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One of natural measures of randomness is K-reducibility, which is defined by
X ≤K Y if and only if

K(X ↾ n) ≤ K(Y ↾ n) +O(1).

Much effort has been devoted to the study of this and related reducibilities.
One direction to analyse K-reducibility is the one via lowness. In fact, X ≤K

∅ if and only if X ≤LR ∅ if and only if X ≤LK ∅, which is shown by Nies [8].
Kjos-Hanssen et al. [2] strengthned this result to that LK-reducibility is actually
equivalent to LR-reducibility.

Another important reducibility to analyse K-reducibility is vL-reducibility.
For ML-random sets, vL-reducibility is the converse of LR-reducibility. Miller
and Yu [4] showed that X ≤K Y implies X ≤vL Y .

We consider Schnorr-randomness versions of these results. Schnorr reducibil-
ity is the Schnorr-randomness version of K-reducibility, which is defined by
X ≤Sch Y if for every computable measure machine M there is a computable
measure machine N such that KN (X ↾ n) ≤ KM (Y ↾ n) +O(1).

Kjos-Hanssen et al. [3] showed that a set is low for Schnorr randomness if and
only if it is computably traceable. Then, Nies [9, Problem 8.4.22] asked whether
the reducibility versions are equivalent or not. We answer this affirmatively using
the open covering method developed by Bienvenu and Miller [1]. A similar result
was obtained in [5] with uniform relativization.

Miyabe [6] and Miyabe and Rute [7] showed van Lambalgen’s theorem for
uniform Schnorr randomness. Thus, we can consider a Schnorr-randomness ver-
sion of vL-reducibility. We show that Schnorr reducibility implies the Schnorr-
randomness version of vL-reducibility. The key of the proof is an extension of
the Ample Excess Lemma.
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