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Motivation

The incomputability of all descriptional complexities is an obstacle
towards more “down-to-earth” applications of AIT (e.g. for practical
compression).

To avoid incomputability we can
I restrict the resources available to the universal Turing

machine, or
I restrict the computational power of the machines used (e.g.

use context-free grammars or straight-line programs) instead
of Turing machines.

Here we use the second approach with finite transducers instead of
Turing machines.
The lack of a universal finite transducer is not an obstacle.
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Plain, Prefix-Free and Process Machines

I [Plain] Machine. A machine or enumeration is a partially
computable function U from binary strings to binary strings.

I Prefix-Free Machine. A prefix-free machine is a machine M
such that for any two strings σ, τ with τ 6= ε, if M(σ) is
defined then M(στ) is undefined.

I Process Machine. A process machine is a machine W such
that for all σ, τ with σ, στ ∈ dom(W), the string W(σ) is a
prefix of W(στ).

I Universal Machine. The machine (plain/prefix-free/process)
U is universal if for every (plain/prefix-free/process) machine
U′ there is a constant c such that for every σ there exists an τ
with |τ | ≤ |σ|+ c and U(τ) = U′(σ).
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Plain, Prefix-Free and Process Complexities

I Kolmogorov Complexity. Fix a universal machine. The plain
Kolmogorov complexity of the string x is the length of the
shortest σ ∈ dom(U) with U(σ) = x.

I Prefix-free Kolmogorov Complexity. The prefix-free
Kolmogorov complexity is the Kolmogorov complexity based
on a universal prefix-free machine.

I Process Complexity.The process complexity is the
Kolmogorov complexity based on a universal process machine.
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Martin-Löf Random Sequences

A sequence A is Martin-Löf random iff the prefix-free Kolmogorov
complexity H of binary strings satisfies H(A � n) ≥ n for almost all
n.
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Transducers

An admissible transducer, short transducer, consists of a finite
state-set Q and a transition function mapping each state s and bit
b ∈ {0, 1} to a new state s′ and output word w.

s0start s1

s2

0/ε

1/ε

0/000, 1/001

0/01, 1/1

Tr(0110) = 00101
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Normality

Normal Sequences. A sequence A is normal iff for every string σ,
the number of occurrences of σ within the first n bits of A
converges to 2−|σ| for n→∞.

The finite state complexity of the transducer Tr—denoted by
CTr(x)—is defined by the length of the shortest y with Tr(y) = x.

Fact. A sequence is normal iff there is no transducer Tr and no
constant c < 1 such that CTr(A � n) < n · c, for infinitely many n.
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Enumerations of Transducers and Finite State Complexity

A partially computable function S mapping binary strings to
transducers σ 7→ TrSσ is called an enumeration provided every
transducer Tr has a string σ ∈ dom(S).

Given a enumeration S of transducers the finite state complexity
CS(x) is defined (Calude, Salomaa and Roblot [2011,2012]) by

CS(x) = min{|σ|+ |y| : TrSσ(y) = x}.

Fact. For every numeration S there is a constant cS such that for
all x,

CS(x) ≤ |x|+ cs.

Fact. Let S be a enumeration of transducers and let dom(S) be
computable. Then the mapping x 7→ CS(x) is computable.
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Two Classes of Enumerations

A perfect enumeration S of all transducers is a partially
computable function with a prefix-free and computable domain
mapping each binary string σ ∈ dom(S) to a transducer TS

σ in a
one-one and onto way.

A universal enumeration S of all transducers is a partially
computable function with prefix-free domain such that for each
other prefix-free enumeration S′ of transducers there exists a
constant c such that for all σ′ in the domain of S′, the transducer
TS′

σ′ equals some transducer TS
σ with σ ∈ dom(S) and

|σ| ≤ |σ′|+ c.
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Bounds

Theorem. Let S be a universal machine enumerating all
transducers. Then CS is bounded:

I from above by the prefix-free Kolmogorov complexity, and
I from below by both, the plain Kolmogorov complexity of x and

the process complexity of x.
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Characterisation of Martin-Löf Random Sequences

Theorem. The following statements are equivalent to the sequence
A not being Martin-Löf random:
I There is a perfect S such that for every c, almost all n satisfy
CS(A � n) < n− c.

I There is a perfect S such that for every c there is an n
satisfying CS(A � n) < n− c.

I For every universal S and every c, almost all n satisfy
CS(A � n) < n− c.

I For every universal S and every c there is an n satisfying
CS(A � n) < n− c.

Finite State Incompressible Infinite Sequences 11 / 21



Characterisation of Martin-Löf Random Sequences

Theorem. The following statements are equivalent to the sequence
A not being Martin-Löf random:
I There is a perfect S such that for every c, almost all n satisfy
CS(A � n) < n− c.

I There is a perfect S such that for every c there is an n
satisfying CS(A � n) < n− c.

I For every universal S and every c, almost all n satisfy
CS(A � n) < n− c.

I For every universal S and every c there is an n satisfying
CS(A � n) < n− c.

Finite State Incompressible Infinite Sequences 11 / 21



Characterisation of Martin-Löf Random Sequences

Theorem. The following statements are equivalent to the sequence
A not being Martin-Löf random:
I There is a perfect S such that for every c, almost all n satisfy
CS(A � n) < n− c.

I There is a perfect S such that for every c there is an n
satisfying CS(A � n) < n− c.

I For every universal S and every c, almost all n satisfy
CS(A � n) < n− c.

I For every universal S and every c there is an n satisfying
CS(A � n) < n− c.

Finite State Incompressible Infinite Sequences 11 / 21



Characterisation of Martin-Löf Random Sequences

Theorem. The following statements are equivalent to the sequence
A not being Martin-Löf random:
I There is a perfect S such that for every c, almost all n satisfy
CS(A � n) < n− c.

I There is a perfect S such that for every c there is an n
satisfying CS(A � n) < n− c.

I For every universal S and every c, almost all n satisfy
CS(A � n) < n− c.

I For every universal S and every c there is an n satisfying
CS(A � n) < n− c.

Finite State Incompressible Infinite Sequences 11 / 21



Characterisation of Martin-Löf Random Sequences

Theorem. The following statements are equivalent to the sequence
A not being Martin-Löf random:
I There is a perfect S such that for every c, almost all n satisfy
CS(A � n) < n− c.

I There is a perfect S such that for every c there is an n
satisfying CS(A � n) < n− c.

I For every universal S and every c, almost all n satisfy
CS(A � n) < n− c.

I For every universal S and every c there is an n satisfying
CS(A � n) < n− c.

Finite State Incompressible Infinite Sequences 11 / 21



Complexity Based on Exotic Enumerations

If we drop the prefix-freeness condition the complexity CS can
behave in a different way. For example, as in the case of plain
(Kolmogorov) complexity, in every sequence there exist infinitely
many complexity dips.

Theorem. There exist enumerations S such that for every infinite
sequence A there are infinitely many prefixes vi @ A such that

|vi| − CS(vi) > i.

Complexity dips cannot be avoided even when we consider only
transducers for which the output can always be at most m times as
long as the input.
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Finite State Incompressibility

Definition. A sequence A is called CS–incompressible if

liminfnCS(A � n)/n = 1.

Theorem. For every enumeration S, every Martin-Löf random
sequence is CS–incompressible, but the converse implication is not
true.

Indeed, there are normal sequences which are simultaneously
CS–compressible and Liouville numbers Definition .

This proves that CS–incompressibility is stronger than all other
known forms of finite automata based incompressibility.
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Finite State Incompressibility and Normality

Theorem. For every enumeration S, every CS-incompressible
sequence is normal.

Theorem. For every enumeration S, there are normal (computable
or incomputable) sequences A such that

lim
n→∞

CS(A � n)/n = 0,

so CS-compressible. Proof

Theorem. There is a normal and computable sequence which is
CS-compressible for all enumerations S.

Theorem. There exist a perfect enumeration S and a computable
normal and CS-incompressible sequence.
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Summary

Enumerations are computable listings of all transducers. Two
types of enumerations have been defined: universal and perfect.

Characterisations of Martin-Löf randomness in terms of
CS-complexity for both types of enumerations S.

Relations between finite state complexity and other descriptional
complexities have been obtained. In particular, finite state
complexities based on some exotic enumerations behave like the
plain (Kolmogorov) complexity.

The notion of CS-incompressibility was investigated and related to
normality and (in)computability. CS-incompressibility implies
normality but the converse fails.

Main fact. Enumerations matter more than processing units.
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Open Problems

I Is there a perfect enumeration and a computable sequence A
such that CS(A � n) ≥ n− c, for some c and all n?

I Study the relations between CS-incompressibility and other
notions of randomness, in particular ε-randomness?
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Definition of Liouvile Number

A Liouvile number is a transcendental real number α such that
for every positive integer n, there exist integers p and q with q > 1
such that

0 < |α− p
q
| < q−n.

For example,

∞∑
k=1

2−k! = 0.1100010000000000000000100 . . .

Incompressibility
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| < q−n.

For example,
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k=1

2−k! = 0.1100010000000000000000100 . . .

Incompressibility

Finite State Incompressible Infinite Sequences 18 / 21



Proof Sketch

Denote by B(r) the prefix of length 2r of a de Bruijn string of order
r (i.e. a string of length 2r + r− 1 containing every string of length
r as a contiguous substring exactly once). For example,
B(2) = 0011 and B(3) = 00010111.

Lemma. If the function f is increasing and f(i) ≥ ii, then the
sequence

Af = B(1)f(1)B(2)f(2) · · ·B(n)f(n) · · ·

is normal and the real number 0.Af is a Liouville number.
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Proof Sketch (Continued)

Consider the transducers Tn

δn(si , 0) = si , µn(si , 0) = B(i), for i ≤ n,
δn(si , 1) = si+1, µn(si , 1) = B(i), for i ≤ n,

δn(sn+1, a) = sn+1, µn(sn+1, a) = a, for a ∈ {0, 1} .

For example, T3 is

s0start s1 s2 s3
1/B(1)

0/B(1)

1/B(2)

0/B(2)

1/B(3)

0/B(3) 0/0

1/1
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Proof Sketch (Continued)

For every prefix σ of Af of the form

σ = B(1)f(1) · · ·B(n− 1)f(n−1) · B(n)j · τ,

we have B(1) @ σ @ Af , so

CS(σ)

|σ|
≤ 4f(n− 1) + j

2n−1f(n− 1) + 2nj
≤ 4

2n−1
,

hence
lim

n→∞
CS(A(� n)/|n| = 0.

IncompressibilityNormality
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