Finite automorphism bases for degree structures

Mariya I. Soskova¹

Sofia University

joint work with Theodore Slaman

¹Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471), Sofia University Science Fund and BNSF Grant No. DMU 03/07/12.12.2011

Definition

Let \mathcal{A} be a structure with domain A. A set $B \subseteq A$ is an automorphism base for \mathcal{A} if whenever f and g are automorphisms of \mathcal{A} , such that $(\forall x \in B)(f(x) = g(x))$, then f = g.

Definition

Let \mathcal{A} be a structure with domain A. A set $B \subseteq A$ is an automorphism base for \mathcal{A} if whenever f and g are automorphisms of \mathcal{A} , such that $(\forall x \in B)(f(x) = g(x))$, then f = g.

Equivalently if f is an automorphism of \mathcal{A} and $(\forall x \in B)(f(x) = x)$ then f is the identity.

Definition

Let \mathcal{A} be a structure with domain A. A set $B \subseteq A$ is an automorphism base for \mathcal{A} if whenever f and g are automorphisms of \mathcal{A} , such that $(\forall x \in B)(f(x) = g(x))$, then f = g.

Equivalently if f is an automorphism of \mathcal{A} and $(\forall x \in B)(f(x) = x)$ then f is the identity.

Theorem (Slaman and Woodin)

There is an element $\mathbf{g} \leq \mathbf{0}^{(5)}$ such that $\{\mathbf{g}\}$ is an automorphism base for the structure of the Turing degrees $\mathcal{D}_{\mathcal{T}}$.

Definition

Let \mathcal{A} be a structure with domain A. A set $B \subseteq A$ is an automorphism base for \mathcal{A} if whenever f and g are automorphisms of \mathcal{A} , such that $(\forall x \in B)(f(x) = g(x))$, then f = g.

Equivalently if f is an automorphism of \mathcal{A} and $(\forall x \in B)(f(x) = x)$ then f is the identity.

Theorem (Slaman and Woodin)

There is an element $\mathbf{g} \leq \mathbf{0}^{(5)}$ such that $\{\mathbf{g}\}$ is an automorphism base for the structure of the Turing degrees $\mathcal{D}_{\mathcal{T}}$.

 $Aut(\mathcal{D}_T)$ is countable and every member has an arithmetically definable presentation.

Definition

A set of degrees $\mathcal Z$ contained in $\mathcal D_{\mathcal T}(\leq \mathbf 0')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i<\omega}$, representing the degrees in $\mathcal Z$, and a computable function f such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{j< i} Z_j$.

Definition

A set of degrees $\mathcal Z$ contained in $\mathcal D_{\mathcal T}(\leq \mathbf 0')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i<\omega}$, representing the degrees in $\mathcal Z$, and a computable function f such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{j< i} Z_j$.

Example: If $\bigoplus_{i<\omega} A_i$ is low then $\mathcal{A} = \{d_T(A_i) \mid i < \omega\}$ is uniformly low.

Definition

A set of degrees $\mathcal Z$ contained in $\mathcal D_{\mathcal T}(\leq \mathbf 0')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i<\omega}$, representing the degrees in $\mathcal Z$, and a computable function f such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{j< i} Z_j$.

Example: If $\bigoplus_{i<\omega} A_i$ is low then $\mathcal{A} = \{d_T(A_i) \mid i < \omega\}$ is uniformly low.

Theorem (Slaman and Woodin)

If $\mathcal Z$ is a uniformly low subset of $\mathcal D_T(\leq \mathbf 0')$ then $\mathcal Z$ is definable from parameters in $\mathcal D_T(\leq \mathbf 0')$.

Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^{\mathcal{M}}, 0^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, \leq^{\mathcal{M}}).$

- Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^{\mathcal{M}}, 0^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, \leq^{\mathcal{M}}).$
- If $\mathcal{Z} \subseteq \mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i<\omega}$ then there are Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and a function $\varphi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_{\mathcal{T}}(Z_i)$.

- Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^{\mathcal{M}}, 0^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, \leq^{\mathcal{M}}).$
- ② If $\mathcal{Z} \subseteq \mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i<\omega}$ then there are Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and a function $\varphi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_{\mathcal{T}}(Z_i)$.

We call such a function an indexing of Z.

Using parameters we can define the set of c.e. degrees:

3 Using parameters we can define the set of c.e. degrees: Consider the set $K = \bigoplus_{e < \omega} W_e$.

3 Using parameters we can define the set of c.e. degrees: Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets A and B such that $K = A \cup B$.

③ Using parameters we can define the set of c.e. degrees: Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets A and B such that $K = A \cup B$.

Represent A and B as $\bigoplus_{e<\omega} A_e$ and $\bigoplus_{e<\omega} B_e$.

③ Using parameters we can define the set of c.e. degrees: Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets A and B such that $K = A \cup B$.

Represent A and B as $\bigoplus_{e<\omega} A_e$ and $\bigoplus_{e<\omega} B_e$. Note that W_e is the disjoint union of A_e and B_e .

③ Using parameters we can define the set of c.e. degrees: Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets A and B such that $K = A \cup B$.

Represent A and B as $\bigoplus_{e<\omega}A_e$ and $\bigoplus_{e<\omega}B_e$. Note that W_e is the disjoint union of A_e and B_e .

The set $\mathcal{A} = \{d_T(A_e) \mid e < \omega\}$ and $\mathcal{B} = \{d_T(B_e) \mid e < \omega\}$ are uniformly low and hence definable with parameters.

③ Using parameters we can define the set of c.e. degrees: Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets A and B such that $K = A \cup B$.

Represent A and B as $\bigoplus_{e<\omega}A_e$ and $\bigoplus_{e<\omega}B_e$. Note that W_e is the disjoint union of A_e and B_e .

The set $\mathcal{A} = \{d_T(A_e) \mid e < \omega\}$ and $\mathcal{B} = \{d_T(B_e) \mid e < \omega\}$ are uniformly low and hence definable with parameters.

A degree \mathbf{x} is c.e. if it is the join of an element from \mathcal{A} and an element from \mathcal{B} .

Theorem (Slaman and Woodin)

There are finitely many Δ_2^0 parameters which code a model of arithmetic \mathcal{M} and an indexing of the c.e. degrees: a function $\psi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ such that $\psi(\mathbf{e}^{\mathcal{M}}) = d_{\mathcal{T}}(W_{\mathbf{e}})$.

Theorem (Slaman and Woodin)

There are finitely many Δ_2^0 parameters which code a model of arithmetic \mathcal{M} and an indexing of the c.e. degrees: a function $\psi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ such that $\psi(\mathbf{e}^{\mathcal{M}}) = d_{\mathcal{T}}(W_{\mathbf{e}})$.

Note that if we have an automorphism π of $\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ which fixes these parameters then π fixes every c.e degree.

Theorem (Slaman and Woodin)

There are finitely many Δ_2^0 parameters which code a model of arithmetic \mathcal{M} and an indexing of the c.e. degrees: a function $\psi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ such that $\psi(\mathbf{e}^{\mathcal{M}}) = d_{\mathcal{T}}(W_{\mathbf{e}})$.

Note that if we have an automorphism π of $\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ which fixes these parameters then π fixes every c.e degree.

The Goa

Extend this result to find finitely many Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing φ of the Δ_2^0 Turing degrees.

Theorem (Slaman and Woodin)

There are finitely many Δ_2^0 parameters which code a model of arithmetic \mathcal{M} and an indexing of the c.e. degrees: a function $\psi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ such that $\psi(\mathbf{e}^{\mathcal{M}}) = d_{\mathcal{T}}(W_{\mathbf{e}})$.

Note that if we have an automorphism π of $\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ which fixes these parameters then π fixes every c.e degree.

The Goa

Extend this result to find finitely many Δ_2^0 parameters that code a model of arithmetic $\mathcal M$ and an indexing φ of the Δ_2^0 Turing degrees.

We will call e an index for a Δ_2^0 set X if $\{e\}^{\emptyset'}$ is the characteristic function of X.

Lemma

If $\mathbf{x} \leq_T 0'$ then there are low degrees \mathbf{g}_1 , \mathbf{g}_2 , \mathbf{g}_3 , \mathbf{g}_4 , such that $\mathbf{x} = (\mathbf{g}_1 \vee \mathbf{g}_2) \wedge (\mathbf{g}_3 \vee \mathbf{g}_4)$.

Lemma

If $\mathbf{x} \leq_T 0'$ then there are low degrees \mathbf{g}_1 , \mathbf{g}_2 , \mathbf{g}_3 , \mathbf{g}_4 , such that $\mathbf{x} = (\mathbf{g}_1 \vee \mathbf{g}_2) \wedge (\mathbf{g}_3 \vee \mathbf{g}_4)$.

• Suppose that we know how to map an index $e^{\mathcal{M}}$ of a low Δ_2^0 set G to the degree $\varphi(e^{\mathcal{M}}) = d_{\mathcal{T}}(G)$.

Lemma

If $\mathbf{x} \leq_T 0'$ then there are low degrees \mathbf{g}_1 , \mathbf{g}_2 , \mathbf{g}_3 , \mathbf{g}_4 , such that $\mathbf{x} = (\mathbf{g}_1 \vee \mathbf{g}_2) \wedge (\mathbf{g}_3 \vee \mathbf{g}_4)$.

- Suppose that we know how to map an index $e^{\mathcal{M}}$ of a low Δ_2^0 set G to the degree $\varphi(e^{\mathcal{M}}) = d_{\mathcal{T}}(G)$.
- If in \mathcal{M} "e is an index of a non-low Δ_2^0 set X" then we search in \mathcal{M} for indices e_1, e_2, e_3, e_4 of low Δ_2^0 sets which define the degree of X.

Lemma

If $\mathbf{x} \leq_T 0'$ then there are low degrees \mathbf{g}_1 , \mathbf{g}_2 , \mathbf{g}_3 , \mathbf{g}_4 , such that $\mathbf{x} = (\mathbf{g}_1 \vee \mathbf{g}_2) \wedge (\mathbf{g}_3 \vee \mathbf{g}_4)$.

- Suppose that we know how to map an index $e^{\mathcal{M}}$ of a low Δ_2^0 set G to the degree $\varphi(e^{\mathcal{M}}) = d_{\mathcal{T}}(G)$.
- If in \mathcal{M} "e is an index of a non-low Δ_2^0 set X" then we search in \mathcal{M} for indices e_1, e_2, e_3, e_4 of low Δ_2^0 sets which define the degree of X.
- We map $e^{\mathcal{M}}$ to $(\varphi(e_1^{\mathcal{M}}) \vee \varphi(e_2^{\mathcal{M}})) \wedge (\varphi(e_3^{\mathcal{M}}) \vee \varphi(e_4^{\mathcal{M}}))$.

Step 2: Distinguishing between low Δ_2^0 sets

Theorem

There exists a uniformly low set of Turing degrees \mathcal{Z} , such that every low Turing degree \mathbf{x} is uniquely positioned with respect to the c.e. degrees and the elements of \mathcal{Z} .

Step 2: Distinguishing between low Δ_2^0 sets

Theorem

There exists a uniformly low set of Turing degrees \mathcal{Z} , such that every low Turing degree \mathbf{x} is uniquely positioned with respect to the c.e. degrees and the elements of \mathcal{Z} .

If $\mathbf{x}, \mathbf{y} \leq \mathbf{0}'$, $\mathbf{x}' = \mathbf{0}'$ and $\mathbf{y} \nleq \mathbf{x}$ then there are $\mathbf{g}_i \leq \mathbf{0}'$, c.e. degrees \mathbf{a}_i and Δ_2^0 degrees $\mathbf{c}_i, \mathbf{b}_i$ for i = 1, 2 such that:

- **1** \mathbf{b}_i and \mathbf{c}_i are elements of \mathcal{Z} .
- **2** \mathbf{g}_i is the least element below \mathbf{a}_i which joins \mathbf{b}_i above \mathbf{c}_i .
- $3 x \leq g_1 \vee g_2.$

Theorem (Biinterpretability with parameters)

Theorem (Biinterpretability with parameters)

There are finitely many Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the Δ_2^0 degrees.

1 The automorphism group of $\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ is countable.

Theorem (Biinterpretability with parameters)

- **①** The automorphism group of $\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ is countable.
- 2 Every automorphism π of $\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ has an arithmetic presentation.

Theorem (Biinterpretability with parameters)

- **1** The automorphism group of $\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ is countable.
- **②** Every automorphism π of $\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ has an arithmetic presentation.
- **③** Every relation $\mathcal{R} \subseteq \mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ induced by an arithmetically definable degree invariant relation is definable with finitely many Δ^0_2 parameters. If \mathcal{R} is invariant under automorphisms then it is definable.

Theorem (Biinterpretability with parameters)

- **1** The automorphism group of $\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ is countable.
- **②** Every automorphism π of $\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ has an arithmetic presentation.
- **3** Every relation $\mathcal{R} \subseteq \mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ induced by an arithmetically definable degree invariant relation is definable with finitely many Δ_2^0 parameters. If \mathcal{R} is invariant under automorphisms then it is definable.
- **4** $\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ is rigid if and only if $\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$ is biinterpretable with first order arithmetic.

Part II: The structure of the enumeration degrees

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

Part II: The structure of the enumeration degrees

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

• $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.

Definition

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.

Definition

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.

Definition

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- The least element: $\mathbf{0}_{\mathbf{e}} = d_{\mathbf{e}}(\emptyset)$, the set of all c.e. sets.

Definition

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- The least element: $\mathbf{0}_{\mathbf{e}} = d_{\mathbf{e}}(\emptyset)$, the set of all c.e. sets.
- The least upper bound: $d_e(A) \vee d_e(B) = d_e(A \oplus B)$.

Definition

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- The least element: $\mathbf{0}_{\mathbf{e}} = d_{\mathbf{e}}(\emptyset)$, the set of all c.e. sets.
- The least upper bound: $d_e(A) \vee d_e(B) = d_e(A \oplus B)$.
- The enumeration jump: $d_e(A)' = d_e(K_A \oplus \overline{K_A})$, where $K_A = \{\langle e, x \rangle \mid x \in W_e(A)\}$.

What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}$$
.

Proposition

$$A \leq_{\mathcal{T}} B \Leftrightarrow A \oplus \overline{A} \leq_{e} B \oplus \overline{B}$$
.

A set A is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by \mathcal{TOT} .

Proposition

$$A \leq_{\mathcal{T}} B \Leftrightarrow A \oplus \overline{A} \leq_{e} B \oplus \overline{B}$$
.

A set A is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by \mathcal{TOT} .

The embedding $\iota: \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}$$
.

A set A is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by \mathcal{TOT} .

The embedding $\iota: \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

$$(\mathcal{D}_{\mathcal{T}},\leq_{\mathcal{T}},\vee,{}',\boldsymbol{0}_{\mathcal{T}})\cong(\mathcal{TOT},\leq_{\boldsymbol{e}},\vee,{}',\boldsymbol{0}_{\boldsymbol{e}})\subseteq(\mathcal{D}_{\boldsymbol{e}},\leq_{\boldsymbol{e}},\vee,{}',\boldsymbol{0}_{\boldsymbol{e}})$$

Proposition

$$A \leq_{\mathcal{T}} B \Leftrightarrow A \oplus \overline{A} \leq_{e} B \oplus \overline{B}$$
.

A set A is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by \mathcal{TOT} .

The embedding $\iota: \mathcal{D}_{\mathcal{T}} \to \mathcal{D}_{e}$, defined by $\iota(d_{\mathcal{T}}(A)) = d_{e}(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

$$(\mathcal{D}_{\mathcal{T}}, \leq_{\mathcal{T}}, \vee, ', \mathbf{0}_{\mathcal{T}}) \cong (\mathcal{TOT}, \leq_{\boldsymbol{e}}, \vee, ', \mathbf{0}_{\boldsymbol{e}}) \subseteq (\mathcal{D}_{\boldsymbol{e}}, \leq_{\boldsymbol{e}}, \vee, ', \mathbf{0}_{\boldsymbol{e}})$$

If $\mathbf{x} \in \mathcal{D}_T$ then we will call $\iota(\mathbf{x})$ the image of \mathbf{x} .

Theorem (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Theorem (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Theorem (Cai, Ganchev, Lempp, Miller, S)

The set of total enumeration degrees is first order definable in the enumeration degrees.

Theorem (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Theorem (Cai, Ganchev, Lempp, Miller, S)

The set of total enumeration degrees is first order definable in the enumeration degrees.

Definition

A Turing degree \mathbf{a} is c.e. in a Turing degree \mathbf{x} if some $A \in \mathbf{a}$ is c.e. in some $X \in \mathbf{x}$.

Theorem (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Theorem (Cai, Ganchev, Lempp, Miller, S)

The set of total enumeration degrees is first order definable in the enumeration degrees.

Definition

A Turing degree \mathbf{a} is c.e. in a Turing degree \mathbf{x} if some $A \in \mathbf{a}$ is c.e. in some $X \in \mathbf{x}$.

Theorem (Cai, Ganchev, Lempp, Miller, S)

The image of the relation "c.e. in " in the enumeration degrees is first order definable in \mathcal{D}_e .

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\boldsymbol{x} \in \mathcal{TOT} \mid \textit{d}_{\textit{e}}(\textit{A}) \leq \boldsymbol{x}\} \supseteq \{\boldsymbol{x} \in \mathcal{TOT} \mid \textit{d}_{\textit{e}}(\textit{B}) \leq \boldsymbol{x}\}.$$

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\boldsymbol{x} \in \mathcal{TOT} \mid \textit{d}_{\textit{e}}(\textit{A}) \leq \boldsymbol{x}\} \supseteq \{\boldsymbol{x} \in \mathcal{TOT} \mid \textit{d}_{\textit{e}}(\textit{B}) \leq \boldsymbol{x}\}.$$

Corollary

The total enumeration degrees form a definable automorphism basis of the enumeration degrees.

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\boldsymbol{x}\in\mathcal{TOT}\mid \textit{d}_{e}(\textit{A})\leq\boldsymbol{x}\}\supseteq\{\boldsymbol{x}\in\mathcal{TOT}\mid \textit{d}_{e}(\textit{B})\leq\boldsymbol{x}\}.$$

Corollary

The total enumeration degrees form a definable automorphism basis of the enumeration degrees.

• If \mathcal{D}_T is rigid then \mathcal{D}_e is rigid.

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\boldsymbol{x}\in\mathcal{TOT}\mid \textit{d}_{e}(\textit{A})\leq\boldsymbol{x}\}\supseteq\{\boldsymbol{x}\in\mathcal{TOT}\mid \textit{d}_{e}(\textit{B})\leq\boldsymbol{x}\}.$$

Corollary

The total enumeration degrees form a definable automorphism basis of the enumeration degrees.

- If \mathcal{D}_T is rigid then \mathcal{D}_e is rigid.
- The automorphism analysis for the enumeration degrees follows.

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\boldsymbol{x}\in\mathcal{TOT}\mid d_{\boldsymbol{e}}(A)\leq\boldsymbol{x}\}\supseteq\{\boldsymbol{x}\in\mathcal{TOT}\mid d_{\boldsymbol{e}}(B)\leq\boldsymbol{x}\}.$$

Corollary

The total enumeration degrees form a definable automorphism basis of the enumeration degrees.

- If \mathcal{D}_T is rigid then \mathcal{D}_e is rigid.
- The automorphism analysis for the enumeration degrees follows.
- The total degrees below $\mathbf{0}_e^{(5)}$ are an automorphism base of \mathcal{D}_e .

Theorem

Theorem

There are total Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the total Δ_2^0 enumeration degrees.

• The parameters \vec{p} code an indexing of the image of the c.e. Turing degrees.

Theorem

- The parameters \vec{p} code an indexing of the image of the c.e. Turing degrees.
- ② The parameters \vec{p} code an indexing of the image of a uniformly low set \mathcal{Z} .

Theorem

- The parameters \vec{p} code an indexing of the image of the c.e. Turing degrees.
- ② The parameters \vec{p} code an indexing of the image of a uniformly low set \mathcal{Z} .
- **3** Every low total Δ_2^0 enumeration degree is uniquely positioned with respect to the image of the c.e. degrees and the image of \mathcal{Z} .

Theorem

- The parameters \vec{p} code an indexing of the image of the c.e. Turing degrees.
- ② The parameters \vec{p} code an indexing of the image of a uniformly low set \mathcal{Z} .
- **3** Every low total Δ_2^0 enumeration degree is uniquely positioned with respect to the image of the c.e. degrees and the image of \mathcal{Z} .
- 4 Every total Δ_2^0 enumeration degree is uniquely positioned with respect to the low total Δ_2^0 enumeration degrees.

An improvement

Theorem

• Every low Δ_2^0 enumeration degree is uniquely positioned with respect to the image of the c.e. Turing degrees and the low 3-c.e. enumeration degrees.

An improvement

Theorem

- Every low Δ_2^0 enumeration degree is uniquely positioned with respect to the image of the c.e. Turing degrees and the low 3-c.e. enumeration degrees.
- 2 Every low 3-c.e. enumeration degree is uniquely positioned with respect to the image of the c.e. Turing degrees.

An improvement

Theorem

- Every low Δ_2^0 enumeration degree is uniquely positioned with respect to the image of the c.e. Turing degrees and the low 3-c.e. enumeration degrees.
- 2 Every low 3-c.e. enumeration degree is uniquely positioned with respect to the image of the c.e. Turing degrees.

If \vec{p} defines a model of arithmetic \mathcal{M} and an indexing of the images of the c.e. Turing degrees then \vec{p} defines an indexing of the total Δ_2^0 enumeration degrees.

New Goal

Using parameters \vec{p} that index the image of the c.e. degrees define an indexing of the images of all Turing degrees that are c.e. in and above some Δ_2^0 Turing degree.

New Goal

Using parameters \vec{p} that index the image of the c.e. degrees define an indexing of the images of all Turing degrees that are c.e. in and above some Δ_2^0 Turing degree.

$$\psi(e_0^{\mathcal{M}}, e_1^{\mathcal{M}}) = \iota(d_{\mathcal{T}}(Y)), \text{ where } Y = W_{e_0}^X \text{ and } X = \{e_1\}^{\emptyset'}.$$

New Goal

Using parameters \vec{p} that index the image of the c.e. degrees define an indexing of the images of all Turing degrees that are c.e. in and above some Δ_2^0 Turing degree.

$$\psi(e_0^{\mathcal{M}}, e_1^{\mathcal{M}}) = \iota(d_{\mathcal{T}}(Y)), \text{ where } Y = W_{e_0}^X \text{ and } X = \{e_1\}^{\emptyset'}.$$

• If we succeed then relativizing the previous step to any total Δ_2^0 enumeration degree we can extend this to an indexing of the image of $\bigcup_{\mathbf{x} \leq_T \mathbf{0}'} [\mathbf{x}, \mathbf{x}']$.

New Goal

Using parameters \vec{p} that index the image of the c.e. degrees define an indexing of the images of all Turing degrees that are c.e. in and above some Δ_2^0 Turing degree.

$$\psi(e_0^{\mathcal{M}}, e_1^{\mathcal{M}}) = \iota(d_{\mathcal{T}}(Y)), \text{ where } Y = W_{e_0}^X \text{ and } X = \{e_1\}^{\emptyset'}.$$

- If we succeed then relativizing the previous step to any total Δ_2^0 enumeration degree we can extend this to an indexing of the image of $\bigcup_{\mathbf{x} \leq _7 \mathbf{0'}} [\mathbf{x}, \mathbf{x'}]$.
- We will use that the image of the relation 'c.e. in' and the enumeration jump are definable.

Suppose that \mathbf{x} is Δ_2^0 and \mathbf{y} is c.e. in and above \mathbf{x} .

• If $\mathbf{y} \geq \mathbf{0}'$ then we use Shoenfield's jump inversion theorem to find a Δ_2^0 degree \mathbf{z} such that $\mathbf{z}' = \mathbf{y}$.

Suppose that **x** is Δ_2^0 and **y** is c.e. in and above **x**.

- If $\mathbf{y} \geq \mathbf{0}'$ then we use Shoenfield's jump inversion theorem to find a Δ_2^0 degree \mathbf{z} such that $\mathbf{z}' = \mathbf{y}$.
- ② Otherwise using Sacks' splitting theorem we can represent \mathbf{y} as $\mathbf{a}_1 \vee \mathbf{a}_2$, where \mathbf{a}_1 and \mathbf{a}_2 are low and c.e.a. relative to \mathbf{x} which avoid the cone above $\mathbf{0}'$.

Suppose that \mathbf{x} is Δ_2^0 and \mathbf{y} is c.e. in and above \mathbf{x} .

- If $\mathbf{y} \geq \mathbf{0}'$ then we use Shoenfield's jump inversion theorem to find a Δ_2^0 degree \mathbf{z} such that $\mathbf{z}' = \mathbf{y}$.
- ② Otherwise using Sacks' splitting theorem we can represent \mathbf{y} as $\mathbf{a}_1 \vee \mathbf{a}_2$, where \mathbf{a}_1 and \mathbf{a}_2 are low and c.e.a. relative to \mathbf{x} which avoid the cone above $\mathbf{0}'$.
- Define an indexing of all low and c.e.a. relative to x such avoid the cone above 0'.

Suppose that **x** is Δ_2^0 and **y** is c.e. in and above **x**.

- If $\mathbf{y} \geq \mathbf{0}'$ then we use Shoenfield's jump inversion theorem to find a Δ_2^0 degree \mathbf{z} such that $\mathbf{z}' = \mathbf{y}$.
- ② Otherwise using Sacks' splitting theorem we can represent \mathbf{y} as $\mathbf{a}_1 \vee \mathbf{a}_2$, where \mathbf{a}_1 and \mathbf{a}_2 are low and c.e.a. relative to \mathbf{x} which avoid the cone above $\mathbf{0}'$.
- Define an indexing of all low and c.e.a. relative to x such avoid the cone above 0'.
 - We can define the set of images of low relative to x degrees that are c.e. in and above x and avoid the cone above 0'.

C.e. in and above a Δ_2^0 degree: complicated case

Theorem

If Y and W are c.e. sets and A is a low c.e. set such that $W \nleq_T A$ and $Y \nleq_T A$ then there are sets U and V computable from W such that:

- $V \leq_T Y \oplus U$
- $V \nleq_T A \oplus U$

C.e. in and above a Δ_2^0 degree: complicated case

Theorem

If Y and W are c.e. sets and A is a low c.e. set such that $W \nleq_T A$ and $Y \nleq_T A$ then there are sets U and V computable from W such that:

- $V \leq_T Y \oplus U$
- $V \nleq_T A \oplus U$

Relative to *X* and with $W = \emptyset'$ we get:

C.e. in and above a Δ_2^0 degree: complicated case

Theorem

If Y and W are c.e. sets and A is a low c.e. set such that $W \nleq_T A$ and $Y \nleq_T A$ then there are sets U and V computable from W such that:

- $V \leq_T Y \oplus U$
- $V \nleq_T A \oplus U$

Relative to X and with $W = \emptyset'$ we get:

Within the class of low and c.e.a degrees relative to \mathbf{x} which do not compute \emptyset' , \mathbf{y} is uniquely positioned with respect to the Δ_2^0 Turing degrees.

Theorem

Let \vec{p} are parameters that index the image of the c.e. Turing degrees then \vec{p} index $\bigcup_{\mathbf{x}<\tau 0'}[\mathbf{x},\mathbf{x}']$.

Theorem

Let \vec{p} are parameters that index the image of the c.e. Turing degrees then \vec{p} index $\bigcup_{\mathbf{x}<\tau\mathbf{0}'}[\mathbf{x},\mathbf{x}']$.

Next Goal

Extend to an indexing of the image of all Δ_3^0 Turing degrees.

Theorem

Let \vec{p} are parameters that index the image of the c.e. Turing degrees then \vec{p} index $\bigcup_{\mathbf{x}<\tau\mathbf{0}'}[\mathbf{x},\mathbf{x}']$.

Next Goal

Extend to an indexing of the image of all Δ_3^0 Turing degrees.

Theorem

There are high Δ_2^0 degrees \mathbf{h}_1 and \mathbf{h}_2 such that every 2-generic Δ_3^0 Turing degree \mathbf{g} satisfies $(\mathbf{h}_1 \vee \mathbf{g}) \wedge (\mathbf{h}_2 \vee \mathbf{g}) = \mathbf{g}$.

Theorem

Let \vec{p} are parameters that index the image of the c.e. Turing degrees then \vec{p} index $\bigcup_{\mathbf{x}<\tau\mathbf{0}'}[\mathbf{x},\mathbf{x}']$.

Next Goal

Extend to an indexing of the image of all Δ_3^0 Turing degrees.

Theorem

There are high Δ_2^0 degrees \mathbf{h}_1 and \mathbf{h}_2 such that every 2-generic Δ_3^0 Turing degree \mathbf{g} satisfies $(\mathbf{h}_1 \vee \mathbf{g}) \wedge (\mathbf{h}_2 \vee \mathbf{g}) = \mathbf{g}$.

Note that $\mathbf{h}_i \vee \mathbf{g} \in [\mathbf{h}_i, \mathbf{h}_i']$ thus we have a way to identify this degree and hence we have a way to identify \mathbf{g} .

And now we iterate!

Theorem

Let n be a natural number and \vec{p} be parameters that index the image of the c.e. Turing degrees. There is a definable from \vec{p} indexing of the total Δ_{n+1}^0 sets.

• There is a finite automorphism base for the enumeration degrees consisting of total Δ_2^0 enumeration degrees:

- There is a finite automorphism base for the enumeration degrees consisting of total Δ_2^0 enumeration degrees:
- ② The image of the c.e. Turing degrees is an automorphism base for \mathcal{D}_e .

- There is a finite automorphism base for the enumeration degrees consisting of total Δ_2^0 enumeration degrees:
- ② The image of the c.e. Turing degrees is an automorphism base for \mathcal{D}_e .
- If the structure of the c.e. Turing degrees is rigid then so is the structure of the enumeration degrees.

- There is a finite automorphism base for the enumeration degrees consisting of total Δ_2^0 enumeration degrees:
- ② The image of the c.e. Turing degrees is an automorphism base for \mathcal{D}_e .
- If the structure of the c.e. Turing degrees is rigid then so is the structure of the enumeration degrees.

Question

Can every automorphism of the Turing degrees be extended to an automorphism of the enumeration degrees?

- There is a finite automorphism base for the enumeration degrees consisting of total Δ_2^0 enumeration degrees:
- ② The image of the c.e. Turing degrees is an automorphism base for \mathcal{D}_e .
- If the structure of the c.e. Turing degrees is rigid then so is the structure of the enumeration degrees.

Question

- Can every automorphism of the Turing degrees be extended to an automorphism of the enumeration degrees?
- ② Can we extend automorphisms of the c.e. degrees to automorphisms of \mathcal{D}_T or of \mathcal{D}_e ?