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Background

Martin-Löf suggested (1970) studying ∆1
1 randomness. A real is ∆1

1

random if it avoids all hyperarithmetic null sets; equivalently if it is
ML random relative to 0pαq for all computable ordinals α.

In general, measure theory in the context of effective descriptive
set theory was studied by Spector, Sacks, Tanaka, Kechris, Stern, ...

More recently, Hjorth and Nies studied how notions of algorithmic
randomness behave when c.e. is replaced by Π1

1. For example they
define the notion of Π1

1-ML-randomness.
This study was continued by Chong, Nies and Yu.



A question of complexity

How complicated is it to compute ωck
1 ?

Terminology

A real x preserves ωck
1 if ωx

1 � ωck
1 . Otherwise it collapses ωck

1 .

The set of reals which collapse ωck
1 is Π1

1 but not Σ1
1. It is Borel, since

it is Σ1
1 relative to Kleene’s O (the complete Π1

1 subset of ω).

Steel stated that the set of reals which preserve ωck
1 is Π0

ωck
1 �2

, but

not simpler.



Test case: Cohen generics

However, the situation is different if we restrict ourselves to Cohen
generic reals.

Theorem
The following are equivalent for a ∆1

1 Cohen generic real g:

1. g meets all dense Σ1
1 sets of strings;

2. g meets or avoids all Σ1
1 sets of strings;

3. g preserves ωck
1 .

Corollary

The set of ∆1
1 Cohen generic reals which preserve ωck

1 is Π0
2.

(Earlier, Slaman and Greenberg noticed that if g is ∆1
1 generic and

preserves ωck
1 then it meets or avoids all Π1

1 sets of strings. The
latter however is a weaker condition.)



Π1
1 randomness

Fact (Spector,Sacks)

Almost every real preserves ωck
1 .

Fact (Kechris)
There is a largest null Π1

1 set.

A real avoiding this null set is called Π1
1 random.

Theorem (Stern;Chong,Nies,Yu)

A ∆1
1 random real preserves ωck

1 if and only if it is Π1
1 random.

Question (Yu)

What is the complexity of the set of Π1
1 random reals?



Higher notions of computability and

randomness

Much of the development of higher randomness relies on the
analogy between Π1

1 and Σ0
1:

� For subsets of ω, Π1
1 is the same as Σ0

1 over Lωck
1

;

� For subsets of 2ω, Π1
1 is the same as Σ0

1 over Lωx
1
rxs, uniformly.

We use the colour blue to denote concepts in which the innermost
existential quantifier has been changed to range over ωck

1 . For
example,

� Σ0
1 � Π1

1 (for subsets of ω and for open subsets of 2ω);

� Π0
2 is the intersection

�
n ω Un of a uniform sequence of Σ0

1 sets.

� A real is MLR if it avoids all effectively null Π0
2 sets. Also

denoted by Π1
1-MLR.

� A real is weakly 2 random if it avoids all null Π0
2 sets. Also

denoted by Π1
1-weakly 2 random.



Quick summary: higher randomness notions

Π1
1 randomness

weak 2 randomness

MLR

∆1
1 randomness =

Schnorr =
computable randomness

omitted: difference randomness, ....



Short Π1
1 sets

Every Π1
1 subset of 2ω is the union

�
α ω1

Aα with each Aα Borel. If it
is Π1

1 then each Aα is ∆1
1pαq (uniformly in any code for α).

Definition
A Π1

1 set A � 2ω is short if it is the uniform union
�
α ωck

1
Aα of ∆1

1

sets.

Using the fact that ∆1
1 sets can be approximated from above (in the

sense of measure) by open ∆1
1 sets:

Lemma
A short Π1

1 set A can be approximated from above by Π1
1 open sets:

for all ε there is a Π1
1 open pΣ0

1q set Uε � A such that λpUε � Aq   ε.

In fact we can arrange that λ pUεα � Aαq   ε for all α (and anyway it
happens on a closed and unbounded set). Finding Uε is uniform in A
and ε.



Approximating with Π0
2 sets

Let B �
�

An be a uniform intersection of short Π1
1 sets.

� For α   ωck
1 we let Bα �

�
n An,α.

� We let B ωck
1
�

�
α ωck

1
Bα.

Note that if x P B � B ωck
1

then x collapses ωck
1 .

Proposition

Suppose that x is ∆1
1 random and collapses ωck

1 . Then there is a Π0
2

set G such that x P G � G ωck
1

.

Proof.
Let L be a computable operator taking reals to linear orderings such
that Lx � ωck

1 . For n   ω let

An �
 
y : otppLy ænq   ωck

1

(

and let B �
�

n An. Then x P B � B ωck
1

.

Approximate each An by Uεn; let G �
�

n,ε Un,ε. For all α, Gα � Aα is
null (and ∆1

1), so x P G � G ωck
1

.



The Borel rank

Lemma
Let G be Π0

2 and let P � G be Π0
1 (a closed Σ1

1 set). Then P � G ωck
1

.

Proof.
Say G �

�
n Un. By compactness, for all n there is some α   ωck

1

such that Pα � Un,α. By admissibility, these are all bounded
below ωck

1 .

For any set G, let G� be the union of all Π0
1 subsets of G.

Lemma
If G is Π1

1 then G � G� is null.

If G is Π0
2 then G � G� is also Π0

2.

Corollary

The set of Π1
1 random reals is Π0

3.

Techniques of Yu Liang’s show that it is not Σ0
3.



Forcing with Π0
1 sets of positive measure

Proposition

If x is sufficiently generic for forcing with Π0
1 classes of positive

measure then x is Π1
1 random.

Proof.
Let P be effectively closed of positive measure.
Let H �

�
n Un be Π0

2.
If P is not almost contained in H then for some n, P � Un is not null,
extends P and forces that x R H.
Otherwise, P is almost contained in H�, so we can find P1 � H� such
that λpP X P1q ¡ 0.



Lowness for Π1
1 randomness

Theorem (Hjorth,Nies)

If a P 2ω is not hyperarithmetic then a is not low for Π1
1-MLR.

Let a R ∆1
1. There is some Π1

1paq and open U of measure   1 which
cannot be covered by a Π1

1 open set of measure   1. In other words,
U intersects every Π0

1 set, in fact has positive intersection with each
such set. By induction, Un has the same property. If x is sufficiently
generic for forcing with Π0

1 sets of positive measure then x P Un for
all n, and so x R Π1

1paq-MLR.

Corollary

A real is low for Π1
1 randomness if and only if it is hyperarithmetic.



A refinement of the question

The parameter for the Π0
3 is complicated. We effectivise the

complexity question by considering the higher arithmetic hierarchy.

Σ0
1 Π0

1

Σ0
2 Π0

2

Σ0
3 Π0

3

Σ0
4 Π0

4



The effective Borel rank: a lower bound

If G is Π0
2 then G � G� is the intersection of Π1

1 open sets. But not
uniformly so: P � G is a c.e. event but not decidable.

Theorem
The set of Π1

1 randoms is not Π0
3.

Proposition

If a Π0
3 set is co-null then either it contains a hyperarithmetic real or

a real which collapses ωck
1 .



Finite change approxmations

The higher limit lemma says that x is computable from Kleene’s O
(the complete Π1

1 subset of ω) if and only if x � lims ωck
1

xs with xxsy

uniformly hyperarithmetic. The limit means that for all n   ω there
is some s   ωck

1 such that xt æn� xæn for all t P rs, ωck
1 q.

A stronger property is having a finite change approximation: for
all n, xxs æny changes only finitely often.

Lemma
If x has a finite-change approximation then either x is
hyperarithmetic or it collapses ωck

1 .

Proof.
We may assume that for all s   ωck

1 , xs � limt s xt. If x � xs for all s
then the function taking x to the least s such that xs æn� xæn is
unbounded in ωck

1 .



Proposition

Every co-null Π0
3 set contains a real which has a finite-change

approximation.

Proof.
Let F �

�
n Fn be a co-null Π0

3 set. So each Fn is co-null. Each Fn is
the union of an increasing sequence xFn,mym ω of Π0

1 sets; so
limm λpFn,mq � 1.
Idea: let m0 be the least such that λpF0,m0q ¥ 1{2. Let xp0q P t0,1u
such that λpF0,m0 |xp0qq ¥ 1{2.
Next, let m1 be least such that λpF0,m0 X F1,m1 |xp0qq ¥ 1{4. Let xp1q
be such that λpF0,m0 X F1,m1 |xp0qxp1qq ¥ 1{4. And so on.

Our guess for what m0 is changes at most m0 many times, and so
our guess for xp0q changes at most 2m0 many times.
Within any interval of stages at which our guess for xp0q and mp0q is
constant, our guess for what m1 is changes finitely many times
(perhaps more than the final m1). And so on. Note: it is not enough
to check only the final interval (the correct m0 and xp0q guess).



The effective Borel rank: an upper bound

Theorem
The set of Π1

1 randoms is Π0
5.

To show this, for any Π0
2 set G we show that G � Gωck

1
is a Π0

4 set
(uniformly in G).

*** I am lying. Try to catch me ***

For x P G let ηx be the least α such that x P Gα. So we want to
capture those x for which ηx � ωck

1 .

The problem is that the intersection
�
αtx : ηx ¡ αu ranges over

computable ordinals, not natural numbers.



The effective Borel rank: an upper bound

Instead we need to consider all computable linear orderings, not
only the well-founded ones. For e   ω let Ae be the set of x such
that the well-founded part of Le is smaller than ηx. This is Σ0

1. If we
take the intersection of all Ae we get nothing, since for some e, the
well-founded part of Le is ωck

1 .

To take care of these, let Be be the set of x such that ηx embeds in
some proper initial segment of Le. This is Σ0

3. If Le is a Harrison
linear ordering then Be � 2ω. So G � G ωck

1
�

�
epAe Y Beq.

On the other hand if ηx   ωck
1 and Le � ηx then x R Ae Y Be. Hence

£

e

pAe Y Beq � G � Gωck
1
.



The effective Borel rank

So the set of Π1
1 randoms is Π0

5 and not Π0
3. The only unknown left is:

is it Σ0
4?

Proposition

The set of Π1
1 randoms is not Σ0

4 if and only if every Π0
3 set of

positive measure contains a real which collapses ωck
1 .

Proof.
In the interesting direction: suppose that A is Π0

3, not null, and
contains no reals which collapse ωck

1 . We may assume that every
x P A is Π1

1-MLR, so every x P A is Π1
1-random. Let B �

�
σP2 ω σˆB.

Then B is Σ0
4 (and so is Σ1

1) and every x P B is Π1
1 random. By the

Lebesgue density theorem, B is co-null. It is contained in the
smallest co-null Σ1

1 set, and so must equal it.



Attempting a separation between Π1
1

randomness and weak 2 randomness

Suppose that x has a finite-change approximation xxsy. As we
mentioned, we may assume that the set txs : s   ωck

1 u Y txu is
closed. We say that x has a closed approximation (this is a weaker
condition).

Proposition

If x has a closed approximation then it is not Π1
1-weak 2 random.

Proof.
Let Un �

�
s ωck

1
rxs æns. Each Un is clopen, and so

�
n Un is the set

txs : s   ωck
1 u Y txu. This set is countable, and so is null.

Corollary

The two halves of Ω are not Π1
1-weakly 2 random, and so not Π1

1

random.

So: if we want to separate Π1
1 randomness from Π1

1-weak 2
randomness, we cannot build a real with a closed approximation.



Closed and unbounded approximations

Lemma
Suppose that x is not hyperarithmetic, that xxsys ωck

1
is uniformly

hyperarithmetic and that for all n, ts   ωck
1 : xs æn� xænu is closed

and unbounded. Then x collapses ωck
1 .

We do not assume that x � lims xs but we can adjust the
approximation so that it is.

Proof.
Same proof. If the first occurrences of xæn are bounded below s then
x � xs.

Proposition

There is a real x which is Π1
1-weakly 2 random but has a club

approximation.



The separation

Proposition

There is a real x which is Π1
1-weakly 2 random but has a club

approximation.

Proof sketch.
We approximate x, and for each e, if the eth Σ0

2 set Fe �
�

k Fe,k is
co-null then we want x P Fe. At some stage we are given σ   xs and
a closed set H inherited from above such that λpH|σq ¥ εe. If Fe is
co-null then we can find an extension τ ¡ σ and some late enough k
such that λpH X Fe,k|τq ¥ εe{2 and we keep going; our guess for k
(and τ ) will change only finitely many times. However, if Fe is not
co-null then we will go through all k first and only then discover that
fact.
Idea: in this case discard σ. We have reserved in advance (as in
Kučera coding) another σ1 which we never touched before, also with
λpH|σ1q ¥ εe. We now route the construction through σ1. We also
made progress: we know that Fe is not co-null, so we can ignore
it.



Computing c.e. sets

Using Π1
1 functionals we define a higher version of Turing

reducibility. It is important that it is continuous (unlike relative
hyperarithmetic reducibility).

The following theorem is an analogue of a result of Hirschfeldt and
Miller characterising weak 2 randomness in terms of forming a
minimal pair with 01.

Theorem
The following are equivalent for a ML-random real x:

� x is not Π1
1 random.

� x computes a noncomputable c.e. set.



Further questions

� Is the set of Π1
1-weakly 2 random sets Σ0

2n for any n?

� Can any nonhyperarithmetic set be joined above O with a Σ1
1

generic? a Π1
1 random?



Thank you


