ON ROGERS SEMILATTICES OF ANALYTICAL HIERARCHY

MARINA DORZHIEVA

We investigate some algebraic properties of Rogers semilattices of analytical hierarchy: existence of minimal elements, ideals without minimal elements. For an at most coutable non-empty family S of subjects of the natural series, its numbering $\alpha: N \to S$ is said to be Σ_{n+1}^1 -computable if the set $\{\langle x, y \rangle \mid x \in \alpha(y)\} \in \Sigma_{n+1}^1$. The set of all Σ_{n+1}^1 -computable numberings of the family S is denoted by $Com_{n+1}^1(S)$. Enumeration $\nu \in Com_{n+1}^1(S)$ is called minimal, if for every $\mu \in Com_{n+1}^1(S)$ such that $\mu \leq \nu$, perfomed $\nu \equiv \mu$. One of the most important minimal numberings is Friedbergs numbering. Owings showed in [2] that there is no Π_1^1 -computable Friedberg enumeration of all Π_1^1 -sets using metarecursion theory. This result is obtained in classic computability theory for higher levels of analytical hierarchy.

Theorem

(1) There are infinitely many minimal numberings of an infinite family S of Π^1_{n+1} -sets.

(2) There is no a Π_{n+1}^1 -computable Friedberg enumeration of all Π_{n+1}^1 -sets.

(3) Elementary theory of any nontrivial Rogers semilattices of analytical hierarchy is undecideble.

(4) Let S be infinite family of Σ_{n+1}^1 -sets, $Com_{n+1}^1(S) \neq \emptyset$. Then there exists a numbering $\beta \in Com_{n+1}^1(S)$ such that $\hat{\beta}$ (the principal ideal of Rogers semilattices $R_{n+1}^1(S)$ generated by $deg(\beta)$)contains nominimal elements.

This work was supported by RFBR (grant 14-01-31278).

References

 S. BADAEV, S. GONCHAROV, S. PODZOROV, A. SORBI, Algebraic properties of Rogers semilattices of arithmetical numberings, In Computability and Models, S.B. Cooper and S.S. Goncharov eds.—Kluwer / Plenum Publishers, New York, 2003, pp. 45–77.

[2] JAMES C. OWINGS, The meta-r.e. sets, but not the Π_1^1 -sets can be enumerated without repetition, The Journal of Symbolic Logic, Volume 35, Number 2, June 1970.

1

NOVOSIBIRSK STATE UNIVERSITY, 2 PIROGOVA STREET, NOVOSIBIRSK, RUSSIA E-mail address: dm-3004@inbox.ru