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Martingales

» Unpredictability paradigm - von Mises, 1919.

» You try to make money by betting on the next bit of the
sequence. If the sequence is random, you should not be able
to make arbitrarily much.

» A martingale is a function f : 2<“ — R such that for all o,

flo) = f(c0) + f(al)‘
2
(fairness condition)

» A martingale f succeeds on A if limsup, f(A | n) = oco.



> A martingale is c.e. if f(o) is left-c.e. That is, there is a
computable approximation f; where (o) = lims fs(o) and
fs(o) is an increasing sequence of rationals.

Theorem (Schnorr)
A real is Martin-Lof random iff no c.e. martingale succeeds on it.

We can vary the effectiveness of the martingale, or the definition of
“succeeds” to get different randomness notions.

If (o) is a computable real, this leads to computably randoms.
Computable martingale + Schnorr succeeds =—> Schnorr random.
Computable martingale + Kurtz succeeds — Kurtz random.



Integer-valued Randoms

» The martingales allow wagers of, say, $W1000- This cannot
be done in a casino.

» What if we allowed wagers that were discrete? For example,

$1, $2, $3, .. ..

Definition (Bienvenu, Stephan, Teutsch)

X is IVR iff no computable integer-valued martingale succeeds on
X.

» Can also define F-valued random, finitely-valued random, and
single-valued random.



Theorem (Bienvenu, Stephan, Teutsch)

1. Computably random implies IVR implies FVR implies SVR.
2. Kurtz random implies SVR.
3. FVR implies bi-immune.

» We know that computably random implies Schnorr implies
Kurtz (and no reversals).

» And Schnorr implies law of large numbers.

Theorem (Bienvenu, Stephan, Teutsch)
No other implications hold.



Consider the real-valued martingale which starts with $1 and
wagers half its capital on 1 every time. No matter how many
times it may lose, it always has some capital left. It always
then has a chance of succeeding later.

Integer-valued martingales have a minimum bet.

» Suppose m is integer-valued and wagers some of its capital on

the outcome 1. It must wager at least $1. Then if the
outcome is 0, it must lose at least $1.

So if m has $k, it can lose at most k times before it is
bankrupt and cannot wager again.

Therefore a strategy for defeating an integer-valued
martingale is finitary.



Genericity

Definition (Actually a theorem of Jockush and Posner)
A is called n-generic if A meets or avoids each X9 set S of strings.
That is, either

> (3o < Ao €S, or

> (o < A)(YT € S)(7 # o).

(Kurtz) B is weakly n-generic if it meets all dense S's.



Theorem (BST)

» If A is weakly 2-generic then A is IVR. Hence the IVR sets are
co-meagre.

» There is a 1-generic which is not IVR.

Corollary
There is an IVR which is not Schnorr random.



Some other results

» A technique which can be used for real-valued martingales is
the savings trick.

» Given a martingale m, you can define the martingale m’ as
follows. Every time you win $1, you save it, and then wager
with the remaining capital in the same proportion as m, until
you make another dollar.

Theorem (Teutsch)
There is a set which is not IVR, but is IVR for martingales with the
savings property.

» This is because we can no longer guarantee the proportions
will give us integer wagers.



Theorem (Chalcraft, Dougherty, Freiling, Teutsch)

Let A and B be finite sets of computable real numbers. Then
every A-valued random is B-valued random iff there is a k €
such that B C k- A.

Peretz and Bavly investigate this for computable infinite sets.



Questions

v

What degrees contain or bound IVRs?

v

Do IVRs jump invert?

v

Can we refine the level of genericity required? We have that
weak 2- is enough, but 1- is not.

v

Left-c.e. reals?
What about partial IVRs?

v



Multiply generic sets

> A set is X9 if it is the range of a partial computable function.
So a set is 1-generic iff it meets or avoids the range of every
partial computable function.

» Consider instead a function that is w-c.a.

» That is, there is an order function h (computable,
nondecreasing and unbounded) and a computable
approximation g(.,.) such that lims g(x,s) = g(x) and
g(x,s) # g(x,s + 1) at most h(x) many times.

» We say that g is monotonically h-c.a. if the approximation
has g(x,s) < g(x,s +1).



Definition

Let h be an order. We say that A is h-multiply generic if A meets

or avoids the range of every partial monotonically h-c.a. function.

A is weakly h-multiply generic if it meets the range of every partial
monotonically h-c.a. function with dense range.

» We look into what sets can compute multiply generics later.



Theorem

If h and h" are order functions, then if A is (weakly) h-multiply
generic, it is also (weakly) h'-multiply generic. So we say A is
multiply generic if it is h-multiply generic for some order h.

Theorem
If A is weakly multiply generic, then A is IVR.

The proof is a simple modification of the BST proof for weakly
2-genericity.

The converse does not hold as there are MLRs which are not
weakly 1-generic.



» Something weaker will still allow us to compute an IVR.

Definition (Downey, Jockusch, Stob)
We say that a set of strings S is pb-dense if it is the range of a
total function f with computable approximation f(o,s) such that
> lims (0, s) = f(o)
» f(0,0) =0, and
> |{s: f(o,s) # f(o,s+1)}| < p(o) for some primitive
recursive function p.

A set A is pb-generic if it meets all pb-dense sets.

Theorem
If A is pb-generic, then A is IVR.



Array noncomputable degrees

Definition (Downey, Jockusch, Stob)

A degree a is array noncomputable if for every function f <, (V,
there is a function g <7 a such that

(3%n)(g(n) > £(n)).

» Allows multiple permitting arguments.

> A weakening of non-lows.



The c.e. ANC degrees are especially important. They are the
degrees that

>

Contain c.e. sets of infinitely often maximal Kolmogorov
complexity. (Kummer)

» Have effective packing dimension 1. (Downey and Greenberg)

» Compute left-c.e. reals o and B <7 « such that if V is a

presentation of « (that is, V is prefix-free, c.e., and
a = u(V)), then V <1 B. (Downey and Greenberg)

Bound disjoint c.e. sets A and B such that every separating
set for A and B computes the halting problem. (Downey,
Jockusch and Stob)

Do not have strong minimal covers. (Ishmukhametov)



Theorem (DJS)
Every ANC degree a bounds a pb-generic.
Theorem

1. Every ANC degree a bounds an IVR.
2. Ifais c.e. and bounds an IVR, then it is ANC.



Degrees containing (or not containing) IVRs

So if ANC degrees bound IVRs, do all ANC degrees contain IVRs?

No.

Theorem
There is a c.e. ANC degree which does not contain an IVR.

Corollary

The IVR degrees are not closed upwards in the Turing degrees.



We know that every high degree contains a computably random,
and so an IVR. Moving down one level in the high/low hierarchy,
we have though

Theorem
There is a highy c.e. degree which does not contain an IVR.



The only c.e. degree which contains a MLR is the complete
degree. We have here

Theorem
There is a low c.e. degree which contains an IVR.

In fact we have more

Theorem
For every degree c.e. in and above (), there is a c.e. degree
containing an IVR which jumps to it.



A closer look at multiply generics

> (' computes a multiply generic.
» Every GLy set (A” >7 (A® (')') computes a multiply generic.

» To get finer results, we look at a new hierarchy defined by
Downey and Greenberg.



Definition (Downey, Greenberg and Weber)

We say that a c.e. degree a is totally w-c.a. if for all functions
g <7 a, g isw-c.a. That is, there is a computable approximation
g(x,s) and a computable function h such that g(x) = lims g(x, s)

and

{s: g(x.s) # glx,s + 1)}| < h(x).

» Every c.e. array computable degree is totally w-c.a.
» These degrees are definable in the c.e. degrees (DGW).

» The c.e. not totally w-c.a. degrees are exactly the degrees
containing computably finitely random reals (Downey and

Ng).



Theorem
1. Every c.e. not totally w-c.a. degree computes a multiply
generic.

2. If a c.e. degree bounds a weakly multiply generic, then it is
not totally w-c.a.

Outside the c.e. degrees, we seem to need something slightly
stronger.



Definition

Let h: w — w? be computable, nondecreasing and unbounded. We
say that a degree a is uniformly totally w?-c.a. if for every g <7 a
there is an h-computable approximation. That is, there is a
computable approximation g(+,) and a uniformly computable
sequence of functions (0s)s<., from w to w? such that

> g(x) = lims g(x,s),

> on(x) < h(x),

> 0s+1(x) < 0s(x), and

> if g(x,s+ 1) # g(x,s) then 0s41(x) < 0s(x).



Theorem
If a is not uniformly totally w’-c.a. then a computes a multiply
generic.

» These definitions can be extended to much larger computable
ordinals.

» They give are a non-collapsing hierarchy of degrees within the
low, degrees.



Left-c.e. reals

» Every high c.e. degree contains a left-c.e. computably
random, and so a left-c.e. IVR.

Theorem
If X is left-c.e. and IVR, then X is of high degree.



Partial IVRs

» What if the betting strategy did not have to tell you in
advance what it does? We then get partial IVRs.

Theorem

» There is a partial IVR which is not partial computably random.

» There is an IVR which is not partial IVR. (In fact it can be
low.)

Theorem
Partial IVR and IVR cannot be separated in the high degrees.

Theorem
There is a Ag IVR which does not bound a partial IVR.

Theorem
Every pb-generic is partial IVR.



