

® do(a) = dk(aldo(a)) ® C(x) =K (x| C(x)

dk(alk) =k+c = dc(a)=k+ O(c). K(xlk)=k+c = C(x)=k+ O(c).
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dcanddk vs C and K

@ di(a, B) = dk(e) + dk(Bla, dk(a)) @ K(x,y) =K () +K(ylx,K(x))

For prefix-free c.e. set S € {0,1}* one has:
dk(xa) = x| — K () + dk(alx, K (x)).

® do(a) = dk(aldo(a)) ® C(x) =K (x| C(x)

dk(alk) =k+c = dc(a)=k+ O(c). K(xlk)=k+c = C(x)=k+ O(c).

@ dk(a) = do(a) + C(de(a)) + O(CC (de(a))) @ K (x) = C(x)+ CC(x)+ O(CCC (x))
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@ dk(a, B) = dk(a) + dk (B, dk(c))

For prefix-free c.e. set S € {0,1}* one has:
dk(xa) = x| — K () + dk(alx, K (x)).

@ dc(a) = dk(aldc(a))
dk(alk)=k+c = dc(a)=k+O(c).

@ dk(a) = dc(a)+ C(dc(a)) + O(CC (dc(a)))
@ de(a) = dk(a) — K (dk(a)) + O(KK (dk()))

dcanddk vs C and K

@ K(x,y) =K () +K(ylx,K(x))

@ C(x) =K (x| C(x))
K(xlk)=k+c = C(x)=k+O(c).

@ K(x)=C(x)+ CC(x)+ O(CCC (x))
@ C(x) = K(x) — KK (x) + O(KKK (x))
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@ dk(a, B) = dk(a) + dk (B, dk(c))

For prefix-free c.e. set S € {0,1}* one has:
dk(xa) = x| — K () + dk(alx, K (x)).

de(a) = dk(aldc(a))

dk(alk)=k+c = dc(a)=k+O(c).

dk(a) = dc(@) + C(dc(e)) + O(CC (dc()))
de(@) = dk(a) = K (dk(e)) + O(KK (dk(e)))

There exist families of sequences a, and 3,
such that

dc(Oéz) — dc(ﬂg) — +00
dK(CMe) — dK(ﬂg) — —00
if £ — co. [B.]

Bruno Bauwens (UGent University)

@ K(x,y) =K () +K(ylx,K(x))

@ C(x) =K (x| C(x))
K(xlk)=k+c = C(x)=k+O(c).

@ K(x)=C(x)+ CC(x)+ O(CCC (x))
@ C(x) = K(x) — KK (x) + O(KKK (x))

@ There exist families of sequences x; and y,
such that

C(xe) = C(ye) — +o0
K(xe) = K(ye) = —o0

if £ — oco. [Solovay 74, Muchnik]
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@ dk(a, B) = dk(a) + dk (B, dk(c))

For prefix-free c.e. set S € {0,1}* one has:
dk(xa) = x| — K () + dk(alx, K (x)).

@ dc(a) = dk(aldc(w))

dk(alk)=k+c = dc(a)=k+O(c).

@ dk(a) = dc(a)+ C(dc(a)) + O(CC (dc(a)))
@ de(a) = dk(a) — K (dk(a)) + O(KK (dk()))

@ There exist families of sequences «, and S,
such that

dc(Oéz) — dc(ﬂg) — +00
dK(CMe) — dK(ﬂg) — —00

if ¢ — 0. [B.]

Bruno Bauwens (UGent University)

@ K(x,y) =K () +K(ylx,K(x))

@ C(x) =K (x| C(x))
K(xlk)=k+c = C(x)=k+O(c).

@ K(x)=C(x)+ CC(x)+ O(CCC (x))
@ C(x) = K(x) — KK (x) + O(KKK (x))

@ There exist families of sequences x; and y,
such that

C(xe) = C(ye) — +o0
K(xe) = K(ye) = —o0

if £ — oco. [Solovay 74, Muchnik]

Relating and contrasting C (x) and K (x)

dcanddk vs C and K



There exist families of sequences «, and 5, s.t.

|dc(ae) — de(Be)] <
dx(ae) — dx(Be) > ¢

if £ — oo (up to O(1) terms).
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There exist families of sequences «, and 5, s.t.

|dc(ae) — de(Be)] <
dx(ae) — dx(Be) > ¢

if £ — oo (up to O(1) terms).

We use Lemmas:
0 dK(Oé‘k) =k+cC
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There exist families of sequences «, and 5, s.t.

|dc(ae) — de(Be)] <
dx(ae) — dx(Be) > ¢

if £ — oo (up to O(1) terms).

We use Lemmas:

@ di(alk)=k+c = ds(a) = k+O(c).

@ for prefix-free c.e. set S c {0,1}*:
dk(xa) = |x| — K (x) + dk(a]x, K (x)).
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There exist families of sequences «, and 5, s.t. We use Lemmas:

|de(ar) — de(Be)| < )
Ak () — dk(Be) > ¢ @ for prefix-free c.e. set S c {0,1}*:

if £ — oo (up to O(1) terms). di(x) = |x| = K (x) + dic(alx, K (x)).

© [Gacs 1974] V¢3k such that
K (K (k)|k) = loglogk = ¢ = log K (k).
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There exist families of sequences «, and 5, s.t. We use Lemmas:

|de(ar) — de(Be)| < )
Ak () — dk(Be) > ¢ @ for prefix-free c.e. set S c {0,1}*:

if £ — oo (up to O(1) terms). di(xa) = x| = K (x) + di(alx, K (x)).

Proof. © [Gacs 1974] V¢3k such that
@ Choose k as in Lemma 3. K (K (k)|k) = loglogk = ¢ = log K (k).
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There exist families of sequences «, and 5, s.t.

|dc(ae) — de(Be)] <
dx(ae) — dx(Be) > ¢

if £ — oo (up to O(1) terms).
Proof.

@ Choose k as in Lemma 3.
@ Choose w € {0, 1}°° such that

dr(wlk, K (k)) < O(1).
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There exist families of sequences «, and 5, s.t.

|dc(ae) — de(Be)] <
dx(ae) — dx(Be) > ¢

if £ — oo (up to O(1) terms).
Proof.

@ Choose k as in Lemma 3.
@ Choose w € {0, 1}°° such that

dr(wlk, K (k)) < O(1).
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We use Lemmas:
Q di(alk)=k+c = dgo(a) = k+O(c).
@ for prefix-free c.e. set S c {0,1}*:

dk(xa) = x| — K (x) + di(a|x, K (x)).

© [Gacs 1974] V¢3k such that
K (K (k)|k) = loglogk = ¢ = log K (k).
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There exist families of sequences «, and 5, s.t.

|dc(ae) — de(Be)] <
dx(ae) — dx(Be) > ¢

if £ — oo (up to O(1) terms).
Proof.

@ Choose k as in Lemma 3.
@ Choose w € {0, 1}°° such that
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There exist families of sequences «, and 5, s.t.

|dc(ae) — de(Be)] <
dx(ae) — dx(Be) > ¢

if £ — oo (up to O(1) terms).
Proof.

@ Choose k as in Lemma 3.
@ Choose w € {0, 1}°° such that
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Choose S = {0™1}
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@ for prefix-free c.e. set S c {0,1}*:
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© [Gacs 1974] V¢3k such that
K (K (k)|k) = loglogk = ¢ = log K (k).
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There exist families of sequences «, and 5, s.t.

|dc(ae) — de(Be)] <
dx(ae) — dx(Be) > ¢

if £ — oo (up to O(1) terms).
Proof.

@ Choose k as in Lemma 3.
@ Choose w € {0, 1}°° such that

dp(wlk, K (k)) < O(1).

Choose S = {0™1}

We use Lemmas:
o dK(Oé‘k) =k+cC
@ for prefix-free c.e. set S c {0,1}*:

dk(xa) = x| — K (x) + di(a|x, K (x)).

© [Gacs 1974] V¢3k such that
K (K (k)|k) = loglogk = ¢ = log K (k).
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0Mw
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| do(e)

K
k—K(k)+1 |k

dk(0M1w) = k — K (k) + dic(w|k, K (K)).

Bruno Bauwens (UGent University)

Relating and contrasting C (x) and K (x)

—  dg(a) = k+0(c).



There exist families of sequences «, and 5, s.t.

|dc(ae) — de(Be)] <
dx(ae) — dx(Be) > ¢

if £ — oo (up to O(1) terms).
Proof.

@ Choose k as in Lemma 3.
@ Choose w € {0, 1}°° such that

dp(wlk, K (k)) < O(1).

Choose S = {0™1}

We use Lemmas:
o dK(Oé‘k) =k+cC
@ for prefix-free c.e. set S c {0,1}*:

dk(xa) = x| — K (x) + di(a|x, K (X)).
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Proof.

@ Choose k as in Lemma 3.
@ Choose w € {0, 1}°° such that
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