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Background

In complexity theory, it has been observed that problems can
be difficult in theory while being quite easy to solve in practice.

1986: Levin introduces “average-case complexity.”

2003: Kapovich, Miasnikov, Schupp and Shpilrain introduce
“generic-case complexity.”
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Density

In 2012, Jockusch, and Schupp introduce and analyze the
notion of generic computability. Informally, real is genericaly
computable if there is a computation of that real that is usually
correct.

We formalize our notion of “usually” using asymptotic density:

Definition
The density of real A is the limit of the densities of its initial
segments, limn→∞

|A∩n|
n .
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Generic and coarse computablity

Definition
A real A is generically computable if there exists a partial
computable function ϕ whose domain has density 1 such that
ϕ(n) = A(n) for all n ∈ dom(ϕ).

This is distinct from the following related notion.

Definition
A real A is coarsely computable if there exists a total
computable function ϕ such that {n : ϕ(n) = B(n)} has density
1.

So a generic computation is a computation that usually halts,
always correctly, while a coarse computation is a computation
that always halts, usually correctly.
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Examples

Theorem (Jockusch, Schupp, 2012)
Neither generic computability, nor coarse computability implies
the other.

Objection (Moral Grounds)
It is better to be incomplete than to be inaccurate!

Metatheorem
Generic computability is closer to coarse computability than
coarse computability is to generic computability.
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Coarse but not Generic

How does one produce a coarsely computable real that is not
generically computable?

Any real that has density 1 is coarsely computable – just make
sure each potential generic computation is wrong at least once.

Theorem (I, 2013)
Every nonzero Turing degree (Turing) computes a real that is
coarsely computable but not generically computable.

Gregory Igusa Computations with Incomplete or Imperfect Information



Coarse but not Generic

How does one produce a coarsely computable real that is not
generically computable?

Any real that has density 1 is coarsely computable – just make
sure each potential generic computation is wrong at least once.

Theorem (I, 2013)
Every nonzero Turing degree (Turing) computes a real that is
coarsely computable but not generically computable.

Gregory Igusa Computations with Incomplete or Imperfect Information



Generic but not Coarse

So, how does one produce something generically computable
but not coarsely computable? (Proof sketch)

Theorem (Downey, Jockusch, Schupp, 2013)
Every nonzero c.e. degree (Turing) computes a real that is
generically computable but not coarsely computable.

Theorem (Hirschfeld, Jockusch, McNicholl, Schupp)
If A is 1-generic, or weakly 2-random, then A does not compute
any sets that are generically computable but not coarsely
computable.
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This addresses the question of how difficult it is to witness a
nonimplication, but now we ask how far the nonimplications can
be pushed.
Let r ∈ [0,1].

Definition
A real A is generically computable at density r if there exists a
partial computable function ϕ whose domain has lower density
≥ α such that ϕ(n) = A(n) for all n ∈ dom(ϕ).

Definition
A real A is coarsely computable at density r if there exists a
total computable function ϕ such that {n : ϕ(n) = B(n)} has
lower density ≥ α.
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Theorem (Downey, Jockusch, McNicholl, Schupp)
If A is generically computable at density r , then for every ε > 0,
A is coarsely computable at density r − ε.

Proof: Nonuniformly give yourself the point at which the density
of the domain of the generic computation never again drops
below r − ε

2

Observation
There exist reals that are coarsely computable, but not
generically computable at any positive density. (I.e. coarsely
computable, and absolutely undecidable.)
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For a recursion theorist, probably the most natural way of
asking how close something is to being computable is by
asking about its Turing degree.

If we wish to know how close a real is to being generically or
coarsely computable, we should ask the question within a
degree structure for that computability.

We now introduce generic reducibility, and coarse reducibility.

Gregory Igusa Computations with Incomplete or Imperfect Information



For a recursion theorist, probably the most natural way of
asking how close something is to being computable is by
asking about its Turing degree.

If we wish to know how close a real is to being generically or
coarsely computable, we should ask the question within a
degree structure for that computability.

We now introduce generic reducibility, and coarse reducibility.

Gregory Igusa Computations with Incomplete or Imperfect Information



For a recursion theorist, probably the most natural way of
asking how close something is to being computable is by
asking about its Turing degree.

If we wish to know how close a real is to being generically or
coarsely computable, we should ask the question within a
degree structure for that computability.

We now introduce generic reducibility, and coarse reducibility.

Gregory Igusa Computations with Incomplete or Imperfect Information



Partial Oracles

Definition
Let A be a real. Then a (time-dependent) partial oracle, (A), for
A is a set of ordered triples 〈n, x , s〉 such that:
∃s

(
〈n,0, s〉 ∈ (A)

)
=⇒ n /∈ A,

∃s
(
〈n,1, s〉 ∈ (A)

)
=⇒ n ∈ A.

We think of (A) as a partial function, sending n to x . We think of
s as the number of steps it takes (A) to converge.

The domain of (A) is the set of n for which there exists such an
x , s.
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Generic reductions

Definition
Let A be a real. Then a generic oracle for A is a partial oracle
whose domain is density-1.

Note that generically computing A is equivalent to computing a
generic oracle for A.

Definition
Let A,B be reals. We say A is generically reducible to B (or
A ≤g B) if there is a Turing functional ϕ such that for every
generic oracle (B), for B, ϕ(B) is a generic computation of A.
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Coarse reductions

Definition
Let A be a real. Then a coarse oracle for A is an (ordinary
Turing) oracle for a set that agrees with A on density-1.

Definition
Let A,B be reals. We say A is coarsely reducible to B (or
A ≤g B) if there is a Turing functional ϕ such that for every
coarse oracle (B), for B, ϕ(B) is a coarse computation of A.
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Embedding the Turing degrees in the generic degrees

There is a natural embedding of the Turing degrees into the
generic degrees:

Definition
For any real X , let R(X ) be defined as follows.
R(X ) = {2n(2k + 1) : n ∈ X}.

So we have “stretched” every bit of X into a positive density
“column” of R(X ).

Since every generic computation of R(X ) must include at least
one bit from every column, it must be able to compute X .

As a result, generically computing R(X ) is the same as
computing X , and working with R(X ) as a generic oracle is the
same as working with X as an oracle in the usual sense.
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Note that this embedding fails quite badly for the coarse
degrees.

Observation

If A is ∆0
2, then R(A) is coarsely computable.

Theorem (Hirschfeldt, Jockusch, Kuyper, Schupp),
(Dzhafarov, I.)
There exists an embedding of the Turing degrees into the
coarse degrees.
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Density-1 Generic Degrees

We say that a generic degree is density-1 if it is the generic
degree of a density-1 real.

Lemma
The density-1 generic degrees are precisely the generic
degrees of the coarsely computable reals.

Proof: Consider the set of n on which the coarse computation is
correct.
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Theorem (I.)
Let A be a real. Then A is hyperarithmetic if and only if there is
a density-1 real B, such that B ≥g R(A).

This uses Solovay’s characterization of the hyperarithmetic
reals in terms of moduli of computation.

Theorem (Solovay)
Let A be a real. Then A is hyperarithmetic if and only if there is
a function f , and a Turing functional ϕ such that for every
function g majorizing f , ϕg is a computation of A. In this case,
we say that f is a modulus of computation for A.
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Idea: Let B be a density-1 real. Then the rate at which the
density of B goes to 1 is a slow growing function, and any
generic oracle for B computes a slower growing function.

This gives us one direction immediately: any modulus of
computation can be emulated by the generic degree of a
coarsely computable real.

Objection
Just because you know how quickly the density goes to 1
doesn’t mean you know exactly which elements are missing!
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Theorem (I.)
Let A be a real. Then A is hyperarithmetic if and only if there is
a density-1 real B, such that B ≥g R(A).

(⇒) This direction is easy:
Make the density of B approach 1 very slowly. Then any
generic oracle will have density that also approaches 1 at least
as slowly.
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That’s totally correct!

Theorem (I.)
There exists a density-1 real, B, such that for every f : N→ N,
and every ϕ, there is a g ≥ f such that ϕg is not a generic
computation of B.

However, the rate of growth of B can be used to compute any
Turing degree that embeds below B.
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Start with B ≥g R(A)

Choose f so that for any g � f , g can generate a tree of
density-1 oracles that includes B.
Those oracles then repeatedly attempt to elect a “leader”
who can cause them to vote unanimously.
B is such a leader, so eventually they will find one.
B always votes correctly, so when they find a leader, the
vote will be correct.

Note that intersecting B with a density-1 real provides a generic
oracle for B.
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Question
What about the coarse degrees of generically computable
reals? Is it possible to code any Turing information into such a
degree?
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Minimal degrees and pairs

We ask one last question

Question
Given a nonzero generic degree a, is there always a density-1
degree b such that is a ≥g b?

If the answer to the question is “yes,” then there cannot be any
minimal generic degrees, because the density-1 degrees are
dense.

If the answer to the question is “no,” then the counterexample is
half of a minimal pair for generic reduction.
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End

Thank you for your attention.
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