The complexity of Π_{1}^{1} randomness

Noam Greenberg and Benoit Monin

Victoria University of Wellington
$11^{\text {th }}$ June 2014

Background

Martin-Löf suggested (1970) studying Δ_{1}^{1} randomness. A real is Δ_{1}^{1} random if it avoids all hyperarithmetic null sets; equivalently if it is ML random relative to $\mathbf{0}^{(\alpha)}$ for all computable ordinals α.

In general, measure theory in the context of effective descriptive set theory was studied by Spector, Sacks, Tanaka, Kechris, Stern, ...

More recently, Hjorth and Nies studied how notions of algorithmic randomness behave when c.e. is replaced by Π_{1}^{1}. For example they define the notion of Π_{1}^{1}-ML-randomness.
This study was continued by Chong, Nies and Yu.

A question of complexity

How complicated is it to compute ω_{1}^{ck} ?
Terminology
A real x preserves ω_{1}^{ck} if $\omega_{1}^{\chi}=\omega_{1}^{\mathrm{ck}}$. Otherwise it collapses ω_{1}^{ck}.
The set of reals which collapse ω_{1}^{ck} is Π_{1}^{1} but not Σ_{1}^{1}. It is Borel, since it is Σ_{1}^{1} relative to Kleene's O (the complete Π_{1}^{1} subset of ω).

Steel stated that the set of reals which preserve ω_{1}^{ck} is $\Pi_{\omega_{1}^{\mathrm{ck}+2}}^{0}$, but not simpler.

Test case: Cohen generics

However, the situation is different if we restrict ourselves to Cohen generic reals.

Theorem

The following are equivalent for a Δ_{1}^{1} Cohen generic real g :

1. g meets all dense Σ_{1}^{1} sets of strings;
2. g meets or avoids all Σ_{1}^{1} sets of strings;
3. g preserves ω_{1}^{ck}.

Corollary

The set of Δ_{1}^{1} Cohen generic reals which preserve $\omega_{1}^{c k}$ is Π_{2}^{0}.
(Earlier, Slaman and Greenberg noticed that if g is Δ_{1}^{1} generic and preserves ω_{1}^{ck} then it meets or avoids all Π_{1}^{1} sets of strings. The latter however is a weaker condition.)

Π_{1}^{1} randomness

Fact (Spector,Sacks)

Almost every real preserves ω_{1}^{ck}.

Fact (Kechris)

There is a largest null Π_{1}^{1} set.
A real avoiding this null set is called Π_{1}^{1} random.

Theorem (Stern;Chong, Nies,Yu)
A Δ_{1}^{1} random real preserves ω_{1}^{ck} if and only if it is Π_{1}^{1} random.

Question (Yu)

What is the complexity of the set of Π_{1}^{1} random reals?

Higher notions of computability and randomness

Much of the development of higher randomness relies on the analogy between Π_{1}^{1} and Σ_{1}^{0} :

- For subsets of ω, Π_{1}^{1} is the same as Σ_{1}^{0} over $L_{\omega_{1}^{c k}}$;
- For subsets of $2^{\omega}, \Pi_{1}^{1}$ is the same as Σ_{1}^{0} over $L_{\omega_{1}^{x}}[x]$, uniformly. We use the colour blue to denote concepts in which the innermost existential quantifier has been changed to range over ω_{1}^{ck}. For example,
- $\Sigma_{1}^{0}=\Pi_{1}^{1}$ (for subsets of ω and for open subsets of 2^{ω});
- Π_{2}^{0} is the intersection $\bigcap_{n<\omega} U_{n}$ of a uniform sequence of Σ_{1}^{0} sets.
- A real is MLR if it avoids all effectively null Π_{2}^{0} sets. Also denoted by Π_{1}^{1}-MLR.
- A real is weakly 2 random if it avoids all null Π_{2}^{0} sets. Also denoted by Π_{1}^{1}-weakly 2 random.

Quick summary: higher randomness notions

omitted: difference randomness,

Short Π_{1}^{1} sets

Every Π_{1}^{1} subset of 2^{ω} is the union $\bigcup_{\alpha<\omega_{1}} A_{\alpha}$ with each A_{α} Borel. If it is Π_{1}^{1} then each A_{α} is $\Delta_{1}^{1}(\alpha)$ (uniformly in any code for α).

Definition
$A \Pi_{1}^{1}$ set $A \subseteq 2^{\omega}$ is short if it is the uniform union $\bigcup_{\alpha<\omega_{1}^{\mathrm{c}}} A_{\alpha}$ of Δ_{1}^{1} sets.

Using the fact that Δ_{1}^{1} sets can be approximated from above (in the sense of measure) by open Δ_{1}^{1} sets:

Lemma

A short Π_{1}^{1} set A can be approximated from above by Π_{1}^{1} open sets: for all ϵ there is a Π_{1}^{1} open $\left(\Sigma_{1}^{0}\right)$ set $U^{\epsilon} \supseteq A$ such that $\lambda\left(U^{\epsilon}-A\right)<\epsilon$. In fact we can arrange that $\lambda\left(U_{\alpha}^{\epsilon}-A_{\alpha}\right)<\epsilon$ for all α (and anyway it happens on a closed and unbounded set). Finding U^{ϵ} is uniform in A and ϵ.

Approximating with Π_{2}^{0} sets

Let $B=\bigcap A_{n}$ be a uniform intersection of short Π_{1}^{1} sets.

- For $\alpha<\omega_{1}^{\mathrm{ck}}$ we let $B_{\alpha}=\bigcap_{n} A_{n, \alpha}$.
- We let $B_{<\omega_{1}^{\mathrm{ck}}}=\bigcup_{\alpha<\omega_{1}^{\mathrm{ck}}} B_{\alpha}$.

Note that if $x \in B-B_{<\omega_{1}^{\mathrm{ck}}}$ then x collapses ω_{1}^{ck}.
Proposition
Suppose that x is Δ_{1}^{1} random and collapses ω_{1}^{ck}. Then there is a Π_{2}^{0} set G such that $x \in G-G_{<\omega_{1}^{c k}}$.

Proof.

Let L be a computable operator taking reals to linear orderings such that $L^{x} \cong \omega_{1}^{\mathrm{ck}}$. For $n<\omega$ let

$$
A_{n}=\left\{y: \operatorname{otp}\left(L^{y} \upharpoonright_{n}\right)<\omega_{1}^{c k}\right\}
$$

and let $B=\bigcap_{n} A_{n}$. Then $x \in B-B_{<\omega_{1}^{c k}}$.
Approximate each A_{n} by U_{n}^{ϵ}; let $G=\bigcap_{n, \epsilon} U_{n, \epsilon}$. For all $\alpha, G_{\alpha}-A_{\alpha}$ is null (and Δ_{1}^{1}), so $x \in G-G_{<\omega_{1}^{c k}}$.

The Borel rank

Lemma

Let G be Π_{2}^{0} and let $P \subseteq G$ be Π_{1}^{0} (a closed Σ_{1}^{1} set). Then $P \subseteq G_{<\omega_{1}^{c k}}$.

Proof.

Say $G=\bigcap_{n} U_{n}$. By compactness, for all n there is some $\alpha<\omega_{1}^{\mathrm{ck}}$ such that $P_{\alpha} \subseteq U_{n, \alpha}$. By admissibility, these are all bounded below ω_{1}^{ck}.

For any set G, let G^{*} be the union of all Π_{1}^{0} subsets of G.
Lemma
If G is Π_{1}^{1} then $G-G^{*}$ is null.

If G is Π_{2}^{0} then $G-G^{*}$ is also $\Pi_{\mathbf{2}}^{\mathbf{0}}$.

Corollary

 The set of Π_{1}^{1} random reals is $\Pi_{\mathbf{3}}^{\mathbf{0}}$.Techniques of Yu Liang's show that it is not $\boldsymbol{\Sigma}_{\mathbf{3}}^{\mathbf{0}}$.

Forcing with Π_{1}^{0} sets of positive measure

Proposition

If x is sufficiently generic for forcing with Π_{1}^{0} classes of positive measure then x is Π_{1}^{1} random.

Proof.

Let P be effectively closed of positive measure.
Let $H=\bigcap_{n} U_{n}$ be Π_{2}^{0}.
If P is not almost contained in H then for some $n, P-U_{n}$ is not null, extends P and forces that $x \notin H$.
Otherwise, P is almost contained in H^{*}, so we can find $P^{\prime} \subseteq H^{*}$ such that $\lambda\left(P \cap P^{\prime}\right)>0$.

Lowness for Π_{1}^{1} randomness

Theorem (Hjorth,Nies)

If $a \in 2^{\omega}$ is not hyperarithmetic then a is not low for Π_{1}^{1}-MLR.

Let $a \notin \Delta_{1}^{1}$. There is some $\Pi_{1}^{1}(a)$ and open U of measure <1 which cannot be covered by a Π_{1}^{1} open set of measure <1. In other words, U intersects every Π_{1}^{0} set, in fact has positive intersection with each such set. By induction, U^{n} has the same property. If x is sufficiently generic for forcing with Π_{1}^{0} sets of positive measure then $x \in U^{n}$ for all n, and so $x \notin \Pi_{1}^{1}(a)$-MLR.

Corollary

A real is low for Π_{1}^{1} randomness if and only if it is hyperarithmetic.

A refinement of the question

The parameter for the Π_{3}^{0} is complicated. We effectivise the complexity question by considering the higher arithmetic hierarchy.

The effective Borel rank: a lower bound

If G is Π_{2}^{0} then $G-G^{*}$ is the intersection of Π_{1}^{1} open sets. But not uniformly so: $P \subset G$ is a c.e. event but not decidable.

Theorem
The set of Π_{1}^{1} randoms is not Π_{3}^{0}.

Proposition

If a Π_{3}^{0} set is co-null then either it contains a hyperarithmetic real or a real which collapses ω_{1}^{ck}.

Finite change approxmations

The higher limit lemma says that x is computable from Kleene's O (the complete Π_{1}^{1} subset of ω) if and only if $x=\lim _{s<\omega_{1}^{\mathrm{ck}}} x_{s}$ with $\left\langle x_{s}\right\rangle$ uniformly hyperarithmetic. The limit means that for all $n<\omega$ there is some $s<\omega_{1}^{\mathrm{ck}}$ such that $x_{t} \upharpoonright_{n}=x \upharpoonright_{n}$ for all $t \in\left[s, \omega_{1}^{\mathrm{ck}}\right)$.
A stronger property is having a finite change approximation: for all $n,\left\langle\left. x_{s}\right|_{n}\right\rangle$ changes only finitely often.

Lemma

If x has a finite-change approximation then either x is hyperarithmetic or it collapses ω_{1}^{ck}.

Proof.

We may assume that for all $s<\omega_{1}^{\mathrm{ck}}, x_{s}=\lim _{t<s} x_{t}$. If $x \neq x_{s}$ for all s then the function taking x to the least s such that $x_{s} \upharpoonright_{n}=x \upharpoonright_{n}$ is unbounded in ω_{1}^{ck}.

Proposition

Every co-null Π_{3}^{0} set contains a real which has a finite-change approximation.

Proof.

Let $F=\bigcap_{n} F_{n}$ be a co-null Π_{3}^{0} set. So each F_{n} is co-null. Each F_{n} is the union of an increasing sequence $\left\langle F_{n, m}\right\rangle_{m<\omega}$ of Π_{1}^{0} sets; so $\lim _{m} \lambda\left(F_{n, m}\right)=1$.
Idea: let m_{0} be the least such that $\lambda\left(F_{0, m_{0}}\right) \geqslant 1 / 2$. Let $x(0) \in\{0,1\}$ such that $\lambda\left(F_{0, m_{0}} \mid x(0)\right) \geqslant 1 / 2$.
Next, let m_{1} be least such that $\lambda\left(F_{0, m_{0}} \cap F_{1, m_{1}} \mid x(0)\right) \geqslant 1 / 4$. Let $x(1)$ be such that $\lambda\left(F_{0, m_{0}} \cap F_{1, m_{1}} \mid x(0) x(1)\right) \geqslant 1 / 4$. And so on.

Our guess for what m_{0} is changes at most m_{0} many times, and so our guess for $x(0)$ changes at most $2 m_{0}$ many times.
Within any interval of stages at which our guess for $x(0)$ and $m(0)$ is constant, our guess for what m_{1} is changes finitely many times (perhaps more than the final m_{1}). And so on. Note: it is not enough to check only the final interval (the correct m_{0} and $x(0)$ guess).

The effective Borel rank: an upper bound

Theorem
The set of Π_{1}^{1} randoms is Π_{5}^{0}.

To show this, for any Π_{2}^{0} set G we show that $G-G_{\omega_{1}^{c k}}$ is a Π_{4}^{0} set (uniformly in G).
*** I am lying. Try to catch me ***
For $x \in G$ let η^{x} be the least α such that $x \in G_{\alpha}$. So we want to capture those x for which $\eta^{x}=\omega_{1}^{\mathrm{ck}}$.

The problem is that the intersection $\bigcap_{\alpha}\left\{x: \eta^{x}>\alpha\right\}$ ranges over computable ordinals, not natural numbers.

The effective Borel rank: an upper bound

Instead we need to consider all computable linear orderings, not only the well-founded ones. For $e<\omega$ let A_{e} be the set of x such that the well-founded part of L_{e} is smaller than η^{x}. This is Σ_{1}^{0}. If we take the intersection of all A_{e} we get nothing, since for some e, the well-founded part of L_{e} is $\omega_{1}^{c k}$.

To take care of these, let B_{e} be the set of x such that η^{x} embeds in some proper initial segment of L_{e}. This is Σ_{3}^{0}. If L_{e} is a Harrison linear ordering then $B_{e}=2^{\omega}$. So $G-G_{<\omega_{1}^{c k}} \subseteq \bigcap_{e}\left(A_{e} \cup B_{e}\right)$.
On the other hand if $\eta^{x}<\omega_{1}^{c k}$ and $L_{e} \cong \eta^{x}$ then $x \notin A_{e} \cup B_{e}$. Hence

$$
\bigcap_{e}\left(A_{e} \cup B_{e}\right)=G-G_{\omega_{1}^{c k}}
$$

The effective Borel rank

So the set of Π_{1}^{1} randoms is Π_{5}^{0} and not Π_{3}^{0}. The only unknown left is: is it \sum_{4}^{0} ?

Proposition

The set of Π_{1}^{1} randoms is not Σ_{4}^{0} if and only if every Π_{3}^{0} set of positive measure contains a real which collapses ω_{1}^{ck}.

Proof.

In the interesting direction: suppose that A is Π_{3}^{0}, not null, and contains no reals which collapse $\omega_{1}^{c k}$. We may assume that every $x \in A$ is Π_{1}^{1}-MLR, so every $x \in A$ is Π_{1}^{1}-random. Let $B=\bigcup_{\sigma \in 2<\omega} \sigma^{\wedge} B$. Then B is Σ_{4}^{0} (and so is Σ_{1}^{1}) and every $x \in B$ is Π_{1}^{1} random. By the Lebesgue density theorem, B is co-null. It is contained in the smallest co-null Σ_{1}^{1} set, and so must equal it.

Attempting a separation between Π_{1}^{1} randomness and weak 2 randomness

Suppose that x has a finite-change approximation $\left\langle x_{s}\right\rangle$. As we mentioned, we may assume that the set $\left\{x_{s}: s<\omega_{1}^{\mathrm{ck}}\right\} \cup\{x\}$ is closed. We say that x has a closed approximation (this is a weaker condition).

Proposition

If x has a closed approximation then it is not Π_{1}^{1}-weak 2 random.
Proof.
Let $U_{n}=\bigcup_{s<\omega_{1}^{\mathrm{ck}}}\left[x_{s} \upharpoonright_{n}\right]$. Each U_{n} is clopen, and so $\bigcap_{n} U_{n}$ is the set $\left\{x_{s}: s<\omega_{1}^{\mathrm{ck}}\right\} \cup\{x\}$. This set is countable, and so is null.

Corollary

The two halves of Ω are not Π_{1}^{1}-weakly 2 random, and so not Π_{1}^{1} random.
So: if we want to separate Π_{1}^{1} randomness from Π_{1}^{1}-weak 2 randomness, we cannot build a real with a closed approximation.

Closed and unbounded approximations

Lemma

Suppose that x is not hyperarithmetic, that $\left\langle x_{s}\right\rangle_{s<\omega_{1}^{\text {ck }}}$ is uniformly hyperarithmetic and that for all $n,\left\{s<\omega_{1}^{c k}: x_{s} \upharpoonright_{n}=x \uparrow_{n}\right\}$ is closed and unbounded. Then x collapses ω_{1}^{ck}.
We do not assume that $x=\lim _{s} x_{s}$ but we can adjust the approximation so that it is.

Proof.

Same proof. If the first occurrences of $x \upharpoonright_{n}$ are bounded below s then $x=x_{s}$.

Proposition

There is a real x which is Π_{1}^{1}-weakly 2 random but has a club approximation.

The separation

Proposition

There is a real x which is Π_{1}^{1}-weakly 2 random but has a club approximation.

Proof sketch.

We approximate x, and for each e, if the $e^{\text {th }} \Sigma_{2}^{0}$ set $F_{e}=\bigcup_{k} F_{e, k}$ is co-null then we want $x \in F_{e}$. At some stage we are given $\sigma<x_{s}$ and a closed set H inherited from above such that $\lambda(H \mid \sigma) \geqslant \epsilon_{\mathrm{e}}$. If F_{e} is co-null then we can find an extension $\tau>\sigma$ and some late enough k such that $\lambda\left(H \cap F_{e, k} \mid \tau\right) \geqslant \epsilon_{e} / 2$ and we keep going; our guess for k (and τ) will change only finitely many times. However, if F_{e} is not co-null then we will go through all k first and only then discover that fact.
Idea: in this case discard σ. We have reserved in advance (as in Kučera coding) another σ^{\prime} which we never touched before, also with $\lambda\left(H \mid \sigma^{\prime}\right) \geqslant \epsilon_{\mathrm{e}}$. We now route the construction through σ^{\prime}. We also made progress: we know that F_{e} is not co-null, so we can ignore it.

Computing c.e. sets

Using Π_{1}^{1} functionals we define a higher version of Turing reducibility. It is important that it is continuous (unlike relative hyperarithmetic reducibility).

The following theorem is an analogue of a result of Hirschfeldt and Miller characterising weak 2 randomness in terms of forming a minimal pair with $\mathbf{0}^{\prime}$.

Theorem

The following are equivalent for a ML-random real x :

- x is not Π_{1}^{1} random.
- x computes a noncomputable c.e. set.

Further questions

- Is the set of Π_{1}^{1}-weakly 2 random sets $\Sigma_{2 n}^{0}$ for any n ?
- Can any nonhyperarithmetic set be joined above O with a Σ_{1}^{1} generic? a Π_{1}^{1} random?

Thank you

