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Ehrenfeucht-Fräıssé-method in Descriptive

Complexity

Yijia Chen
Shanghai Jiaotong University

June 10th, 2014 @ Algorithmic Randomness

Joint work with Jörg Flum (Freiburg)



Computability, complexity, and randomness

I This talk is all about complexity.

I Computability will appear several times.

I The last part of the talk is dominated by randomness.



The holy grail of complexity theory

Prove P 6= NP.



Why is P vs. NP so hard?

1. Diagonalization methods – relativization barrier [Baker, Gill, and Solovay,
1975]

2. Combinatorial methods – natural proof barrier [Razborov and Rudich,
1997]

3. Algebraic methods – algebrization barrier [Aaronson and Wigerson, 2009]

The only known viable approach in classical complexity is Geometric
Complexity Theory (GCT) proposed by Mulmuley using algebraic geometry and
representation theory.

Mulmuley believes that it might take hundreds of years before GCT can
separate P and NP.



Understand computational problems by logic definability

Example

A graph G contains an independent set of size k if and only if

G |= ∃x1 . . .∃xk

 ∧
16i<j6k

(xi 6= xj ∧ ¬Exixj)

 .

Example

A graph G is 3-colorable if and only if

G |= ∃X1∃X2∃X3

(
∀x

∨
16i63

Xix ∧ ∀x
∧

16i<j63

(¬Xix ∨ ¬Xjx)

∧ ∀x∀y
(
Exy → ¬

∨
16i63

(Xix ∧ Xiy)
))



A model-theoretic approach to P vs. NP

Theorem (Immerman and Vardi, 1982)

A class of ordered graphs is decidable in polynomial time if and only if it can be
defined by least fixed-point logic LFP.

Corollary

P 6= NP if and only if the class of 3-colorable ordered graphs is not definable in
LFP. That is, there is no LFP-sentence ϕ such that for every ordered graph G

G is 3-colorable ⇐⇒ G |= ϕ.



In classical model theory, the standard tool for proving inexpressiveness (for
first-order logic FO) is the compactness theorem, which does not hold on the
class S of all finite structures.

However, another tool of Ehrenfeucht-Fräıssé games survives on S .



Ehrenfeucht-Fräıssé Games



Ehrenfeucht-Fräıssé games for FO

Let G and H be two ordered graphs and m ∈ N. The Ehrenfeucht-Fräıssé game
Gm(G,H) is played by two players, Spoiler and Duplicator, for m rounds:

(1) Spoiler chooses either u1 ∈ V (G) or v1 ∈ V (H).

(2) Duplicator answers by choosing either v1 ∈ V (H) or u1 ∈ V (G).

. . .

(2m) Spoiler chooses either um ∈ V (G) or vm ∈ V (H).

(2m+1) Duplicator answers by choosing either vm ∈ V (H) or um ∈ V (G).

Duplicator wins if by the mapping f with f (ui ) = vi for all i ∈ [m]

f : G
[
{a1, . . . , am}

] ∼= H[{b1, . . . , bm}
]
,

otherwise Spoiler wins.



Ehrenfeucht-Fräıssé games for FO (cont’d)

Theorem
Duplicator has a winning strategy for Gm(G,H) if and only if G and H satisfy
the same FO-sentences of quantifier rank m,

G ≡FOm H.

Theorem
Let K be a class of ordered graphs. K is not definable by FO if and only if
there is a sequence (Gm,Hm)m∈N such that for all m ∈ N we have Gm ∈ K,
Hm /∈ K, and

Gm ≡FOm Hm, i.e., Duplicator has a winning strategy in Gm(Gm,Hm).



Evenness is not in FO

Let m ∈ N. We construct an ordered graph Gm which is a path of length 2m,
and the second ordered graph Hm is a path of length 2m + 1.

In the i-th round, Duplicator ensures that for every j < i

1. distGm (ui , uj) = distHm (vi , vj), or

2. distGm (ui , uj) > 2m−i and distHm (vi , vj) > 2m−i .



Ehrenfeucht-Fräıssé games for LFP

Essentially we need to exhibit a sequence (Gm,Hm)m∈N of pairs of ordered
graphs such that

1. Gm is 3-colorable, while Hm is not.

2. Gm and Hm satisfy the same LFP-sentences of quantifier-rank/length at
most m,

Gm ≡LFPm Hm.



Some successful highlights

1. Reachability in directed graphs is not expressible in monadic Σ1
1 [Ajtai and

Fagin, 1990].

2. There is a polynomial time property of structures not expressible in least
fixed-point logic with counting [Cai, Fürer, and Immerman, 1992].

3. For ordered graphs connectivity is not expressible in monadic Σ1
1

[T. Schwentick, 1994].



Why not P 6= NP by Ehrenfeucht-Fräıssé games?



A quote from Fagin, Stockmeyer, and Vardi, 1995

It is known that Σ1
1 6= Π1

1 [and hence NP 6= coNP] if and only if such a
separation can be proven via second-order Ehrenfeucht-Fräıssé games.
Unfortunately, “playing” second-order Ehrenfeucht-Fräıssé games is very
difficult, and the above promise is still largely unfulfilled; for example, the
equivalence between the NP = coNP question and the Σ1

1 = Π1
1 has not so far

led to any progress on either of these questions.

One way of attacking these difficult questions is to restrict the classes under
consideration. . . The hope is that the restriction to the monadic classes will
yield more tractable questions and will serve as a training ground for attacking
the problems in their full generality.



EF-sequences

Theorem
P 6= NP if and only if there is a sequence (Gm,Hm)m∈N of ordered graphs such
that

1. Gm is 3-colorable and Hm is not.

2. Gm ≡LFPm Hm.

Compared to other methods, we have some very concrete objects which must
exist.



It is natural to ask for constructing (Gm,Hm) efficiently.

Given a proof, one would expect to see a clear definition of Gm and Hm which
might be turned into an efficient construction algorithm.

But what do we mean by “efficient construction?”



Construction in time mO(1)?

Theorem
(Gm,Hm) cannot be constructed in time mO(1).

Consider the function

Q(m) := min
{

max{‖G‖, ‖H‖}
∣∣ G and H are ordered graphs such that

G ≡LFPm H, G 3-colorable and H not
}
.

Lemma
There is an ε > 0 such that for all m ∈ N

Q(m) ≥ 2εm.

The key observation is that an ordered graph can be characterized by sentences
of logarithmic size.



The size of EF-sequences

Lemma
Assuming that the 3-colorability problem has no circuit of size 2o(n) infinitely
often, then for every ε > 0 and all sufficiently large m ∈ N

Q(m) 6 2(1+ε)m log m.



Recall: Evenness is not in FO

Let m ∈ N. We construct an ordered graph Gm which is a path of length 2m,
and the second ordered graph Hm is a path of length 2m + 1.

The construction is done in time
(
‖Gm‖+ ‖Hm‖

)O(1)
.



Construction in time
(
‖Gm‖ + ‖Hm‖

)O(1)
?

Theorem
The EF-sequence (Gm,Hm)m∈N cannot be constructed in time(

‖Gm‖+ ‖Hm‖
)O(1)

.

All successful applications of Ehrenfeucht-Fräıssé-method have corresponding
structures constructed in such a time bound.



Proof sketch

1. Let C be an algorithm which constructs (Gm,Hm)m∈N in time
(‖Gm‖+ ‖Hm‖)O(1).

2. We turn C into a polynomial time algorithm D such that for infinitely
many m ∈ N

D accepts Gm and D rejects Hm.

3. By Immerman-Vardi Theorem, there is an LFP-sentence ϕD such that for
infinitely many m ∈ N

Gm |= ϕD and Hm 6|= ϕD.

4. Choose m large enough such that ϕD ∈ LFPm, and recall

Gm ≡LFPm Hm,

which contradicts to 3.



Ehrenfeucht-Fräıssé Games on Random Structures



Ehrenfeucht-Fräıssé games on random structures

Instead of constructing (Gm,Hm) in deterministic time (‖Gm‖+ ‖Hm‖)O(1), can
we do it probabilistically?

Successful probabilistic constructions include [Ajtai and Fagin, 1990] and
[Rossman, 2009].



A probabilistic algorithm P generates a random EF-sequence (Gm,Hm)m∈N if:

(R1) For every m ∈ N the algorithm P first deterministically computes the
vertex set V (Gm) and V (Hm), and then constructs the ordered graphs Gm
and Hm probabilistically.

(R2) There is a polynomial time algorithm C:
I For any (G,H), if C accepts (G,H), then G is 3-colorable and H is not.
I For sufficiently large m ∈ N,

Pr
[
C accepts (Gm,Hm)

]
≥

4

5
.

(R3) There is an algorithm E:
I For any (G,H) and all m ∈ N, if E accepts (G,H,m), then G ≡LFPm H.
I For sufficiently large m ∈ N,

Pr
[
E accepts (Gm,Hm,m)

]
≥

4

5
.

I The running time of E(G,H,m) is bounded by f (m) · (‖G‖+ ‖H‖)O(1) for a
computable function f : N→ N.



Justifications

(R1) Clear.

(R2) Similar to (R3).

(R3) There is an algorithm E:
I For any (G,H) and all m ∈ N, if E accepts (G,H,m), then G ≡LFPm H.
I For sufficiently large m ∈ N,

Pr
[
E accepts (Gm,Hm,m)

]
≥

4

5
.

I The running time of E(G,H,m) is bounded by f (m) · (‖G‖+ ‖H‖)O(1) for a
computable function f : N→ N.

That is, E provides an algorithmic proof of with high probability
Gm ≡LFPm Hm. The running time of f (m) · (‖G‖+ ‖H‖)O(1) can be used
to explain why Ehrenfeucht-Fräıssé-method has been particularly
successful with respect to monadic second-order logic where one can apply
Courcelle’s Theorem.



Theorem
Assume that

there is a function in E which has no circuit of size 2o(n) infinitely often. (?)

Then there is no probabilistic algorithm that generates a random EF-sequence
(Gm,Hm)m∈N in time (‖Gm‖+ ‖Hm‖)O(1).

Remark
The assumption (?) is widely believed in complexity theory, which implies
P = BPP [Impagliazzo and Wigderson, 1997].



Is Ehrenfeucht-Fräıssé-method really hopeless?



The Planted Clique Conjecture



The Erdős-Rényi random graph

Definition
Let n ∈ N and p ∈ R with 0 6 p 6 1. Then G ∈ ER(n, p) is the Erdős-Rényi
random graph on vertex set [n] constructed by adding every edge e ∈

(
[n]
2

)
independently with probability p.

Lemma
The expected size of a maximum clique in G ∈ ER(n, 1/2) is approximately
2 log n, thus G almost surely has no clique of size 4 log n.

We consider a second distribution G + A with A ∈ K(n, 4 log n):

Definition
Let n, k ∈ N. Then K(n, k) is the uniform distribution over all cliques of size k
on the vertex set [n].



The planted clique conjecture (PCC)

Conjecture

There is no polynomial time algorithm to distinguish ER(n, 1/2) and
ER(n, 1/2) + K(n, 4 log n). For every polynomial time algorithm A∣∣∣∣∣∣ Pr

G∈ER(n,1/2)

[
A accepts G

]
− Pr
G∈ER(n,1/2),
A∈K(n,4 log n)

[
A accepts (G + A)

]∣∣∣∣∣∣ 6 1/5

for all sufficiently large n ∈ N.



The logic version of the planted clique conjecture (LPCC)

Conjecture

There is a computable function f : N→ N such that for every m ∈ N

Pr
G∈ER(f (m),1/2),

A∈K(f (m),4 log f (m))

[
G ≡LFPm (G + A)

]
≥ 4/5.

Theorem
LPCC implies PCC.

Remark
The converse is open.



LPCC and randomized EF-sequences

Theorem
Assume LPCC. Then there is a probabilistic algorithm A which for every m ∈ N
generates (Gm,Hm) in time

(
‖Gm‖+ ‖Hm‖

)O(1)
such that with high probability

1. Gm is not 3-colorable, while Hm is;

2. Gm ≡LFPm Hm.

Proof.
Finding a clique of size 4 log n is in NP, and 3-colorability is NP-complete.



How plausible is LPCC?

PCC, hence also LPCC, implies P 6= NP.

However we can prove unconditionally an FO version of LPCC:

Theorem
There is a computable function f : N→ N such that for every m ∈ N

Pr
G∈ER(f (m),1/2),

A∈K(f (m),4 log f (m))

[
G ≡FOm (G + A)

]
≥ 4/5.

The proof uses a very tricky machinery developed by Rossman in his 2008 proof
that the k-clique problem requires AC0-circuits of size ω(nk/4), whose core is
Håstad’s Switching Lemma.



Generalized PCC and Parameterized Complexity



Generalized PCC

Let computable g : N→ N be non-decreasing and unbounded with
g(n) ≥ 1/ log n. Then the expected size of a maximum clique in

G ∈ ER
(

n, n2/g(n)
)

is approximately g(n).

Conjecture

There is no polynomial time algorithm to distinguish ER
(

n, n2/g(n)
)

and

ER
(

n, n2/g(n)
)

+ K(n, 2g(n)).

Theorem
There is a computable function f : N→ N such that for every m ∈ N

Pr
G∈ER(f (m),f (m)2/g(f (m))),

A∈K(f (m),2g(f (m)))

[
G ≡FOm (G + A)

]
≥ 4/5.



Theorem
The parameterized clique problem has no fpt-approximation algorithm with
constant approximation ratio, unless the generalized PCC fails.



Conclusions

1. It would be difficult to prove P 6= NP using the
Ehrenfeucht-Fräıssé-method, but probably not impossible.

2. Ehrenfeucht-Fräıssé games on random graphs are more powerful than
deterministic games.

3. LPCC has applications not only in Ehrenfeucht-Fräıssé games, but also
parameterized complexity as well.



Thank You!
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