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Enumeration reducibility

Friedberg and Rogers introduced enumeration reducibility in 1959.

Definition
We say that A ⊆ ω is enumeration reducible to B ⊆ ω (A ≤e B) if
from every enumeration of B we can enumerate A.

Formally: For each f ∈ ωω with range B, there is a g ∈ ωω such that
g ≤T f and A = range(g).

It is equivalent if we demand that there is a uniform way to produce
an enumeration of A from an enumeration of B (Selman, 1971).

This leads to the standard definition:

Definition
A ≤e B iff there is a c.e. set W such that

A = {n : (∃e) 〈n, e〉 ∈W and De ⊆ B}.

(De denotes the eth finite set in a canonical enumeration.)
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The enumeration degrees

Definition
A ≤e B iff there is a c.e. set W such that

A = {n : (∃e) 〈n, e〉 ∈W and De ⊆ B}.

The degree structure De induced by ≤e is called the enumeration
degrees. It is an upper semi-lattice with a least element (the degree of
all c.e. sets) and a jump operation.

How do the enumeration degrees relate to the Turing degrees?

Relation Uses from B Produces for A
A ≤e B positive information positive information

A is B-c.e. complete information positive information
A ≤T B complete information complete information

Proposition
A ≤T B iff A⊕A is B-c.e. iff A⊕A ≤e B ⊕B.
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The total degrees

Proposition
A ≤T B iff A⊕A is B-c.e. iff A⊕A ≤e B ⊕B.

This suggests a natural embedding of the Turing degrees into the
enumeration degrees.

Proposition
The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕A),
preserves the order, the least upper bound, and the jump operation.

Definition
The total degrees are the image of the Turing degrees under this
embedding (i.e., they are the enumeration degrees that contain a set
of the form A⊕A).

Question (Rogers, 1967)
Is the set of total enumeration degrees first order definable in the
structure of the enumeration degrees?
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Partial solutions

Question (Rogers, 1967)
Is the set of total enumeration degrees first order definable in the
structure of the enumeration degrees?

I Kalimullin, 2003: The enumeration jump is first order definable
in the enumeration degrees.

Thus the total enumeration degrees above 0′
e can be defined as

the image of the enumeration jump.

I Ganchev and Soskova, 2010: The total enumeration degrees
below 0′

e are first order definable in the enumeration degrees.

Main ingredient: Kalimullin pairs.

I Soskova, 2013: The total enumeration degrees are first order
definable with one parameter.

Main ingredient: An analysis of the automorphism group of the
enumeration degrees (based on Slaman and Woodin’s framework).
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Answering the question

Question (Rogers, 1967)
Is the set of total enumeration degrees first order definable in the
structure of the enumeration degrees?

Answer (Cai, Ganchev, Lempp, M., Soskova)

Yes.

In particular, we show that a nonzero enumeration degree is total iff it
is the join of a maximal Kalimullin pair.︸ ︷︷ ︸

�
�
���

Our next goal is to under-
stand what this means.
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Semi-computable sets

Definition (Jockusch, 1966)
A ⊆ ω is semi-computable if there is a total computable selector
function sA : ω2 → ω, such that for all n,m ∈ ω

I sA(n,m) ∈ {n,m}, and

I if {n,m} ∩A 6= ∅, then sA(n,m) ∈ A.

Intuition. sA(n,m) selects which element of {n,m} is “more likely”
to be in A.

I If A is a left cut in a computable linear ordering L, then it is
semi-computable.

Let sA(n,m) = min{n,m}.

I Conversely, every semi-computable set A is a left cut in some
computable linear ordering.
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Semi-computable sets (cont.)

Every Turing degree contains a semi-computable set:

I Order 2<ω as follows: σ ≤ τ if σ � τ or σ is left of τ . (You may
recognize this as the usual priority ordering.)

I Similarly, σ ≤ A if σ ≤ τ for some τ ≺ A.

I For a set A, let LA = {σ ∈ 2<ω : σ ≤ A}.
I Then LA is semi-computable and LA ≡T A.

Slightly stronger:

Theorem (Jockusch, 1966)
Every nonzero Turing degree contains a semi-computable set that is
neither c.e. nor co-c.e.

Theorem (Arslanov, Cooper, Kalimullin, 2003)
If A is a semi-computable set, then for every X:

(de(X) ∨ de(A)) ∧ (de(X) ∨ de(A)) = de(X).
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Kalimullin pairs

Theorem (Arslanov, Cooper, Kalimullin, 2003)
If A is a semi-computable set, then for every X:

(de(A) ∨ de(X)) ∧ (de(A) ∨ de(X)) = de(X).

So de(A) and de(A) form a minimal pair in a very strong sense.

Kalimullin characterized this strong minimal pair property.

Definition (Kalimullin, 2003)
A pair of sets {A,B} is called a K-pair if there is a c.e. set W such
that A×B ⊆W and A×B ⊆W .

In other words:

I If 〈n, k〉 ∈W , then n ∈ A or k ∈ B.

I If 〈n, k〉 /∈W , then n /∈ A or k /∈ B.
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Kalimullin pairs (cont.)

Definition (Kalimullin, 2003)
A pair of sets {A,B} is called a K-pair if there is a c.e. set W such
that A×B ⊆W and A×B ⊆W .

Examples
I If B is c.e. and A is any set, then {A,B} is a K-pair witnessed by
W = N×B. Call a K-pair with a c.e. member trivial.

I If A is a semi-computable set, then {A,A} is a K-pair witnessed
by W = {〈n, k〉 : sA(n, k) = n}.

Proposition
If {A,B} is a nontrivial K-pair, then A ≤e B (and B ≤e A).

Proof.
We claim that A = Â := {n : (∃k ∈ B) 〈n, k〉 ∈W}. It is clear that
Â ⊆ A. Suppose that n ∈ Ar Â. Then k ∈ B iff 〈n, k〉 ∈W . But this
means that B is c.e., which is a contradiction.
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Properties of K-pairs

As promised:

Theorem (Kalimullin, 2003)
A pair of sets {A,B} is a K-pair if and only if their enumeration
degrees a and b satisfy:

K(a,b) := (∀x ∈ De)[ (a ∨ x) ∧ (b ∨ x) = x ].

Corollary
Fix A. The set of all B, such that {A,B} forms a K-pair is an ideal,
i.e., it is closed under join and closed downward with respect to
enumeration reducibility.

Kalimullin introduced K-pairs to give a first order definition of the
jump in De.

Theorem (Kalimullin, 2003)
0′
e is the largest degree that is the join of a triple a,b, c, such that
K(a,b), K(b, c) and K(a, c).
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Maximal K-pairs

Definition
A K-pair {a,b} is maximal if for every K-pair {c,d} with a ≤ c and
b ≤ d, we have that a = c and b = d.

I Maximal K-pairs are first order definable in De.

I If {A,A} is a nontrivial K-pair, then it is maximal.

Proof. Suppose {C,D} is a K-pair with A ≤e C and A ≤e D.
Then by the ideal property, {A,D} is a nontrivial K-pair. But
then D ≤e A, so in fact, A ≡e D. Similarly, A ≡e C.

I If A is a semi-computable set that is neither c.e. nor co-c.e., then
{A,A} form a maximal K-pair.

I Every nonzero total degree is the join of a maximal K-pair.

Proof. Consider a total degree d. Jockusch proved that there is
a semi-computable set A that is neither c.e. nor co-c.e. such that
d = dege(A⊕A) = ι(degT (A)). Then {A,A} is a K-pair and
d = dege(A) ∨ dege(A).
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Defining the total degrees (local version)

I If {A,A} is a nontrivial K-pair, then it is maximal.
I Every nonzero total degree is the join of a maximal K-pair.

Theorem (Ganchev and Soskova)
If {A,B} is a nontrivial K-pair in De(≤ 0′

e), then there is a
semi-computable set C such that A ≤e C and B ≤e C.

Therefore, if {a,b} is a maximal K-pair in De(≤ 0′
e), then there is a

(semi-computable) set C such that C ∈ a and C ∈ b.

Corollary
A nonzero degree in De(≤ 0′

e) is total if and only if it is the join of a
maximal K-pair.

Theorem (Ganchev and Soskova, 2012)
The class of K-pairs below 0′

e is first order definable in De(≤ 0′
e).

Corollary
The total degrees below 0′

e are first order definable in De(≤ 0′
e).
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Defining the total degrees (global version)

I If {A,A} is a nontrivial K-pair, then it is maximal.

I Every nonzero total degree is the join of a maximal K-pair.

Theorem (Cai, Ganchev, Lempp, M., Soskova)
If {A,B} is a nontrivial K-pair, then there is a semi-computable set C
such that A ≤e C and B ≤e C.

Therefore, if {a,b} is a maximal K-pair, then there is a
(semi-computable) set C such that C ∈ a and C ∈ b.

Corollary
A nonzero degree is total if and only if it is the join of a maximal
K-pair.

Theorem (Kalimullin, 2003)
The class of K-pairs below is first order definable in De.

Corollary
The total degrees are first order definable in De.
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Main theorem

Theorem (Cai, Ganchev, Lempp, M., Soskova)
If {A,B} is a nontrivial K-pair, then there is a semi-computable set C
such that A ≤e C and B ≤e C.

Proof.

I C will be a left cut in the computable linear ordering (Q,≤).

I Let W witness the fact that {A,B} is a nontrivial K-pair.

I We take two copies of the natural numbers: N for A and N for B.

I Using W , we dynamically label elements of Q with the elements
of N ∪ N.

I A rational can have at most one label, but many rationals will be
given the same label.
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The labeling and the cut

I C will be a left cut in the computable linear ordering (Q,≤).

I Using W , we dynamically label elements of Q with the elements
of N ∪ N.

Note. The labeling will depend only on W ! The choice of C will
depend on {A,B}.

I Goal: produce a labeling and a cut C such that

A = {m : (∃q ∈ C)[ q is labeled by m ]},
B = {k : (∃q ∈ C)[ q is labeled by k ]}.

I In this case:

A ≤e C

B ≤e C
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The dead zone lemma

Note that our cut C cannot split a permanent dead zone. Our main
lemma says that this is okay.

Say that two current labels are connected if they are in the same
connected union of permanent dead zones.

Dead Zone Lemma

I If the current label n is connected to the current label k then
n ∈ A ⇐⇒ k /∈ B.

I If the current label n is connected to the current label m then
n ∈ A ⇐⇒ m ∈ A.

I If the current label k is connected to the current label j then
k /∈ B ⇐⇒ j /∈ B.

In other words, for any collection of connected current labels, either
all A-labels correspond to numbers in A and all B-labels correspond
to numbers not in B, or visa versa.
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Finally, we define C

Definition
The cut C is the set of all rationals q such that there is a k ∈ B:

I q is to the left of a k-labelled rational, or

I q is in the same permanent deadzone with a k-labelled rational.

We can show that everything works out. In other words:

A = {m : (∃q ∈ C)[ q is labeled by m ]},
B = {k : (∃q ∈ C)[ q is labeled by k ]}.

This completes the proof.
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Defining “c.e. in”

Definition
A Turing degree a is c.e. in a Turing degree x if there is an A ∈ a
that is x-c.e.

Theorem (Ganchev and Soskova)
Let a and x be Turing degrees such that a is not c.e. Then a is c.e.
in x if and only if there is a nontrivial K-pair {C,C} such that
de(C) ≤e ι(x) and ι(a) = de(C) ∨ de(C).

What about when a is c.e.?

Theorem (Cai, Ganchev, Lempp, M., Soskova)
The set CE = {ι(a) : a ∈ DT is c.e.} is first order definable in De. In
particular,

a is c.e. iff (∀b � 0′)[ a ∨ b is c.e. in b ].

Corollary
The image of the relation “c.e. in” in the enumeration degrees is first
order definable.
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Applications to automorphisms

I The total degrees are fixed by any automorphism of the
enumeration degrees.

I An enumeration degree is determined by the total degrees above
it (Selman, 1971).

I Therefore, the total degrees are a (definable) automorphism basis
for the enumeration degrees.

I Slaman and Woodin proved that there are only countably many
automorphisms of DT , hence the same holds for De. (This was
already proved by Soskova using Slaman and Woodin’s
framework.)

I Slaman and Woodin proved that every automorphism of DT fixes
the cone above 0′′, hence the same holds for the enumeration

degrees. (This was previously proved for the cone above 0
(4)
e by

Ganchev and Soskov, 2009.)

I Soskova and Slaman recently used the definability of the total
degrees and “c.e. in” to show that De has a finite automorphism
basis of ∆0

2 total degrees.
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