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Abstarct

In the first part, we study the Reverse Mathematics On Quasi-Riesz
Spaces. We show some trival facts.

In the second part, we study the Reverse Mathematics On Measure
theory, we prove that the first Borel-Cantelli lemma is equivalent to
WWKL over RCA0. We also give some applications.
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Reverse Mathematics On Quasi-Riesz Spaces

I. Definitions
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Reverse Mathematics On Quasi-Riesz Spaces

Definition (Directed sets)

Let (A,≤) be a partially ordered set. A set B ⊂ A is directed upwards,
B ↑ if for every pair a, b of elements of B there is a c ∈ B such that a ≤ c
and b ≤ c .

B ↑ a to mean that B ↑ and that sup B = a. Observe, for instance, that
{a} ↑ a for every a ∈ A.
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Reverse Mathematics On Quasi-Riesz Spaces

Definition (Order-closed sets)

If (A,≤) is a partially ordered set and B ⊂ A, we shall write

FB = {a : ∃ C ⊆ B, (C 6= ∅&C ↑ a in A)}

DB = {a : ∃ C ⊆ B, (C 6= ∅&C ↓ a in A)}

Then B ⊆ FB and B ⊆ DB.

B is order-closed if FB = B = DB.

Lemma (ACA0)

The following are equvalent to each other.

Π1
1 − CA0.

Any subset B of a poset has FB.

Any subset B of a poset has DB.
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Reverse Mathematics On Quasi-Riesz Spaces

Proof.

(1)→ (2) is trivial.

(2)→ (1). Let a Σ1
1-formula ψ(n) be of the form ∃f ∀mψ0(n, f [m])

where ψ0 ∈ Σ0
0. Let A = N<N ∪ N. Define ≤ on A by the following:

for σ, τ ∈ N<N and n ∈ N,
σ ≤ n iff ψ0(n, σ∗) where σ =< n >_ σ∗ for some σ∗ ∈ N<N.
σ ≤ τ iff τ is extends of σ.
Let B = N<N. Then, n ∈ FB ↔ ψ(n). So, by ∆0

1 − CA, {n : ψ(n)}
exists.
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Reverse Mathematics On Quasi-Riesz Spaces

Definition

A partially ordered linear space is a quadruple (E ,+, ·,≤) where (E ,+, ·)
is a linear space over the field Q and ≤ is a partial ording on E such that

(i) if x ≤ y , then x + z ≤ y + z for every z ∈ E ;

(ii) If x ≥ 0 in E , then ax ≥ 0 whenever α ≥ 0 in Q.

Usually, a partially ordered linear space is defined as a linear space over R.
We will introduce such a standard case in the near future.
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Reverse Mathematics On Quasi-Riesz Spaces

Lemma (RCA0)

Let E be a partially ordered linear space, x ∈ E , A, B ⊆ E . Then

(i) sup(x + A) = x + sup A if either side exists.

(ii) sup(−A) = − inf A if either side exists.

(iii) sup(A + B) = sup A + sup B if the right-hand side exists.

(iii) If α ≥ 0, sup(αA) = α sup A if the right-hand side exists.
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Reverse Mathematics On Quasi-Riesz Spaces

Definition

A quasi-Riesz space is a partially ordered linear sapce (E ,+, ·,≤) such
that (E ,≤) is a lattice.
If E is a quasi-Riesz sapce, we write

x+ = x ∨ 0, x− = (−x) ∨ 0, |x | = x ∨ (−x)

for any x ∈ E .

The basic properties are proved in RCA0, for example:
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Reverse Mathematics On Quasi-Riesz Spaces

Let E be a quasi-Riesz space, x , y and z members of E , and α and β
numbers.

(x ∧ y) + z = (x + z) ∧ (y + z).

If α ≥ 0, αx ∧ αy = α(x ∧ y).

x + y = x ∨ y + x ∧ y .

x = x+ − x−.

|x | = x+ + x−.

etc.
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Reverse Mathematics On Quasi-Riesz Spaces

Definition (Solid)

Let E be a quasi-Riesz space. A set A ⊂ E is solid if y ∈ A whenever there
is an x ∈ A such that |y | ≤ |x |.
If A is any subset of E , the set {y : ∃x ∈ A, |y | ≤ |x |} is solid; it is the
smallest solid set including A, and is called the solid hull of A.

Lemma (ACA0)

Any subset A of a quasi-Riesz space E has a solid hull.

Question

Does this lemma imply ACA0 over RCA0?
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Reverse Mathematics On Quasi-Riesz Spaces

Lemma (RCA0)

Let E be a Quasi-Riesz space.

If x , y and z belong to E+,

z ∧ (x + y) ≤ z ∧ x + z ∧ y .

If 〈xi 〉i<n is a finite sequence in E+ and |y | ≤
∑

i<n xi , then there is a
finite sequence 〈yi 〉i<n in E such that y =

∑
i<n yi and |yi | ≤ xi for

every i < n.

If 〈xi 〉i<n and 〈yj〉j<m are finite sequences in E+ such that∑
i<n xi =

∑
j<m yj , then there is a double sequence 〈Zij〉i<n,j<m in

E+ such that xi =
∑

k<m zik and
∑

k<n zkj for every i < n and j < m.

Proposition

The convex hull of a solid set, if exists, is solid.
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Reverse Mathematics on Measure Theory

V. Reverse Mathematics on
Measure Theory
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Reverse Mathematics on Measure Theory

The measure

A complete separable metric space Â = (A, d) is coded by the countable
dense set A ⊂ N and the pseudo-metric d on A. A point of Â is a strong
Cauchy sequence 〈an : n ∈ N〉 in the sense that d(an, am) ≤ 2−n for any
n ≤ m.

A complete separable metric space Â is compact if there exists an infinite
sequence of finite sequences of Â, 〈〈xij : i ≤ nj〉 : j ∈ N〉, such that for all

z ∈ Â and j ∈ N there exists i ≤ nj such that d(xij , z) < 2−j .

A basic open ball for this space Â is coded by 〈a, r〉, where a ∈ A and
r > 0 is a rational. Open and closed subsets are coded by sequences of
basic open balls.
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Reverse Mathematics on Measure Theory

A basic function on Â is a code p = 〈a, r , s〉 where a ∈ A and r , s ∈ Q
which satisfy that 0 ≤ s < r . It is understood that p = 〈a, r , s〉 can be
seen as a continuous function such that for any x ∈ Â,

p(x) =


1 if d(a, x) ≤ s,
(r − d(a, x))/(r − s) if s < d(a, x) < r ,
0 if d(a, x) ≥ r .
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Reverse Mathematics on Measure Theory

C (Â): the space of continuous real-valued functions

Let P be the set of linear combinations of basic functions with rational
coefficients. Then P forms a vector space over the rational field.

The space of continuous real-valued functions C (Â) is defined as the
complete separable Banach space P̂ = (P, || · ||∞). If
f = 〈pn : n ∈ N〉 ∈ C (Â), it is understood that f (x) = limn pn(x) for any
x ∈ Â.
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Reverse Mathematics on Measure Theory

Measure

A (probability) measure is a (code for a) positive linear functional µ on
C (Â) such that µ(1) = 1. For any open subset U of Â , the measure of U
is defined to be

µ(U) = sup{µ(g) : g ≺ U},

where g ≺ U is used for the statement that 0 ≤ g ≤ 1 and g(x) = 0 for
any x 6∈ U. Similarly, for any closed subset C of X ,

µ(C ) = inf{µ(g) : C ≺ g}
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Reverse Mathematics on Measure Theory The Borel-Cantelli lemma

V. The Borel-Cantelli lemma
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Reverse Mathematics on Measure Theory The Borel-Cantelli lemma

The Borel-Cantelli lemma is a theorem about sequences of events, named
after Emile Borel and Francesco Paolo Cantelli, who found it in the first
decades of the 20th century.

Theorem

The following statement, called the first Borel-Cantelli lemma is equivalent
to WWKL over RCA0: Let On be the sequences of open set. If∑

n=0 µ(On) <∞, then

µ(
⋂
n

⋃
k>n

Ok) = 0.
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Reverse Mathematics on Measure Theory The Borel-Cantelli lemma

Proof.

(i) Let
∑

n=0 µ(On) <∞. For any ε > 0, There exists an n0 such that∑∞
k=n0

µ(Ok) < ε. By WWKL, µ(∪∞k=n0
Ok) ≤

∑∞
k=n0

µ(Ok) < ε.

(ii) We use the fact that the following statement implies WWKL:∑
i=0 µ(ai , bi ) < 1 implies 〈(ai , bi ) : i ∈ N〉 does not cover [0, 1].

Assume that [0, 1] ⊂
⋃

(ai , bi ) and
∑∞

i=1 µ((ai , bi )) < 1− ε. By the
Borel-Cantelli lemma, there is n such that µ(∪i>n(ai , bi )) < ε. So

1 ≤ µ([0, 1]) ≤ µ(∪i≤n(ai , bi )) + µ(∪i>n(ai , bi ))

≤
∑
1≤n

µ((ai , bi )) + µ(∪i>n(ai , bi )) < 1,

which is a contradiction.
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Reverse Mathematics on Measure Theory The Borel-Cantelli lemma

A related result, sometimes called the second Borel-Cantelli lemma, is a
partial converse of the first Borel-Cantelli lemma.

Theorem (RCA0)

Let On be the independent sequences of open sets. If
∑

n=0 µ(On) =∞,
then

µ(
⋂
n

⋃
k>n

Ok) = 1.
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Reverse Mathematics on Measure Theory Application

Theorem

The following assertions are pairwise equivalent over RCA0.

(i) ACA0.

(ii) Let 〈fn : n ∈ N〉 be a dominated Cauchy sequence of L1(Â, µ) in
probability. Then, there exists subsequences which converge to some
f ∈ L1(Â, µ) a.e.
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Reverse Mathematics on Measure Theory Application

Proof

(i → ii) Give a sequence 〈fn : n ∈ N〉, where fn = 〈Pn,l : l ∈ N〉 ∈ L1(Â, µ).
Assume that this sequence is dominated and cauchy in probability, that is,

∀ε > 0, lim
n,m→∞

µ({x ∈ Â : |fn(x)− fm(x)| > ε}) = 0.

By ACA, we let g(n) be the least m such that ∀l ≥ m,

µ({x ∈ Â : |Pl ,n+2(x)− Pm,n+2(x)| > 2−n−2}) < 2−n.

Then define h : N→ N by h(0) = g(0) and h(n + 1) = g(m) where m is
the least number s.t g(m) > h(n).
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Reverse Mathematics on Measure Theory Application

Continue of Proof

Let Ek = {x ∈ Ω : |Ph(k+1),k+2(x)− Ph(k),k+2(x)| > 2−k−2}. Since

µ(Ek) < 2−k , by the first Borel-Cantelli lemma, µ(
⋂

n

⋃
k≥n Ek) = 0. So,

〈fh(k) : k ∈ N〉 is point-wise convergent a.e.

By Lebesgue dominated convergence theorem, ∃f ∈ L1(Â, µ) such that
fh(k) → f a.e., that is, in || ||1.

(ii → i) As the proof of Theorem III 2.2 in Simpson’s book.
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Reverse Mathematics on Measure Theory Application

Lemma (WWKL0)

Let 〈fn : n ∈ N〉 be a sequence of continuous functions converging to a
continous function f in probability, then 〈fn : n ∈ N〉 point-wise converges
to f a.e.
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Reverse Mathematics on Measure Theory Application

Theorem (WWKL)

Let 〈Xn : n ∈ N〉 be an independent sequence of random variables with the
same expected value m. If there exists M > 0 such that
∀n(E (|Xn − µ|4) < M), then

lim
n→∞

1

n

∑
i<n

Xi (ω) = m a.e.

Question

Does the strong law of large numbers imply WWKL0?
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References

Xiaokang Yu: Lebesgue Convergence Theorems and Reverse
Mathematics,
Math. Log. Quart. 40 (1994) 1-13.

Xiaokang Yu: Measure theory and weak Königs lemma
Archive Math. Logic, 30 (1990), 171-180.

Brown, Douglas K., Mariagnese Giusto, and Stephen G. Simpson:
Vitali’s theorem and WWKL
Archive for Mathematical Logic 41.2 (2002): 191-206.

NingNing Peng (National University of Singapore matpn@nus.edu.sg)Reverse Mathematics On Quasi-Riesz Spaces
June 13, 2014 Computability, Complexity and Randomness 2014 28

/ 29



Reverse Mathematics on Measure Theory Application

Thank you very much!
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