Integer-valued Randomness and Degrees

Michael McInerney, Victoria University of Wellington. Joint work with Rod Downey and George Barmpalias, also at VUW

Computability Complexity and Randomness 2014

June 12, 2014

Martingales

- Unpredictability paradigm von Mises, 1919.
- You try to make money by betting on the next bit of the sequence. If the sequence is random, you should not be able to make arbitrarily much.
- A martingale is a function $f: 2^{\leq \omega} \to \mathbb{R}_{\geq 0}$ such that for all σ ,

$$f(\sigma) = \frac{f(\sigma 0) + f(\sigma 1)}{2}$$

(fairness condition)

• A martingale f succeeds on A if $\limsup_n f(A \upharpoonright n) = \infty$.

A martingale is *c.e.* if f(σ) is left-c.e. That is, there is a computable approximation f_s where f(σ) = lim_s f_s(σ) and f_s(σ) is an increasing sequence of rationals.

Theorem (Schnorr)

A real is Martin-Löf random iff no c.e. martingale succeeds on it.

We can vary the effectiveness of the martingale, or the definition of "succeeds" to get different randomness notions.

If $f(\sigma)$ is a computable real, this leads to computably randoms. Computable martingale + Schnorr succeeds \implies Schnorr random. Computable martingale + Kurtz succeeds \implies Kurtz random.

Integer-valued Randoms

- The martingales allow wagers of, say, \$\frac{1}{1,000,000}\$. This cannot be done in a casino.
- What if we allowed wagers that were discrete? For example, \$1, \$2, \$3,

Definition (Bienvenu, Stephan, Teutsch)

X is IVR iff no computable integer-valued martingale succeeds on X.

Can also define *F*-valued random, finitely-valued random, and single-valued random.

Theorem (Bienvenu, Stephan, Teutsch)

- 1. Computably random implies IVR implies FVR implies SVR.
- 2. Kurtz random implies SVR.
- 3. FVR implies bi-immune.
- We know that computably random implies Schnorr implies Kurtz (and no reversals).

And Schnorr implies law of large numbers.

Theorem (Bienvenu, Stephan, Teutsch) *No other implications hold.*

- Consider the real-valued martingale which starts with \$1 and wagers half its capital on 1 every time. No matter how many times it may lose, it always has some capital left. It always then has a chance of succeeding later.
- Integer-valued martingales have a minimum bet.
- Suppose m is integer-valued and wagers some of its capital on the outcome 1. It must wager at least \$1. Then if the outcome is 0, it must lose at least \$1.

- So if m has \$k, it can lose at most k times before it is bankrupt and cannot wager again.
- Therefore a strategy for defeating an integer-valued martingale is finitary.

Genericity

Definition (Actually a theorem of Jockush and Posner) A is called *n*-generic if A meets or avoids each Σ_n^0 set S of strings. That is, either

•
$$(\exists \sigma \prec A)\sigma \in S$$
, or

•
$$(\exists \sigma \prec A)(\forall \tau \in S)(\tau \not\succ \sigma).$$

(Kurtz) B is weakly *n*-generic if it meets all dense S's.

Theorem (BST)

 If A is weakly 2-generic then A is IVR. Hence the IVR sets are co-meagre.

There is a 1-generic which is not IVR.

Corollary

There is an IVR which is not Schnorr random.

Some other results

- A technique which can be used for real-valued martingales is the savings trick.
- ▶ Given a martingale *m*, you can define the martingale *m'* as follows. Every time you win \$1, you save it, and then wager with the remaining capital in the same proportion as *m*, until you make another dollar.

Theorem (Teutsch)

There is a set which is not IVR, but is IVR for martingales with the savings property.

This is because we can no longer guarantee the proportions will give us integer wagers.

Theorem (Chalcraft, Dougherty, Freiling, Teutsch)

Let A and B be finite sets of computable real numbers. Then every A-valued random is B-valued random iff there is a $k \in \mathbb{Q}$ such that $B \subseteq k \cdot A$.

Peretz and Bavly investigate this for computable infinite sets.

Questions

- What degrees contain or bound IVRs?
- Do IVRs jump invert?
- Can we refine the level of genericity required? We have that weak 2- is enough, but 1- is not.

- Left-c.e. reals?
- What about partial IVRs?

Multiply generic sets

- A set is Σ₁⁰ if it is the range of a partial computable function. So a set is 1-generic iff it meets or avoids the range of every partial computable function.
- Consider instead a function that is ω-c.a.
- ► That is, there is an order function h (computable, nondecreasing and unbounded) and a computable approximation g(.,.) such that lim_s g(x, s) = g(x) and g(x, s) ≠ g(x, s + 1) at most h(x) many times.
- We say that g is monotonically h-c.a. if the approximation has g(x, s) ≼ g(x, s + 1).

Definition

Let *h* be an order. We say that *A* is *h*-multiply generic if *A* meets or avoids the range of every partial monotonically *h*-c.a. function. *A* is weakly *h*-multiply generic if it meets the range of every partial monotonically *h*-c.a. function with dense range.

▶ We look into what sets can compute multiply generics later.

Theorem

If h and h' are order functions, then if A is (weakly) h-multiply generic, it is also (weakly) h'-multiply generic. So we say A is multiply generic if it is h-multiply generic for some order h.

Theorem

If A is weakly multiply generic, then A is IVR.

The proof is a simple modification of the BST proof for weakly 2-genericity.

The converse does not hold as there are MLRs which are not weakly 1-generic.

Something weaker will still allow us to compute an IVR.

Definition (Downey, Jockusch, Stob)

We say that a set of strings S is pb-dense if it is the range of a total function f with computable approximation $f(\sigma, s)$ such that

$$\blacktriangleright \ \lim_{s} f(\sigma, s) = f(\sigma)$$

•
$$f(\sigma, 0) = \sigma$$
, and

|{s: f(σ, s) ≠ f(σ, s + 1)}| < p(σ) for some primitive recursive function p.

A set A is pb-generic if it meets all pb-dense sets.

Theorem If A is pb-generic, then A is IVR.

Definition (Downey, Jockusch, Stob)

A degree **a** is array noncomputable if for every function $f \leq_{wtt} \emptyset'$, there is a function $g \leq_T \mathbf{a}$ such that

 $(\exists^{\infty} n)(g(n) > f(n)).$

- Allows multiple permitting arguments.
- A weakening of non-low₂.

The c.e. ANC degrees are especially important. They are the degrees that

- Contain c.e. sets of infinitely often maximal Kolmogorov complexity. (Kummer)
- Have effective packing dimension 1. (Downey and Greenberg)
- Compute left-c.e. reals α and B <_T α such that if V is a presentation of α (that is, V is prefix-free, c.e., and α = μ(V)), then V ≤_T B. (Downey and Greenberg)
- Bound disjoint c.e. sets A and B such that every separating set for A and B computes the halting problem. (Downey, Jockusch and Stob)

Do not have strong minimal covers. (Ishmukhametov)

Theorem (DJS)

Every ANC degree a bounds a pb-generic.

Theorem

- 1. Every ANC degree **a** bounds an IVR.
- 2. If **a** is c.e. and bounds an IVR, then it is ANC.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Degrees containing (or not containing) IVRs

So if ANC degrees bound IVRs, do all ANC degrees contain IVRs?

No.

Theorem

There is a c.e. ANC degree which does not contain an IVR.

Corollary

The IVR degrees are not closed upwards in the Turing degrees.

We know that every high degree contains a computably random, and so an IVR. Moving down one level in the high/low hierarchy, we have though

Theorem

There is a high₂ c.e. degree which does not contain an IVR.

The only c.e. degree which contains a MLR is the complete degree. We have here

Theorem

There is a low c.e. degree which contains an IVR.

In fact we have more

Theorem

For every degree c.e. in and above \emptyset' , there is a c.e. degree containing an IVR which jumps to it.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

A closer look at multiply generics

- ▶ Ø' computes a multiply generic.
- Every \overline{GL}_2 set $(A'' >_T (A \oplus \emptyset')')$ computes a multiply generic.

 To get finer results, we look at a new hierarchy defined by Downey and Greenberg.

Definition (Downey, Greenberg and Weber)

We say that a c.e. degree **a** is totally ω -c.a. if for all functions $g \leq_T \mathbf{a}$, g is ω -c.a. That is, there is a computable approximation g(x, s) and a computable function h such that $g(x) = \lim_s g(x, s)$ and

$$|\{s: g(x,s) \neq g(x,s+1)\}| < h(x).$$

- Every c.e. array computable degree is totally ω -c.a.
- These degrees are definable in the c.e. degrees (DGW).
- The c.e. not totally ω-c.a. degrees are exactly the degrees containing computably finitely random reals (Downey and Ng).

Theorem

- 1. Every c.e. not totally ω -c.a. degree computes a multiply generic.
- 2. If a c.e. degree bounds a weakly multiply generic, then it is not totally ω -c.a.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Outside the c.e. degrees, we seem to need something slightly stronger.

Definition

Let $h: \omega \to \omega^2$ be computable, nondecreasing and unbounded. We say that a degree **a** is uniformly totally ω^2 -c.a. if for every $g \leq_T \mathbf{a}$ there is an *h*-computable approximation. That is, there is a computable approximation $g(\cdot, \cdot)$ and a uniformly computable sequence of functions $\langle o_s \rangle_{s < \omega}$ from ω to ω^2 such that

- $g(x) = \lim_{s} g(x, s)$,
- ► $o_0(x) \leq h(x)$,
- $o_{s+1}(x) \leqslant o_s(x)$, and
- if $g(x, s + 1) \neq g(x, s)$ then $o_{s+1}(x) < o_s(x)$.

Theorem

If **a** is not uniformly totally ω^2 -c.a. then **a** computes a multiply generic.

- These definitions can be extended to much larger computable ordinals.
- They give are a non-collapsing hierarchy of degrees within the low₂ degrees.

Every high c.e. degree contains a left-c.e. computably random, and so a left-c.e. IVR.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Theorem

If X is left-c.e. and IVR, then X is of high degree.

Partial IVRs

What if the betting strategy did not have to tell you in advance what it does? We then get partial IVRs.

Theorem

• There is a partial IVR which is not partial computably random.

 There is an IVR which is not partial IVR. (In fact it can be low.)

Theorem

Partial IVR and IVR cannot be separated in the high degrees.

Theorem

There is a Δ_2^0 IVR which does not bound a partial IVR.

Theorem Every pb-generic is partial IVR.