Reverse Mathematics On Quasi-Riesz Spaces

NingNing Peng

National University of Singapore matpn@nus.edu.sg

June 13, 2014 Computability, Complexity and Randomness 2014

June 13, 2014 Computability, Complexity

NingNing Peng (National University of SingReverse Mathematics On Quasi-Riesz Space

Reverse Mathematics On Quasi-Riesz Spaces

2

Reverse Mathematics on Measure Theory

- The Borel-Cantelli lemma
- Application

- In the first part, we study the Reverse Mathematics On Quasi-Riesz Spaces. We show some trival facts.
- In the second part, we study the Reverse Mathematics On Measure theory, we prove that the first Borel-Cantelli lemma is equivalent to WWKL over RCA₀. We also give some applications.

I. Definitions

June 13, 2014 Computability, Complexity a NingNing Peng (National University of SingReverse Mathematics On Quasi-Riesz Space / 29

Definition (Directed sets)

Let (A, \leq) be a partially ordered set. A set $B \subset A$ is directed upwards, $B \uparrow$ if for every pair a, b of elements of B there is a $c \in B$ such that $a \leq c$ and $b \leq c$.

 $B \uparrow a$ to mean that $B \uparrow$ and that sup B = a. Observe, for instance, that $\{a\} \uparrow a$ for every $a \in A$.

June 13, 2014 Computability, Complexi

Definition (Order-closed sets)

If (A, \leq) is a partially ordered set and $B \subset A$, we shall write

$$\mathcal{FB} = \{a: \exists C \subseteq B, (C \neq \emptyset \& C \uparrow a \text{ in } A)\}$$
$$\mathcal{DB} = \{a: \exists C \subseteq B, (C \neq \emptyset \& C \downarrow a \text{ in } A)\}$$

June 13, 2014 Computability, Comple

Then $B \subseteq \mathcal{F}B$ and $B \subseteq \mathcal{D}B$.

B is order-closed if $\mathcal{F}B = B = \mathcal{D}B$.

Lemma (ACA₀)

The following are equvalent to each other.

•
$$\Pi_1^1 - CA_0$$
.

• Any subset B of a poset has FB.

• Any subset B of a poset has $\mathcal{D}B$.

Proof.

- $(1) \rightarrow (2)$ is trivial.
- (2) → (1). Let a Σ₁¹-formula ψ(n) be of the form ∃f∀mψ₀(n, f[m]) where ψ₀ ∈ Σ₀⁰. Let A = N^{<N} ∪ N. Define ≤ on A by the following: for σ, τ ∈ N^{<N} and n ∈ N, σ ≤ n iff ψ₀(n, σ^{*}) where σ =< n >[¬] σ^{*} for some σ^{*} ∈ N^{<N}. σ ≤ τ iff τ is extends of σ. Let B = N^{<N}. Then, n ∈ FB ↔ ψ(n). So, by Δ₁⁰ CA, {n : ψ(n)} exists.

June 13, 2014 Computability, Complexit

Definition

A partially ordered linear space is a quadruple $(E, +, \cdot, \leq)$ where $(E, +, \cdot)$ is a linear space over the field \mathbb{Q} and \leq is a partial ording on E such that

(i) if
$$x \leq y$$
, then $x + z \leq y + z$ for every $z \in E$;

(ii) If
$$x \ge 0$$
 in E , then $ax \ge 0$ whenever $\alpha \ge 0$ in \mathbb{Q} .

Usually, a partially ordered linear space is defined as a linear space over $\mathbb R.$ We will introduce such a standard case in the near future.

June 13, 2014 Computability, Complexi

Lemma (RCA₀)

Let E be a partially ordered linear space, $x \in E$, A, $B \subseteq E$. Then

- (i) $\sup(x + A) = x + \sup A$ if either side exists.
- (ii) $\sup(-A) = -\inf A$ if either side exists.
- (iii) $\sup(A + B) = \sup A + \sup B$ if the right-hand side exists.
- (iii) If $\alpha \ge 0$, sup $(\alpha A) = \alpha \sup A$ if the right-hand side exists.

Definition

A quasi-Riesz space is a partially ordered linear sapce $(E, +, \cdot, \leq)$ such that (E, \leq) is a lattice.

If E is a quasi-Riesz sapce, we write

$$x^+ = x \lor 0, x^- = (-x) \lor 0, |x| = x \lor (-x)$$

for any $x \in E$.

The basic properties are proved in RCA₀, for example:

Let *E* be a quasi-Riesz space, *x*, *y* and *z* members of *E*, and α and β numbers.

Computability, Complexity

- (x ∧ y) + z = (x + z) ∧ (y + z).
 If α ≥ 0, αx ∧ αy = α(x ∧ y).
 x + y = x ∨ y + x ∧ y.
 x = x⁺ x⁻.
 |x| = x⁺ + x⁻.
- etc.

Definition (Solid)

Let *E* be a quasi-Riesz space. A set $A \subset E$ is solid if $y \in A$ whenever there is an $x \in A$ such that $|y| \leq |x|$. If *A* is any subset of *E*, the set $\{y : \exists x \in A, |y| \leq |x|\}$ is solid; it is the smallest solid set including *A*, and is called the solid hull of *A*.

Definition (Solid)

Let *E* be a quasi-Riesz space. A set $A \subset E$ is solid if $y \in A$ whenever there is an $x \in A$ such that $|y| \leq |x|$. If *A* is any subset of *E*, the set $\{y : \exists x \in A, |y| \leq |x|\}$ is solid; it is the smallest solid set including *A*, and is called the solid hull of *A*.

Lemma (ACA₀)

Any subset A of a quasi-Riesz space E has a solid hull.

Question

Does this lemma imply ACA_0 over RCA_0 ?

June 13, 2014 Computability, Comple NingNing Peng (National University of SingReverse Mathematics On Quasi-Riesz Space Lemma (RCA₀)

- Let E be a Quasi-Riesz space.
 - If x, y and z belong to E^+ ,

$$z \wedge (x + y) \leq z \wedge x + z \wedge y.$$

- If $\langle x_i \rangle_{i < n}$ is a finite sequence in E^+ and $|y| \leq \sum_{i < n} x_i$, then there is a finite sequence $\langle y_i \rangle_{i < n}$ in E such that $y = \sum_{i < n} y_i$ and $|y_i| \leq x_i$ for every i < n.
- If $\langle x_i \rangle_{i < n}$ and $\langle y_j \rangle_{j < m}$ are finite sequences in E^+ such that $\sum_{i < n} x_i = \sum_{j < m} y_j$, then there is a double sequence $\langle Z_{ij} \rangle_{i < n, j < m}$ in E^+ such that $x_i = \sum_{k < m} z_{ik}$ and $\sum_{k < n} z_{kj}$ for every i < n and j < m.

Proposition

The convex hull of a solid set, if exists, is solid.

V. Reverse Mathematics on Measure Theory

June 13, 2014 Computability, Complexity NingNing Peng (National University of SingReverse Mathematics On Quasi-Riesz Space / 29

The measure

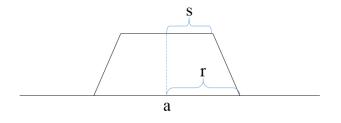
A complete separable metric space $\hat{A} = (A, d)$ is coded by the countable dense set $A \subset \mathbb{N}$ and the pseudo-metric d on A. A point of \hat{A} is a strong Cauchy sequence $\langle a_n : n \in \mathbb{N} \rangle$ in the sense that $d(a_n, a_m) \leq 2^{-n}$ for any $n \leq m$.

A complete separable metric space \hat{A} is compact if there exists an infinite sequence of finite sequences of \hat{A} , $\langle \langle x_{ij} : i \leq n_j \rangle : j \in \mathbb{N} \rangle$, such that for all $z \in \hat{A}$ and $j \in \mathbb{N}$ there exists $i \leq n_j$ such that $d(x_{ij}, z) < 2^{-j}$.

A basic open ball for this space \hat{A} is coded by $\langle a, r \rangle$, where $a \in A$ and r > 0 is a rational. Open and closed subsets are coded by sequences of basic open balls.

A basic function on \hat{A} is a code $p = \langle a, r, s \rangle$ where $a \in A$ and $r, s \in \mathbb{Q}$ which satisfy that $0 \leq s < r$. It is understood that $p = \langle a, r, s \rangle$ can be seen as a continuous function such that for any $x \in \hat{A}$,

$$p(x) = \begin{cases} 1 & \text{if } d(a,x) \leq s, \\ (r-d(a,x))/(r-s) & \text{if } s < d(a,x) < r, \\ 0 & \text{if } d(a,x) \geq r. \end{cases}$$



Computability, Comple

$C(\hat{A})$: the space of continuous real-valued functions

Let P be the set of linear combinations of basic functions with rational coefficients. Then P forms a vector space over the rational field.

The space of continuous real-valued functions $C(\hat{A})$ is defined as the complete separable Banach space $\hat{P} = (P, || \cdot ||_{\infty})$. If $f = \langle p_n : n \in \mathbb{N} \rangle \in C(\hat{A})$, it is understood that $f(x) = \lim_n p_n(x)$ for any $x \in \hat{A}$.

Measure

A (probability) measure is a (code for a) positive linear functional μ on $C(\hat{A})$ such that $\mu(1) = 1$. For any open subset U of \hat{A} , the measure of U is defined to be

$$\mu(U) = \sup\{\mu(g) : g \prec U\},\$$

where $g \prec U$ is used for the statement that $0 \leq g \leq 1$ and g(x) = 0 for any $x \notin U$. Similarly, for any closed subset C of X,

$$\mu(C) = \inf\{\mu(g) : C \prec g\}$$

June 13, 2014 Computability, Complexity NingNing Peng (National University of SingReverse Mathematics On Quasi-Riesz Space / 29

V. The Borel-Cantelli lemma

June 13, 2014 Computability, Complexity a NingNing Peng (National University of SingReverse Mathematics On Quasi-Riesz Space / 29 The Borel-Cantelli lemma is a theorem about sequences of events, named after Emile Borel and Francesco Paolo Cantelli, who found it in the first decades of the 20th century.

Theorem

The following statement, called the first Borel-Cantelli lemma is equivalent to WWKL over RCA₀: Let O_n be the sequences of open set. If $\sum_{n=0} \mu(O_n) < \infty$, then

$$\mu(\bigcap_n \bigcup_{k>n} O_k) = 0.$$

June 13, 2014 Computability, Complexi

NingNing Peng (National University of SingReverse Mathematics On Quasi-Riesz Space

Proof.

- (i) Let $\sum_{n=0} \mu(O_n) < \infty$. For any $\epsilon > 0$, There exists an n_0 such that $\sum_{k=n_0}^{\infty} \mu(O_k) < \epsilon$. By WWKL, $\mu(\bigcup_{k=n_0}^{\infty} O_k) \le \sum_{k=n_0}^{\infty} \mu(O_k) < \epsilon$.
- (ii) We use the fact that the following statement implies WWKL: $\sum_{i=0} \mu(a_i, b_i) < 1 \text{ implies } \langle (a_i, b_i) : i \in \mathbb{N} \rangle \text{ does not cover } [0, 1].$ Assume that $[0, 1] \subset \bigcup (a_i, b_i)$ and $\sum_{i=1}^{\infty} \mu((a_i, b_i)) < 1 - \epsilon$. By the Borel-Cantelli lemma, there is *n* such that $\mu(\bigcup_{i>n}(a_i, b_i)) < \epsilon$. So

$$egin{aligned} &1 \leq \mu([0,1]) \leq \mu(\cup_{i \leq n}(a_i,b_i)) + \mu(\cup_{i > n}(a_i,b_i)) \ &\leq \sum_{1 \leq n} \mu((a_i,b_i)) + \mu(\cup_{i > n}(a_i,b_i)) < 1, \end{aligned}$$

June 13, 2014 Computability, Complexi

which is a contradiction.

A related result, sometimes called the second Borel-Cantelli lemma, is a partial converse of the first Borel-Cantelli lemma.

Let O_n be the independent sequences of open sets. If $\sum_{n=0} \mu(O_n) = \infty$, then

$$u(\bigcap_{n}\bigcup_{k>n}O_{k})=1.$$

June 13, 2014 Computability, Complex NingNing Peng (National University of SingReverse Mathematics On Quasi-Riesz Space

Theorem (RCA₀)

Theorem

The following assertions are pairwise equivalent over RCA₀.

- (i) ACA₀.
- (ii) Let ⟨f_n : n ∈ N⟩ be a dominated Cauchy sequence of L₁(Â, μ) in probability. Then, there exists subsequences which converge to some f ∈ L₁(Â, μ) a.e.

 $(i \rightarrow ii)$ Give a sequence $\langle f_n : n \in \mathbb{N} \rangle$, where $f_n = \langle P_{n,l} : l \in \mathbb{N} \rangle \in L_1(\hat{A}, \mu)$. Assume that this sequence is dominated and cauchy in probability, that is,

$$\forall \varepsilon > 0, \lim_{n,m\to\infty} \mu(\{x \in \hat{A} : |f_n(x) - f_m(x)| > \varepsilon\}) = 0.$$

By ACA, we let g(n) be the least m such that $\forall l \geq m$,

$$\mu(\{x \in \hat{A} : |P_{l,n+2}(x) - P_{m,n+2}(x)| > 2^{-n-2}\}) < 2^{-n}.$$

Then define $h : \mathbb{N} \to \mathbb{N}$ by h(0) = g(0) and h(n+1) = g(m) where m is the least number s.t g(m) > h(n).

Continue of Proof

Let $E_k = \{x \in \Omega : |P_{h(k+1),k+2}(x) - P_{h(k),k+2}(x)| > 2^{-k-2}\}$. Since $\mu(E_k) < 2^{-k}$, by the first Borel-Cantelli lemma, $\mu(\bigcap_n \bigcup_{k \ge n} E_k) = 0$. So, $\langle f_{h(k)} : k \in \mathbb{N} \rangle$ is point-wise convergent a.e. By Lebesgue dominated convergence theorem, $\exists f \in L_1(\hat{A}, \mu)$ such that $f_{h(k)} \to f$ a.e., that is, in $|| \ ||_1$.

 $(ii \rightarrow i)$ As the proof of Theorem III 2.2 in Simpson's book.

Lemma (WWKL₀)

Let $\langle f_n : n \in \mathbb{N} \rangle$ be a sequence of continuous functions converging to a continuous function f in probability, then $\langle f_n : n \in \mathbb{N} \rangle$ point-wise converges to f a.e.

Theorem (WWKL)

Let $\langle X_n : n \in \mathbb{N} \rangle$ be an independent sequence of random variables with the same expected value m. If there exists M > 0 such that $\forall n(E(|X_n - \mu|^4) < M)$, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i< n}X_i(\omega)=m \ a.e.$$

June 13, 2014 Computability, Complexi NingNing Peng (National University of SingReverse Mathematics On Quasi-Riesz Space

Theorem (WWKL)

Let $\langle X_n : n \in \mathbb{N} \rangle$ be an independent sequence of random variables with the same expected value m. If there exists M > 0 such that $\forall n(E(|X_n - \mu|^4) < M)$, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i< n}X_i(\omega)=m \text{ a.e.}$$

Question

Does the strong law of large numbers imply WWKL₀?

References

- Xiaokang Yu: Lebesgue Convergence Theorems and Reverse Mathematics, Math. Log. Quart. 40 (1994) 1-13.
- Xiaokang Yu: *Measure theory and weak Königs lemma* Archive Math. Logic, 30 (1990), 171-180.
- Brown, Douglas K., Mariagnese Giusto, and Stephen G. Simpson: Vitali's theorem and WWKL
 Archive for Mathematical Logic 41.2 (2002): 191-206.

June 13, 2014 Computability, Complex

Thank you very much!

June 13, 2014 Computability, Complexity an NingNing Peng (National University of SingReverse Mathematics On Quasi-Riesz Space / 29