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Martingales

I Unpredictability paradigm - von Mises, 1919.

I You try to make money by betting on the next bit of the
sequence. If the sequence is random, you should not be able
to make arbitrarily much.

I A martingale is a function f : 2<ω → R>0 such that for all σ,

f (σ) =
f (σ0) + f (σ1)

2
.

(fairness condition)

I A martingale f succeeds on A if lim supn f (A � n) =∞.



I A martingale is c.e. if f (σ) is left-c.e. That is, there is a
computable approximation fs where f (σ) = lims fs(σ) and
fs(σ) is an increasing sequence of rationals.

Theorem (Schnorr)

A real is Martin-Löf random iff no c.e. martingale succeeds on it.

We can vary the effectiveness of the martingale, or the definition of
“succeeds” to get different randomness notions.

If f (σ) is a computable real, this leads to computably randoms.
Computable martingale + Schnorr succeeds =⇒ Schnorr random.
Computable martingale + Kurtz succeeds =⇒ Kurtz random.



Integer-valued Randoms

I The martingales allow wagers of, say, $ 1
1,000,000 . This cannot

be done in a casino.

I What if we allowed wagers that were discrete? For example,
$1, $2, $3, . . ..

Definition (Bienvenu, Stephan, Teutsch)

X is IVR iff no computable integer-valued martingale succeeds on
X .

I Can also define F -valued random, finitely-valued random, and
single-valued random.



Theorem (Bienvenu, Stephan, Teutsch)

1. Computably random implies IVR implies FVR implies SVR.

2. Kurtz random implies SVR.

3. FVR implies bi-immune.

I We know that computably random implies Schnorr implies
Kurtz (and no reversals).

I And Schnorr implies law of large numbers.

Theorem (Bienvenu, Stephan, Teutsch)

No other implications hold.



I Consider the real-valued martingale which starts with $1 and
wagers half its capital on 1 every time. No matter how many
times it may lose, it always has some capital left. It always
then has a chance of succeeding later.

I Integer-valued martingales have a minimum bet.

I Suppose m is integer-valued and wagers some of its capital on
the outcome 1. It must wager at least $1. Then if the
outcome is 0, it must lose at least $1.

I So if m has $k, it can lose at most k times before it is
bankrupt and cannot wager again.

I Therefore a strategy for defeating an integer-valued
martingale is finitary.



Genericity

Definition (Actually a theorem of Jockush and Posner)

A is called n-generic if A meets or avoids each Σ0
n set S of strings.

That is, either

I (∃σ ≺ A)σ ∈ S , or

I (∃σ ≺ A)(∀τ ∈ S)(τ 6� σ).

(Kurtz) B is weakly n-generic if it meets all dense S ’s.



Theorem (BST)

I If A is weakly 2-generic then A is IVR. Hence the IVR sets are
co-meagre.

I There is a 1-generic which is not IVR.

Corollary

There is an IVR which is not Schnorr random.



Some other results

I A technique which can be used for real-valued martingales is
the savings trick.

I Given a martingale m, you can define the martingale m′ as
follows. Every time you win $1, you save it, and then wager
with the remaining capital in the same proportion as m, until
you make another dollar.

Theorem (Teutsch)

There is a set which is not IVR, but is IVR for martingales with the
savings property.

I This is because we can no longer guarantee the proportions
will give us integer wagers.



Theorem (Chalcraft, Dougherty, Freiling, Teutsch)

Let A and B be finite sets of computable real numbers. Then
every A-valued random is B-valued random iff there is a k ∈ Q
such that B ⊆ k · A.

Peretz and Bavly investigate this for computable infinite sets.



Questions

I What degrees contain or bound IVRs?

I Do IVRs jump invert?

I Can we refine the level of genericity required? We have that
weak 2- is enough, but 1- is not.

I Left-c.e. reals?

I What about partial IVRs?



Multiply generic sets

I A set is Σ0
1 if it is the range of a partial computable function.

So a set is 1-generic iff it meets or avoids the range of every
partial computable function.

I Consider instead a function that is ω-c.a.

I That is, there is an order function h (computable,
nondecreasing and unbounded) and a computable
approximation g(., .) such that lims g(x , s) = g(x) and
g(x , s) 6= g(x , s + 1) at most h(x) many times.

I We say that g is monotonically h-c.a. if the approximation
has g(x , s) 4 g(x , s + 1).



Definition
Let h be an order. We say that A is h-multiply generic if A meets
or avoids the range of every partial monotonically h-c.a. function.
A is weakly h-multiply generic if it meets the range of every partial
monotonically h-c.a. function with dense range.

I We look into what sets can compute multiply generics later.



Theorem
If h and h′ are order functions, then if A is (weakly) h-multiply
generic, it is also (weakly) h′-multiply generic. So we say A is
multiply generic if it is h-multiply generic for some order h.

Theorem
If A is weakly multiply generic, then A is IVR.

The proof is a simple modification of the BST proof for weakly
2-genericity.
The converse does not hold as there are MLRs which are not
weakly 1-generic.



I Something weaker will still allow us to compute an IVR.

Definition (Downey, Jockusch, Stob)

We say that a set of strings S is pb-dense if it is the range of a
total function f with computable approximation f (σ, s) such that

I lims f (σ, s) = f (σ)

I f (σ, 0) = σ, and

I |{s : f (σ, s) 6= f (σ, s + 1)}| < p(σ) for some primitive
recursive function p.

A set A is pb-generic if it meets all pb-dense sets.

Theorem
If A is pb-generic, then A is IVR.



Array noncomputable degrees

Definition (Downey, Jockusch, Stob)

A degree a is array noncomputable if for every function f 6wtt ∅′,
there is a function g 6T a such that

(∃∞n)(g(n) > f (n)).

I Allows multiple permitting arguments.

I A weakening of non-low2.



The c.e. ANC degrees are especially important. They are the
degrees that

I Contain c.e. sets of infinitely often maximal Kolmogorov
complexity. (Kummer)

I Have effective packing dimension 1. (Downey and Greenberg)

I Compute left-c.e. reals α and B <T α such that if V is a
presentation of α (that is, V is prefix-free, c.e., and
α = µ(V )), then V 6T B. (Downey and Greenberg)

I Bound disjoint c.e. sets A and B such that every separating
set for A and B computes the halting problem. (Downey,
Jockusch and Stob)

I Do not have strong minimal covers. (Ishmukhametov)



Theorem (DJS)

Every ANC degree a bounds a pb-generic.

Theorem

1. Every ANC degree a bounds an IVR.

2. If a is c.e. and bounds an IVR, then it is ANC.



Degrees containing (or not containing) IVRs

So if ANC degrees bound IVRs, do all ANC degrees contain IVRs?

No.

Theorem
There is a c.e. ANC degree which does not contain an IVR.

Corollary

The IVR degrees are not closed upwards in the Turing degrees.



We know that every high degree contains a computably random,
and so an IVR. Moving down one level in the high/low hierarchy,
we have though

Theorem
There is a high2 c.e. degree which does not contain an IVR.



The only c.e. degree which contains a MLR is the complete
degree. We have here

Theorem
There is a low c.e. degree which contains an IVR.

In fact we have more

Theorem
For every degree c.e. in and above ∅′, there is a c.e. degree
containing an IVR which jumps to it.



A closer look at multiply generics

I ∅′ computes a multiply generic.

I Every GL2 set (A′′ >T (A⊕ ∅′)′) computes a multiply generic.

I To get finer results, we look at a new hierarchy defined by
Downey and Greenberg.



Definition (Downey, Greenberg and Weber)

We say that a c.e. degree a is totally ω-c.a. if for all functions
g 6T a, g is ω-c.a. That is, there is a computable approximation
g(x , s) and a computable function h such that g(x) = lims g(x , s)
and

|{s : g(x , s) 6= g(x , s + 1)}| < h(x).

I Every c.e. array computable degree is totally ω-c.a.

I These degrees are definable in the c.e. degrees (DGW).

I The c.e. not totally ω-c.a. degrees are exactly the degrees
containing computably finitely random reals (Downey and
Ng).



Theorem

1. Every c.e. not totally ω-c.a. degree computes a multiply
generic.

2. If a c.e. degree bounds a weakly multiply generic, then it is
not totally ω-c.a.

Outside the c.e. degrees, we seem to need something slightly
stronger.



Definition
Let h : ω → ω2 be computable, nondecreasing and unbounded. We
say that a degree a is uniformly totally ω2-c.a. if for every g 6T a
there is an h-computable approximation. That is, there is a
computable approximation g(·, ·) and a uniformly computable
sequence of functions 〈os〉s<ω from ω to ω2 such that

I g(x) = lims g(x , s),

I o0(x) 6 h(x),

I os+1(x) 6 os(x), and

I if g(x , s + 1) 6= g(x , s) then os+1(x) < os(x).



Theorem
If a is not uniformly totally ω2-c.a. then a computes a multiply
generic.

I These definitions can be extended to much larger computable
ordinals.

I They give are a non-collapsing hierarchy of degrees within the
low2 degrees.



Left-c.e. reals

I Every high c.e. degree contains a left-c.e. computably
random, and so a left-c.e. IVR.

Theorem
If X is left-c.e. and IVR, then X is of high degree.



Partial IVRs

I What if the betting strategy did not have to tell you in
advance what it does? We then get partial IVRs.

Theorem

I There is a partial IVR which is not partial computably random.

I There is an IVR which is not partial IVR. (In fact it can be
low.)

Theorem
Partial IVR and IVR cannot be separated in the high degrees.

Theorem
There is a ∆0

2 IVR which does not bound a partial IVR.

Theorem
Every pb-generic is partial IVR.


