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Definitions
Plain complexity of a bitstring: CU (x |y) = min {|p| : U(p, y) = x} .

p and y are written on the work-tape containing symbols 0, 1, b.
|p| can be scanned at any stage of the computation: C (x |C (x)) = C (x) + O(1).
max{C (x) : |x | = n} = n + O(1).

Prefix complexity K (x)
for all y , the domain of U is prefix-free
Equivalently: p presented on a one-way read tape.
U(p) = x if p is the scanned part of the input tape when Halting
(self-delimiting programs)
|p| available at the end of the computation: K (x) = K (K (x), x).
max{K (x) : |x | = n} = n + K (n) + O(1).

Plain TM 0 . . . 1

p

1 . . . 0

y

...

Prefix TM 1 . . . 0

y

...

← 0 1 0 0

p

1 1 0 ......

p

refix machine can simulate plain prog. p if
|p| is known: K (x |C (x)) ≤ C (x)) + O(1).

It can be shown that [Levin]
C (x) = K (x |C (x)) + O(1).

A minimal prefix program contains more infor-
mation than a minimal plain program

Question: K (C (x)) + C (x) = K (x) or
K (C (x)|x ,K (x)) ≤ O(1)?
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Minimal self-delimiting programs contain more information

Theorem (B.)

There exists a sequence ω for which K (ω1 . . . ωN)− K (N) ≤ O(1) for infinitely many N, and
for which C (ω1 . . . ωN)− C (N) tends to infinity.

(A question from [Barmpalias 2013].)

For 2-random α (i.e. Martin-Löf random relative to the halting problem), ∃c,e and ∃∞n:

C (α1 · · ·αn) ≥ n − c i.e. C (·) is maximal
K (α1 · · ·αn) ≥ n + K (n)− e i.e. K (·) is maximal

[Miller 2004 and 2009, Nies–Stephan–Terwijn 2004]

Nice proof using Kolmogorov complexity?
Have initial segments with maximal C (·) also maximal K (·)? [Bienvenu]

Theorem (B.)

For every 3-random sequence ω there are a c and infinitely many j such that
j − C (ω1 . . . ωj) ≤ c and K (j) + j − K (ω1 . . . ωj) ≥ log log j − c.

Bruno Bauwens (UGent University) Relating and contrasting C (x) and K (x) 2 / 7
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For 2-random α (i.e. Martin-Löf random relative to the halting problem), ∃c,e and ∃∞n:

C (α1 · · ·αn) ≥ n − c i.e. C (·) is maximal
K (α1 · · ·αn) ≥ n + K (n)− e i.e. K (·) is maximal

[Miller 2004 and 2009, Nies–Stephan–Terwijn 2004]

Nice proof using Kolmogorov complexity?
Have initial segments with maximal C (·) also maximal K (·)? [Bienvenu]

Theorem (B.)

For every 3-random sequence ω there are a c and infinitely many j such that
j − C (ω1 . . . ωj) ≤ c and K (j) + j − K (ω1 . . . ωj) ≥ log log j − c.

Bruno Bauwens (UGent University) Relating and contrasting C (x) and K (x) 2 / 7



Minimal self-delimiting programs contain more information

Theorem (B.)

There exists a sequence ω for which K (ω1 . . . ωN)− K (N) ≤ O(1) for infinitely many N, and
for which C (ω1 . . . ωN)− C (N) tends to infinity.

(A question from [Barmpalias 2013].)
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For 2-random α (i.e. Martin-Löf random relative to the halting problem), ∃c,e and ∃∞n:

C (α1 · · ·αn) ≥ n − c i.e. C (·) is maximal
K (α1 · · ·αn) ≥ n + K (n)− e i.e. K (·) is maximal

[Miller 2004 and 2009, Nies–Stephan–Terwijn 2004]

Nice proof using Kolmogorov complexity?
Have initial segments with maximal C (·) also maximal K (·)? [Bienvenu]

Theorem (B.)

For every 3-random sequence ω there are a c and infinitely many j such that
j − C (ω1 . . . ωj) ≤ c and K (j) + j − K (ω1 . . . ωj) ≥ log log j − c.

Bruno Bauwens (UGent University) Relating and contrasting C (x) and K (x) 2 / 7



Minimal self-delimiting programs contain more information

Theorem (B.)

There exists a sequence ω for which K (ω1 . . . ωN)− K (N) ≤ O(1) for infinitely many N, and
for which C (ω1 . . . ωN)− C (N) tends to infinity.

(A question from [Barmpalias 2013].)
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Let KK (x) = K (K (x)), CC (x) = C (C (x)), . . .

C (x) = K (x) − KK (x) + O(KKK (x))

K (x) = C (x) + CC (x) + O(CCC (x))
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We use two lemma’s:
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Randomness deficiency: 2 definitions

If α is random, then 01,000,000α is “less” random.

Kolmogorov complexity: strings −→ numbers
Randomness deficiency: sequences −→ numbers

plain deficiency of a sequence α is

dC(α) = max {k : α ∈ Uk}

with Uk a universal Martin-Löf-test.
(the choice of Uk affects dC by at most O(1))

R+

{0, 1}∞

dK (ω) = supn[n − K (ω1 · · ·ωn)] + O(1)
[Gács 1980]

prefix deficiency is dK (α) = log f (α) where f is a
maximal lower semicomputable integral test:

f : {0.1} → R+ is basic if if for some n and
all x ∈ {0, 1}n, f is constant in [x ].

f : {0.1} → R+ ∪ {∞} is lower
semicomputable if

f =
∑
i∈N

fi

for a uniformly computable sequence of
basic functions.

a lower semicomputable f is an integral test
if ∫

f (α)dα ≤ O(1).

an integral test f is maximal if for all such g:
g − f is bounded.

d(α) =∞ iff α is non-random.
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dC and dK vs C and K

dK (α, β) = dK (α) + dK (β|α, dK (α))

For prefix-free c.e. set S ⊂ {0, 1}∗ one has:
dK (xα) = |x | − K (x) + dK (α|x ,K (x)).

K (x , y) = K (x) + K (y |x ,K (x))

dC(α) = dK (α|dC(α))

dK (α|k) = k + c =⇒ dC(α) = k +O(c).

C (x) = K (x |C (x))

K (x |k) = k + c =⇒ C(x) = k + O(c).

dK (α) = dC(α)+C (dC(α))+O(CC (dC(α)))

dC(α) = dK (α)−K (dK (α))+O(KK (dK (α)))

K (x) = C (x) + CC (x) + O(CCC (x))
C (x) = K (x)− KK (x) + O(KKK (x))

There exist families of sequences α` and β`
such that

dC(α`)− dC(β`)→ +∞
dK (α`)− dK (β`)→ −∞

if `→∞. [B.]

There exist families of sequences x` and y`

such that

C(x`)− C(y`)→ +∞
K (x`)− K (y`)→ −∞

if `→∞. [Solovay 74, Muchnik]
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There exist families of sequences α` and β` s.t.

|dC(α`)− dC(β`)| ≤ 0

dK (α`)− dK (β`) ≥ `

if `→∞ (up to O(1) terms).

Proof.

Choose k as in Lemma 3.

Choose ω ∈ {0, 1}∞ such that

dP(ω|k ,K (k)) ≤ O(1) .

We use Lemmas:
1 dK (α|k) = k + c =⇒ dC(α) = k +O(c).
2 for prefix-free c.e. set S ⊂ {0, 1}∗:

dK (xα) = |x | − K (x) + dK (α|x ,K (x)).

3 [Gács 1974] ∀`∃k such that
K (K (k)|k) = log log k = ` = log K (k) .

α dK (α) dC(α)

0k 1ω k − K (k) k
0k 1〈K (k)〉`ω k − K (k) + ` k

Choose S = {0m1}
dK (0k 1ω) = k − K (k) + dK (ω|k ,K (k)) .

Choose S = {0m1z : |z| = log log m} and recall K (k ,K (k)) = K (k)

dK (0k 1〈K (k)〉ω) = k + log log k − K (k) + dE(ω|k ,K (k)) .

dK (0k 1ω|k) =

k − K (0k 1|k) + dK (ω|K (0k 1|k), k)

= k

.

Note that K (0k 1〈K (k)〉|k) = K (K (k)|k).

dK (0k 1〈K (k)〉ω|k) =

k + log log k − K (K (k)|k) + dK (ω|K (k), k) = k

.
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3 [Gács 1974] ∀`∃k such that
K (K (k)|k) = log log k = ` = log K (k) .

α dK (α) dC(α)

0k 1ω k − K (k) k
0k 1〈K (k)〉`ω k − K (k) + ` k

Choose S = {0m1}
dK (0k 1ω) = k − K (k) + dK (ω|k ,K (k)) .

Choose S = {0m1z : |z| = log log m} and recall K (k ,K (k)) = K (k)

dK (0k 1〈K (k)〉ω) = k + log log k − K (k) + dE(ω|k ,K (k)) .

dK (0k 1ω|k) =

k − K (0k 1|k) + dK (ω|K (0k 1|k), k)

= k

.

Note that K (0k 1〈K (k)〉|k) = K (K (k)|k).

dK (0k 1〈K (k)〉ω|k) =

k + log log k − K (K (k)|k) + dK (ω|K (k), k) = k

.

Bruno Bauwens (UGent University) Relating and contrasting C (x) and K (x) 6 / 7



There exist families of sequences α` and β` s.t.

|dC(α`)− dC(β`)| ≤ 0

dK (α`)− dK (β`) ≥ `

if `→∞ (up to O(1) terms).

Proof.

Choose k as in Lemma 3.

Choose ω ∈ {0, 1}∞ such that

dP(ω|k ,K (k)) ≤ O(1) .

We use Lemmas:
1 dK (α|k) = k + c =⇒ dC(α) = k +O(c).
2 for prefix-free c.e. set S ⊂ {0, 1}∗:

dK (xα) = |x | − K (x) + dK (α|x ,K (x)).
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3 [Gács 1974] ∀`∃k such that
K (K (k)|k) = log log k = ` = log K (k) .

α dK (α) dC(α)

0k 1ω k − K (k) k
0k 1〈K (k)〉`ω k − K (k) + ` k

Choose S = {0m1}
dK (0k 1ω) = k − K (k) + dK (ω|k ,K (k)) .

Choose S = {0m1z : |z| = log log m} and recall K (k ,K (k)) = K (k)

dK (0k 1〈K (k)〉ω) = k + log log k − K (k) + dE(ω|k ,K (k)) .

dK (0k 1ω|k) =

k − K (0k 1|k) + dK (ω|K (0k 1|k), k)

= k

.

Note that K (0k 1〈K (k)〉|k) = K (K (k)|k).

dK (0k 1〈K (k)〉ω|k) =

k + log log k − K (K (k)|k) + dK (ω|K (k), k) = k

.

Bruno Bauwens (UGent University) Relating and contrasting C (x) and K (x) 6 / 7



There exist families of sequences α` and β` s.t.

|dC(α`)− dC(β`)| ≤ 0

dK (α`)− dK (β`) ≥ `

if `→∞ (up to O(1) terms).

Proof.

Choose k as in Lemma 3.

Choose ω ∈ {0, 1}∞ such that

dP(ω|k ,K (k)) ≤ O(1) .

We use Lemmas:
1 dK (α|k) = k + c =⇒ dC(α) = k +O(c).
2 for prefix-free c.e. set S ⊂ {0, 1}∗:

dK (xα) = |x | − K (x) + dK (α|x ,K (x)).
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3 [Gács 1974] ∀`∃k such that
K (K (k)|k) = log log k = ` = log K (k) .

α dK (α) dC(α)

0k 1ω k − K (k) k
0k 1〈K (k)〉`ω k − K (k) + ` k

Choose S = {0m1}
dK (0k 1ω) = k − K (k) + dK (ω|k ,K (k)) .

Choose S = {0m1z : |z| = log log m} and recall K (k ,K (k)) = K (k)

dK (0k 1〈K (k)〉ω) = k + log log k − K (k) + dE(ω|k ,K (k)) .

dK (0k 1ω|k) = k − K (0k 1|k) + dK (ω|K (0k 1|k), k)

= k

.

Note that K (0k 1〈K (k)〉|k) = K (K (k)|k).

dK (0k 1〈K (k)〉ω|k) =

k + log log k − K (K (k)|k) + dK (ω|K (k), k) = k

.

Bruno Bauwens (UGent University) Relating and contrasting C (x) and K (x) 6 / 7



There exist families of sequences α` and β` s.t.

|dC(α`)− dC(β`)| ≤ 0

dK (α`)− dK (β`) ≥ `

if `→∞ (up to O(1) terms).

Proof.

Choose k as in Lemma 3.

Choose ω ∈ {0, 1}∞ such that

dP(ω|k ,K (k)) ≤ O(1) .

We use Lemmas:
1 dK (α|k) = k + c =⇒ dC(α) = k +O(c).
2 for prefix-free c.e. set S ⊂ {0, 1}∗:

dK (xα) = |x | − K (x) + dK (α|x ,K (x)).
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Thanks for listening.
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