Infinite computations with random oracles

Philipp Schlicht, Universität Bonn with Merlin Carl, Universität Konstanz

Computability, Complexity and Randomness Singapore, 11 June 2014

Motivation

Many mathematical objects cannot be coded by integers, yet we can perform infinitary constructions with these objects

- constructing the algebraic closure of a field
- constructing the levels L_{lpha} of the constructible universe L

This motivates the study of infinitary computations, which give a precise meaning to various intuitive infinitary constructions.

Infinite time computations

Hamkins, Welch, Koepke and others studied Turing programs with infinite hardware and infinite time.

- analogies to Turing computability
- halting times
- relation with Π_1^1 and Σ_2^1 sets

Goals

- analogies to algorithmic randomness
- computability from a set of real oracles of positive measure

Infinite time Turing machines

Consider a Turing program which runs on the hardware of a Turing machine, but with infinite time (ITTM, Hamkins-Kidder 2000).

- the tape is a Turing tape
- the time is the ordinals (Ord)

The machine works as follows.

- the state is the *liminf* of the states at previous times
- the head moves to the *liminf* of its previous positions if this is finite, and to 0 otherwise
- the contents of each cell is the *liminf* of the contents at previous times

Example

Test if a symbol occurs infinitely often. Test if a tree has an infinite branch.

Ordinal time/tape Turing machines

Consider a Turing program which runs on infinite hardware (OTM, Koepke 2006).

- the tape has length the ordinals
- the time is the ordinals

The transition in limit times is defined as follows.

- the state is the *liminf* of the states at previous times
- the head moves to the *liminf* of its previous positions
- the contents of each cell is the *liminf* of the contents at previous times

Example

Add ordinals. $\alpha+\beta$ is defined by

- $\alpha + (\beta + 1) = (\alpha + \beta) + 1$
- $\alpha + \lambda = \sup_{\beta < \lambda} \alpha + \beta$ for limits λ

We represent α by a symbol in place α .

Computations

tape \rightarrow											
	state	head	0	1	2	3	4	5		ω	
0	0	0	0	0	0	0	0	0		0	•••
1	1	1	1	0	0	0	0	0	• • •	0	• • •
2	0	2	1	0	0	0	0	0	• • •	0	• • •
3	1	3	1	0	1	0	0	0	• • •	0	• • •
4	0	4	1	0	1	0	0	0	• • •	0	
5	1	5	1	0	1	0	0	0		0	• • •
6	0	6	1	0	1	0	1	0		0	• • •
7	1	7	1	0	1	0	1	0	• • •	0	
8	0	8	1	0	1	0	1	0	• • •	0	• • •
9	1	9	1	0	1	0	1	0	• • •	0	• • •
		:		••••	••••	:	••••	•••	••••	••••	
ω	0	ω	1	0	1	0	1	0	• • •	0	
$\omega + 1$	1	$\omega + 1$	1	0	1	0	1	0	• • •	1	• • •
	:	:		:	:		•		:		••••

time \downarrow

Computations from many oracles

Lemma (de Leuw-Moore-Shannon-Shapiro, Sacks) If $A \subseteq 2^{\mathbb{N}}$, $\mu(A) > 0$, and $x \in 2^{\mathbb{N}}$ is computable from all $y \in A$, then x is computable.

Proof.

There is an interval U_s with $\frac{\mu(A \cap U_s)}{\mu(U_s)} > 0.5$ by the Lebesgue density theorem. Assume $\mu(A) > 0.5$.

Each bit is computed from some $s_0, ..., s_n$ with $\mu(U_{s_0} \cup ... \cup U_{s_n}) > 0.5$.

Is this true for infinite computations?

- the machine can read all input bits during a computation
- we cannot list all possible input words

Computable sets

Definition

 $x, y \in 2^{\mathbb{N}}, A \subseteq 2^{\mathbb{N}}.$

- ▶ x is OTM-computable from y ($x \leq_{OTM} y$) if there is an OTM P such that P halts on input y with output x ($P^y = x$).
- A is OTM-computable if there is an OTM P such that P halts on all inputs $x \in 2^{\mathbb{N}}$, and $x \in A$ iff $P^x = 0$.
- ITTMs compute Π_1^1 and Σ_1^1 sets of reals (Hamkins-Lewis)
- OTMs compute Δ_2^1 sets of reals (Koepke-Seyfferth)
- OTMs with ordinal oracles compute *L* (Koepke)

The computable reals are those in some L_{α} for various machines.

Definition

 $L_{0} := \emptyset$ $L_{\alpha+1} := Def(L_{\alpha}, \epsilon) := \{X \subseteq L_{\alpha} \mid X = \{x \in L_{\alpha} \mid (L_{\alpha}, \epsilon) \models \varphi(x, a)\} \text{ for some } a \in L_{\alpha} \text{ and some first order formula } \varphi\}$ $L := \bigcup_{\alpha \in Ord} L_{\alpha}$

Halting times

Definition

Let $\eta^{\rm x}$ denote the supremum of halting times of OTMs with oracle x.

Lemma

The following conditions are equivalent for reals x, y.

- x is Δ_2^1 in y
- **∙** х ≤отм у
- $x \in L_{\eta^y}[y]$

OTM computations in L

Theorem

Suppose that V = L. There is a real x and a co-countable set $A \subseteq 2^{\mathbb{N}}$ such that

- x is OTM-computable from every $y \in A$ but
- x is not OTM-computable.

Corollary

Assume that V = L.

- Let z denote the halting problem for OTMs. Then z ≤_{OTM} x for every non-OTM-computable real x.
- For all reals x and y, $x \leq_{OTM} y$ or $y \leq_{OTM} x$.

Cohen and random reals

Definition

Suppose that $x \in 2^{\mathbb{N}}$.

- x is Cohen over L_{α} if $x \in B$ for every comeager Borel set B with a Borel code in L_{α} .
- x is random over L_{α} if $x \in B$ for every measure 1 Borel set B with a Borel code in L_{α} .
- related to forcing in set theory
- related to randomness in computability

OTM computations from many oracles

Theorem

 Suppose that for every x ∈ 2^N, the set of random reals over L[x] has measure 1 (iff every Σ₂¹ set is Lebesgue measurable).

If $A \subseteq 2^{\mathbb{N}}$ has positive measure and x is OTM-computable from every $y \in A$, then x is OTM-computable.

 Suppose that for every x ∈ 2^N, the set of Cohen reals over L[x] is comeager (iff every Σ₂¹ set has the property of Baire).

If A is a nonmeager set with the property of Baire and x is OTM-computable from every $y \in A$, then x is OTM-computable.

OTM computations with ordinal parameters

Lemma

A real x is OTM-computable from y with ordinal oracles iff $x \in L[y]$, i.e. x is constructible from y.

In L, and in any model in which $(2^{\mathbb{N}})^L$ is not Lebesgue measurable, our question is trivial.

The following result follows easily from work of Judah-Shelah.

Theorem

There is a forcing \mathbb{P} in L such that in any \mathbb{P} -generic extension of L there is a measure 1 set $A\subseteq 2^{\mathbb{N}}$ and

- every $x \in A$ can be constructed from every $y \in A$
- A contains no constructible real
- $(2^{\mathbb{N}})^L$ has measure 0

OTM computations with ordinal parameters

Theorem

- Suppose that for every real x, there is a random real over L[x].
 If A has positive measure and x ∈ 2^N is constructible from each y ∈ A, then x ∈ L.
- Suppose that for every real x, there is a Cohen real over L[x]. If A is a nonmeager Borel set and $x \in 2^{\mathbb{N}}$ is constructible from each $y \in A$, then $x \in L$.

Question

Is it consistent that there is a nonconstructible real x and a Borel set A of measure 1 such that x is OTM-computable without parameters from every $y \in A$?

ITTM writable reals

Definition

Suppose that $x \in 2^{\mathbb{N}}$.

- Let λ^x denote the supremum of ITTM-writable ordinals (write-halt) with oracle x.
- Let ζ^{x} denote the supremum of ITTM-eventually writable ordinals (write-keep) with oracle x.
- Let Σ^{\times} denote the supremum of ITTM-accidentally writable ordinals (write) with oracle x.

Theorem (Welch)

- The reals writable (eventually writable, accidentally writable) in the oracle x are exactly those in L_{λ*}[x] (L_{ζ*}[x], L_{Σ*}[x]).
- ζ^{x}, Σ^{x} is the lexically least pair of ordinals with $L_{\zeta^{x}}[x] \prec_{\Sigma_{2}} L_{\Sigma^{x}}[x]$
- λ^{x} is minimal with $L_{\lambda^{x}}[x] <_{\Sigma_{1}} L_{\zeta^{x}}[x]$.

ITTM computations from many oracles

Lemma If x is Cohen generic over $L_{\Sigma+1}$ then

- $L_{\lambda}[x] \prec_{\Sigma_1} L_{\zeta}[x] \prec_{\Sigma_2} L_{\Sigma}[x].$
- $\lambda^{\times} = \lambda$, $\zeta^{\times} = \zeta$ and $\Sigma^{\times} = \Sigma$.

Theorem

Suppose that $A \subseteq 2^{\mathbb{N}}$ is a nonmeager Borel set and $x \in 2^{\mathbb{N}}$.

If x is writable (eventually writable, accidentally writable) in every oracle $y \in A$, then x is writable (eventually writable, accidentally writable).

Conjecture

Suppose that $A \subseteq 2^{\mathbb{N}}$ is a set with positive measure and $x \in 2^{\mathbb{N}}$.

If x is writable (eventually writable, accidentally writable) in every oracle $y \in A$, then x is writable (eventually writable, accidentally writable).

Infinite time register machines

An infinite time register machine (ITRM) stores integers in finitely many registers and works in ordinal time.

Theorem

Suppose that x is a real and A is a set of positive measure such that x is ITRM-computable from all $y \in A$. Then x is ITRM-computable.

Consider the variant of ordinal time/tape Turing machine whose time is bounded by an ordinal $\alpha.$

Theorem

There are unboundedly many countable admissible ordinals α such that every real x which is α -computable from all elements of a set A of positive measure is α -computable.

Question

Are there analogous results for other ideals, such as the ideals associated to perfect set forcing or the forcing for adding a dominating function?